1
|
Guerinot ML, Chelm BK. Bacterial delta-aminolevulinic acid synthase activity is not essential for leghemoglobin formation in the soybean/Bradyrhizobium japonicum symbiosis. Proc Natl Acad Sci U S A 2010; 83:1837-41. [PMID: 16593670 PMCID: PMC323179 DOI: 10.1073/pnas.83.6.1837] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies of legume nodules have indicated that formation of the heme moiety of leghemoglobin is a function of the bacterial symbiont. We now show that a hemA mutant of Bradyrhizobium japonicum that cannot carry out the first step in heme biosynthesis forms fully effective nodules on soybeans. The bacterial mutant strain was constructed by first isolating the wild-type hemA gene encoding delta-aminolevulinic acid synthase (EC 2.3.1.37) from a cosmid library, using a fragment of the Rhizobium meliloti hemA gene as a hybridization probe. A deletion of the hemA gene region, generated in vitro, then was used to construct the analogous chromosomal mutation by gene-directed mutagenesis. The mutant strain had no delta-aminolevulinic acid synthase activity and was unable to grow in minimal medium unless delta-aminolevulinic acid was added. Despite its auxotrophy, the mutant strain incited nodules that appeared normal, contained heme, and were capable of high levels of acetylene reduction. These results rule out bacterial delta-aminolevulinic acid synthase activity as the exclusive source of delta-aminolevulinic acid for heme formation in soybean nodules.
Collapse
Affiliation(s)
- M L Guerinot
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824
| | | |
Collapse
|
2
|
Basit HA, Angle JS, Salem S, Gewaily EM, Kotob SI, van Berkum P. Phenotypic Diversity among Strains of Bradyrhizobium japonicum Belonging to Serogroup 110. Appl Environ Microbiol 2010; 57:1570-2. [PMID: 16348497 PMCID: PMC182988 DOI: 10.1128/aem.57.5.1570-1572.1991] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thirty-four strains of Bradyrhizobium japonicum within serogroup 110 were examined for phenotypic diversity. The strains differed in their abilities to nodulate and fix dinitrogen with Glycine max (L.) Merr. cv. Williams. Thirteen strains expressed uptake hydrogenase activity when induced as free-living cultures in the presence of 2% hydrogen and oxygen. Six bacteriophage susceptibility reactions were observed. Each of the strains produced either a large, mucoid or a small, dry colony morphology, but colony type was not related to effectiveness for nitrogen fixation.
Collapse
Affiliation(s)
- H A Basit
- Department of Botany, Zagazig University, Cairo, Egypt; Department of Agronomy, University of Maryland, College Park, Maryland 20742 ; and Soybean and Alfalfa Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Maryland 20705
| | | | | | | | | | | |
Collapse
|
3
|
Hom SS, Novak PD, Maier RJ. Transposon Tn5-Generated Bradyrhizobium japonicum Mutants Unable To Grow Chemoautotrophically with H(2). Appl Environ Microbiol 2010; 54:358-63. [PMID: 16347549 PMCID: PMC202457 DOI: 10.1128/aem.54.2.358-363.1988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Twelve Tn5-induced mutants of Bradyrhizobium japonicum unable to grow chemoautotrophically with CO(2) and H(2) (Aut) were isolated. Five Aut mutants lacked hydrogen uptake activity (Hup). The other seven Aut mutants possessed wild-type levels of hydrogen uptake activity (Hup), both in free-living culture and symbiotically. Three of the Hup mutants lacked hydrogenase activity both in free-living culture and as nodule bacteroids. The other two mutants were Hup only in free-living culture. The latter two mutants appeared to be hypersensitive to repression by oxygen, since Hup activity could be derepressed under 0.4% O(2). All five Hup mutants expressed both ex planta and symbiotic nitrogenase activities. Two of the seven Aut Hup mutants expressed no free-living nitrogenase activity, but they did express it symbiotically. These two strains, plus one other Aut Hup mutant, had CO(2) fixation activities 20 to 32% of the wild-type level. The cosmid pSH22, which was shown previously to contain hydrogenase-related genes of B. japonicum, was conjugated into each Aut mutant. The Aut Hup mutants that were Hup both in free-living culture and symbiotically were complemented by the cosmid. None of the other mutants was complemented by pSH22. Individual subcloned fragments of pSH22 were used to complement two of the Hup mutants.
