1
|
Liu Z, Li K, Li J, Zhuang Z, Guo L, Bai L. Characterization and functional evidence for Orf2 of Streptomyces sp. 139 as a novel dipeptidase E. Appl Microbiol Biotechnol 2024; 108:326. [PMID: 38717487 PMCID: PMC11078827 DOI: 10.1007/s00253-024-13161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Aspartyl dipeptidase (dipeptidase E) can hydrolyze Asp-X dipeptides (where X is any amino acid), and the enzyme plays a key role in the degradation of peptides as nutrient sources. Dipeptidase E remains uncharacterized in Streptomyces. Orf2 from Streptomyces sp. 139 is located in the exopolysaccharide biosynthesis gene cluster, which may be a novel dipeptidase E with "S134-H170-D198" catalytic triad by sequence and structure comparison. Herein, recombinant Orf2 was expressed in E. coli and characterized dipeptidase E activity using the Asp-ρNA substrate. The optimal pH and temperature for Orf2 are 7.5 and 40 ℃; Vmax and Km of Orf2 are 0.0787 mM·min-1 and 1.709 mM, respectively. Orf2 exhibits significant degradation activities to Asp-Gly-Gly, Asp-Leu, Asp-His, and isoAsp-Leu and minimal activities to Asp-Pro and Asp-Ala. Orf2 contains a Ser-His-Asp catalytic triad characterized by point mutation. In addition, the Asp147 residue of Orf2 is also proven to be critical for the enzyme's activity through molecular docking and point mutation. Transcriptome analysis reveals the upregulation of genes associated with ribosomes, amino acid biosynthesis, and aminoacyl-tRNA biosynthesis in the orf2 mutant strain. Compared with the orf2 mutant strain and WT, the yield of crude polysaccharide does not change significantly. However, crude polysaccharides from the orf2 mutant strain exhibit a wider range of molecular weight distribution. The results indicate that the Orf2 links nutrient stress to secondary metabolism as a novel dipeptidase E. KEY POINTS: • A novel dipeptidase E with a Ser-His-Asp catalytic triad was characterized from Streptomyces sp. 139. • Orf2 was involved in peptide metabolism both in vitro and in vivo. • Orf2 linked nutrient stress to mycelia formation and secondary metabolism in Streptomyces.
Collapse
Affiliation(s)
- Zhe Liu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Kemeng Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Jialin Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuochen Zhuang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Lianhong Guo
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liping Bai
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
2
|
Orata FD, Hussain NAS, Liang KYH, Hu D, Boucher YF. Genomes of Vibrio metoecus co-isolated with Vibrio cholerae extend our understanding of differences between these closely related species. Gut Pathog 2022; 14:42. [PMID: 36404338 PMCID: PMC9677704 DOI: 10.1186/s13099-022-00516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/04/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Vibrio cholerae, the causative agent of cholera, is a well-studied species, whereas Vibrio metoecus is a recently described close relative that is also associated with human infections. The availability of V. metoecus genomes provides further insight into its genetic differences from V. cholerae. Additionally, both species have been co-isolated from a cholera-free brackish coastal pond and have been suggested to interact with each other by horizontal gene transfer (HGT). RESULTS The genomes of 17 strains from each species were sequenced. All strains share a large core genome (2675 gene families) and very few genes are unique to each species (< 3% of the pan-genome of both species). This led to the identification of potential molecular markers-for nitrite reduction, as well as peptidase and rhodanese activities-to further distinguish V. metoecus from V. cholerae. Interspecies HGT events were inferred in 21% of the core genes and 45% of the accessory genes. A directional bias in gene transfer events was found in the core genome, where V. metoecus was a recipient of three times (75%) more genes from V. cholerae than it was a donor (25%). CONCLUSION V. metoecus was misclassified as an atypical variant of V. cholerae due to their resemblance in a majority of biochemical characteristics. More distinguishing phenotypic assays can be developed based on the discovery of potential gene markers to avoid any future misclassifications. Furthermore, differences in relative abundance or seasonality were observed between the species and could contribute to the bias in directionality of HGT.
