Duwat P, Cochu A, Ehrlich SD, Gruss A. Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition.
J Bacteriol 1997;
179:4473-9. [PMID:
9226255 PMCID:
PMC179281 DOI:
10.1128/jb.179.14.4473-4479.1997]
[Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Studies of cellular responses to DNA-damaging agents, mostly in Escherichia coli, have revealed numerous genes and pathways involved in DNA repair. However, other species, particularly those which exist under different environmental conditions than does E. coli, may have rather different responses. Here, we identify and characterize genes involved in DNA repair in a gram-positive plant and dairy bacterium, Lactococcus lactis. Lactococcal strain MG1363 was mutagenized with transposition vector pG+host9::ISS1, and 18 mutants sensitive to mitomycin and UV were isolated at 37 degrees C. DNA sequence analyses allowed the identification of 11 loci and showed that insertions are within genes implicated in DNA metabolism (polA, hexB, and deoB), cell envelope formation (gerC and dltD), various metabolic pathways (arcD, bglA, gidA, hgrP, metB, and proA), and, for seven mutants, nonidentified open reading frames. Seven mutants were chosen for further characterization. They were shown to be UV sensitive at 30 degrees C (the optimal growth temperature of L. lactis); three (gidA, polA, and uvs-75) were affected in their capacity to mediate homologous recombination. Our results indicate that UV resistance of the lactococcal strain can be attributed in part to DNA repair but also suggest that other factors, such as cell envelope composition, may be important in mediating resistance to mutagenic stress.
Collapse