Collapse
Affiliation(s)
- S S Hom
- Department of Biology and McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
4
|
Coppi MV. The hydrogenases of Geobacter sulfurreducens: a comparative genomic perspective. MICROBIOLOGY-SGM 2005; 151:1239-1254. [PMID: 15817791 DOI: 10.1099/mic.0.27535-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The hydrogenase content of the genome of Geobacter sulfurreducens, a member of the family Geobacteraceae within the delta-subdivision of the Proteobacteria, was examined and found to be distinct from that of Desulfovibrio species, another family of delta-Proteobacteria on which extensive research concerning hydrogen metabolism has been conducted. Four [NiFe]-hydrogenases are encoded in the G. sulfurreducens genome: two periplasmically oriented, membrane-bound hydrogenases, Hya and Hyb, and two cytoplasmic hydrogenases, Mvh and Hox. None of these [NiFe]-hydrogenases has a counterpart in Desulfovibrio species. Furthermore, the large and small subunits of Mvh and Hox appear to be related to archaeal and cyanobacterial hydrogenases, respectively. Clusters encoding [Fe]-hydrogenases and periplasmic [NiFeSe]-hydrogenases, which are commonly found in the genomes of Desulfovibrio species, are not present in the genome of G. sulfurreducens. Hydrogen-evolving Ech hydrogenases, which are present in the genomes of at least two Desulfovibrio species, were also absent from the G. sulfurreducens genome, despite the fact that G. sulfurreducens is capable of hydrogen production. Instead, the G. sulfurreducens genome contained a cluster encoding a multimeric Ech hydrogenase related (Ehr) complex that was similar in content to operons encoding Ech hydrogenases, but did not appear to encode a hydrogenase. Phylogenetic analysis revealed that the G. sulfurreducens ehr cluster is part of a family of related clusters found in both the Archaea and Bacteria.
Collapse
Affiliation(s)
- Maddalena V Coppi
- Department of Microbiology, 203N Morrill Science Center IVN, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Fu C, Maier RJ. Organization of the hydrogenase gene cluster from Bradyrhizobium japonicum: sequences and analysis of five more hydrogenase-related genes. Gene X 1994; 145:91-6. [PMID: 8045431 DOI: 10.1016/0378-1119(94)90328-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previously, the deletion of a 2.9-kb chromosomal EcoRI fragment of DNA located 2.2 kb downstream from the end of the Bradyrhizobium japonicum hydrogenase structural genes caused lack of normal-sized hydrogenase (Hup) subunits and complete loss of Hup activity. It was suggested that this region encodes one or more genes required for Hup processing. Sequencing of a 3322-bp XcmI fragment of DNA covering this 2.9-kb EcoRI fragment within the hup gene cluster revealed the presence of five open reading frames (ORFs) designated hupG, hupH, hupI, hupJ and hupK, encoding polypeptides with calculated molecular masses of 15.8, 30.7, 7.6, 18.1 and 38 kDa, respectively. Based on deduced amino acid (aa) sequences, all five products of the hupGHIJK genes showed significant homology with other genes' products in several H2-utilizing bacteria. Of particular interest are HupG and HupI. HupG showed 70% similarity (28% identity) to the HyaE of the Escherichia coli hydrogenase-1 operon which was demonstrated to be involved in the processing of hydrogenase-1. HupI showed strong identity to rubredoxin and rubredoxin-like proteins from many other bacteria. The latter proteins contain two 'C-X-X-C' motifs, which may serve as iron ligands for non-heme iron proteins involved as intermediate electron carriers or in the assembly process for Fe-S (or NiFe-S) clusters.
Collapse
Affiliation(s)
- C Fu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
6
|
Hydrogenase in Bradyrhizobium japonicum: genetics, regulation and effect on plant growth. World J Microbiol Biotechnol 1993; 9:615-24. [DOI: 10.1007/bf00369567] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/26/1993] [Accepted: 05/13/1993] [Indexed: 10/26/2022]
|
7
|
van Berkum P, Sloger C. Hydrogen Oxidation by the Host-Controlled Uptake Hydrogenase Phenotype of Bradyrhizobium japonicum in Symbiosis with Soybean Host Plants. Appl Environ Microbiol 1991; 57:1863-1865. [PMID: 16348518 PMCID: PMC183486 DOI: 10.1128/aem.57.6.1863-1865.1991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symbioses between uptake hydrogenase host-regulated (Hup-hr) phenotypes of Bradyrhizobium japonicum and exotic, agronomically unadapted soybean germ plasm were examined for expression of uptake hydrogenase activity. Determinations for hydrogen evolution and uptake hydrogenase activity identified five plant introduction (PI) lines which formed hydrogen-oxidizing symbioses with strains USDA 61 and PA3 6c. Hup-hr strains belonging to serogroup 94 expressed uptake hydrogenase activity in symbioses with PI 181696 and PI 219655 at rates sufficient to prevent hydrogen from escaping the nodules. The identification of soybean germ plasm forming hydrogen-oxidizing symbioses with Hup-hr bradyrhizobia potentially has implications for enhancing nitrogen fixation efficiency in soybean production.