Collapse
Affiliation(s)
- Fabini D. Orata
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.17089.370000 0001 2190 316XDepartment of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta Canada
| | - Nora A. S. Hussain
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada
| | - Kevin Y. H. Liang
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.14709.3b0000 0004 1936 8649Department of Quantitative Life Sciences, McGill University, Montréal, Québec Canada ,grid.14709.3b0000 0004 1936 8649Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec Canada
| | - Dalong Hu
- grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| | - Yann F. Boucher
- grid.17089.370000 0001 2190 316XDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta Canada ,grid.4280.e0000 0001 2180 6431Saw Swee Hock School of Public Health, National University of Singapore and National University Hospital System, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Hospital System, Singapore, Singapore
| |
Collapse
|
3
|
Yadav P, Goyal VD, Chandravanshi K, Kumar A, Gokhale SM, Jamdar SN, Makde RD. Catalytic triad heterogeneity in S51 peptidase family: Structural basis for functional variability. Proteins 2019; 87:679-692. [PMID: 30968972 DOI: 10.1002/prot.25693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/07/2022]
Abstract
Peptidase E (PepE) is a nonclassical serine peptidase with a Ser-His-Glu catalytic triad. It is specific for dipeptides with an N-terminal aspartate residue (Asp-X dipeptidase activity). Its homolog from Listeria monocytogenes (PepElm) has a Ser-His-Asn "catalytic triad." Based on sequence alignment we predicted that the PepE homolog from Deinococcus radiodurans (PepEdr) would have a Ser-His-Asp "catalytic triad." We confirmed this by solving the crystal structure of PepEdr to 2.7 Å resolution. We show that PepElm and PepEdr lack the Asp-X dipeptidase activity. Our analyses suggest that absence of P1 pocket in the active site could be the main reason for this lack of typical activity. Sequence and structural data reveal that the PepE homologs can be divided into long and short PepEs based on presence or absence of a C-terminal tail which adopts a β-hairpin conformation in the canonical PepE from Salmonella enterica. A long PepE from Bacillus subtilis with Ser-His-Asp catalytic triad exhibits Asp-X dipeptidase activity. Whereas the three long PepEs enzymatically characterized till date have been found to possess the Asp-X dipeptidase activity, the three enzymatically characterized short PepEs lack this activity irrespective of the nature of their catalytic triads. This study illuminates the structural and functional heterogeneity in the S51 family and also provides structural basis for the functional variability among PepE homologs.
Collapse
Affiliation(s)
- Pooja Yadav
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India.,School of Biochemistry, Devi Ahilya University, Indore, India
| | - Venuka Durani Goyal
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Khileshwari Chandravanshi
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Ashwani Kumar
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | | | - Sahayog N Jamdar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
4
|
Yadav P, Goyal VD, Gaur NK, Kumar A, Gokhale SM, Makde RD. Structure of Asp‐bound peptidase E from
Salmonella enterica
: Active site at dimer interface illuminates Asp recognition. FEBS Lett 2018; 592:3346-3354. [DOI: 10.1002/1873-3468.13247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Pooja Yadav
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
- School of Biochemistry Devi Ahilya University Indore India
| | - Venuka Durani Goyal
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Neeraj K. Gaur
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
| | - Ashwani Kumar
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
| | | | - Ravindra D. Makde
- High Pressure and Synchrotron Radiation Physics Division Bhabha Atomic Research Centre Mumbai India
| |
Collapse
|
5
|
Park SY, Scranton MA, Stajich JE, Yee A, Walling LL. Chlorophyte aspartyl aminopeptidases: Ancient origins, expanded families, new locations, and secondary functions. PLoS One 2017; 12:e0185492. [PMID: 29023459 PMCID: PMC5638241 DOI: 10.1371/journal.pone.0185492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/13/2017] [Indexed: 11/19/2022] Open
Abstract