Collapse
Affiliation(s)
- Peter van Berkum
- Soybean and Alfalfa Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, HH-19, Building 011, BARC-West, Beltsville, Maryland 20705
| | | |
Collapse
|
8
|
Novak PD, Maier RJ. Identification of a Locus Upstream from the Hydrogenase Structural Genes That Is Involved in Hydrogenase Expression in
Bradyrhizobium japonicum. Appl Environ Microbiol 1989; 55:3051-7. [PMID: 16348066 PMCID: PMC203222 DOI: 10.1128/aem.55.12.3051-3057.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A locus involved in the expression of the uptake hydrogenase system of
Bradyrhizobium japonicum
was identified adjacent to genes encoding the hydrogenase subunits. A cloned fragment of DNA was used to complement to autotrophy a Hup
−
putative regulatory mutant of
B. japonicum
. The mutant strain lacked hydrogenase activity and synthesized low levels of the large subunit of hydrogenase as determined by Western gels. Tn
5
-induced mutagenesis located the region within the fragment which was necessary for complementation of the mutant phenotype. The locus identified is adjacent to that encoding the small subunit of hydrogenase; its right border is <0.5 kilobase upstream from the hydrogenase transcriptional start site, and its left border is between 1 and 2.5 kilobases from that start site. However, the locus is outside the region previously shown to contain
hup
-related genes of
B. japonicum
. Thus, the localization of this gene describes a previously unidentified
hup
-related gene on a region of DNA not previously shown to contain
hup
-specific DNA.
Collapse
Affiliation(s)
- P D Novak
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
9
|
O'Brian MR, Maier RJ. Hydrogen metabolism in Rhizobium: energetics, regulation, enzymology and genetics. Adv Microb Physiol 1988; 29:1-52. [PMID: 3132815 DOI: 10.1016/s0065-2911(08)60345-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- M R O'Brian
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | |
Collapse
|
10
|
Leyva A, Palacios JM, Mozo T, Ruiz-Argüeso T. Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum. J Bacteriol 1987; 169:4929-34. [PMID: 2822654 PMCID: PMC213888 DOI: 10.1128/jb.169.11.4929-4934.1987] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A gene library of genomic DNA from the hydrogen uptake (Hup)-positive strain 128C53 of Rhizobium leguminosarum was constructed by using the broad-host-range mobilizable cosmid vector pLAFR1. The resulting recombinant cosmids contained insert DNA averaging 21 kilobase pairs (kb) in length. Two clones from the above gene library were identified by colony hybridization with DNA sequences from plasmid pHU1 containing hup genes of Bradyhizobium japonicum. The corresponding recombinant cosmids, pAL618 and pAL704, were isolated, and a region of about 28 kb containing the sequences homologous to B. japonicum hup-specific DNA was physically mapped. Further hybridization analysis with three fragments from pHU1 (5.9-kb HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) showed that the overall arrangement of the R. leguminosarum hup-specific region closely parallels that of B. japonicum. The presence of functional hup genes within the isolated cosmid DNA was demonstrated by site-directed Tn5 mutagenesis of the 128C53 genome and analysis of the Hup phenotype of the Tn5 insertion strains in symbiosis with peas. Transposon Tn5 insertions at six different sites spanning 11 kb of pAL618 completely suppressed the hydrogenase activity of the pea bacteroids.
Collapse
Affiliation(s)
- A Leyva
- Departamento de Microbiología, Universidad Politécnica, Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Stam H, Stouthamer AH, Verseveld HW. Hydrogen metabolism and energy costs of nitrogen fixation. FEMS Microbiol Lett 1987. [DOI: 10.1111/j.1574-6968.1987.tb02453.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Bradyrhizobium japonicum mutants defective in root-nodule bacteroid development and nitrogen fixation. Arch Microbiol 1986. [DOI: 10.1007/bf00409885] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
|
14
|
Hom SS, Graham LA, Maier RJ. Isolation of genes (nif/hup cosmids) involved in hydrogenase and nitrogenase activities in Rhizobium japonicum. J Bacteriol 1985; 161:882-7. [PMID: 3882669 PMCID: PMC214979 DOI: 10.1128/jb.161.3.882-887.1985] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recombinant cosmids containing a Rhizobium japonicum gene involved in both hydrogenase (Hup) and nitrogenase (Nif) activities were isolated. An R. japonicum gene bank utilizing broad-host-range cosmid pLAFR1 was conjugated into Hup- Nif- R. japonicum strain SR139. Transconjugants containing the nif/hup cosmid were identified by their resistance to tetracycline (Tcr) and ability to grow chemoautotrophically (Aut+) with hydrogen. All Tcr Aut+ transconjugants possessed high levels of H2 uptake activity, as determined amperometrically. Moreover, all Hup+ transconjugants tested possessed the ability to reduce acetylene (Nif+) in soybean nodules. Cosmid DNAs from 19 Hup+ transconjugants were transferred to Escherichia coli by transformation. When the cosmids were restricted with EcoRI, 15 of the 19 cosmids had a restriction pattern with 13.2-, 4.0-, 3.0-, and 2.5-kilobase DNA fragments. Six E. coli transformants containing the nif/hup cosmids were conjugated with strain SR139. All strain SR139 transconjugants were Hup+ Nif+. Moreover, one nif/hup cosmid was transferred to 15 other R. japonicum Hup- mutants. Hup+ transconjugants of six of the Hup- mutants appeared at a frequency of 1.0, whereas the transconjugants of the other nine mutants remained Hup-. These results indicate that the nif/hup gene cosmids contain a gene involved in both nitrogenase and hydrogenase activities and at least one and perhaps other hup genes which are exclusively involved in H2 uptake activity.
Collapse
|