M18 aspartyl aminopeptidases (DAPs) are well characterized in microbes and animals with likely functions in peptide processing and vesicle trafficking. In contrast, there is a dearth of knowledge on plant aminopeptidases with a preference for proteins and peptides with N-terminal acidic residues. During evolution of the Plantae, there was an expansion and diversification of the M18 DAPs. After divergence of the ancestral green algae from red and glaucophyte algae, a duplication yielded the DAP1 and DAP2 lineages. Subsequently DAP1 genes were lost in chlorophyte algae. A duplication of DAP2-related genes occurred early in green plant evolution. DAP2 genes were retained in land plants and picoeukaryotic algae and lost in green algae. In contrast, DAP2-like genes persisted in picoeukaryotic and green algae, while this lineage was lost in land plants. Consistent with this evolutionary path, Arabidopsis thaliana has two DAP gene lineages (AtDAP1 and AtDAP2). Similar to animal and yeast DAPs, AtDAP1 is localized to the cytosol or vacuole; while AtDAP2 harbors an N-terminal transit peptide and is chloroplast localized. His6-DAP1 and His6-DAP2 expressed in Escherichia coli were enzymatically active and dodecameric with masses exceeding 600 kDa. His6-DAP1 and His6-DAP2 preferentially hydrolyzed Asp-p-nitroanilide and Glu-p-nitroanilide. AtDAPs are highly conserved metallopeptidases activated by MnCl2 and inhibited by ZnCl2 and divalent ion chelators. The protease inhibitor PMSF inhibited and DTT stimulated both His6-DAP1 and His6-DAP2 activities suggesting a role for thiols in the AtDAP catalytic mechanism. The enzymes had distinct pH and temperature optima, as well as distinct kinetic parameters. Both enzymes had high catalytic efficiencies (kcat/Km) exceeding 1.0 x 107 M-1 sec-1. Using established molecular chaperone assays, AtDAP1 and AtDAP2 prevented thermal denaturation. AtDAP1 also prevented protein aggregation and promoted protein refolding. Collectively, these data indicate that plant DAPs have a complex evolutionary history and have evolved new biochemical features that may enable their role in vivo.
Collapse
Affiliation(s)
- Sang-Youl Park
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Melissa A. Scranton
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Ashley Yee
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
| | - Linda L. Walling
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Next Generation Sequencing Identifies Five Major Classes of Potentially Therapeutic Enzymes Secreted by Lucilia sericata Medical Maggots. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8285428. [PMID: 27119084 PMCID: PMC4826915 DOI: 10.1155/2016/8285428] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/07/2016] [Indexed: 01/01/2023]
Abstract
Lucilia sericata larvae are used as an alternative treatment for recalcitrant and chronic wounds. Their excretions/secretions contain molecules that facilitate tissue debridement, disinfect, or accelerate wound healing and have therefore been recognized as a potential source of novel therapeutic compounds. Among the substances present in excretions/secretions various peptidase activities promoting the wound healing processes have been detected but the peptidases responsible for these activities remain mostly unidentified. To explore these enzymes we applied next generation sequencing to analyze the transcriptomes of different maggot tissues (salivary glands, gut, and crop) associated with the production of excretions/secretions and/or with digestion as well as the rest of the larval body. As a result we obtained more than 123.8 million paired-end reads, which were assembled de novo using Trinity and Oases assemblers, yielding 41,421 contigs with an N50 contig length of 2.22 kb and a total length of 67.79 Mb. BLASTp analysis against the MEROPS database identified 1729 contigs in 577 clusters encoding five peptidase classes (serine, cysteine, aspartic, threonine, and metallopeptidases), which were assigned to 26 clans, 48 families, and 185 peptidase species. The individual enzymes were differentially expressed among maggot tissues and included peptidase activities related to the therapeutic effects of maggot excretions/secretions.
Collapse
|
7
|
Mappley LJ, Black ML, AbuOun M, Darby AC, Woodward MJ, Parkhill J, Turner AK, Bellgard MI, La T, Phillips ND, La Ragione RM, Hampson DJ. Comparative genomics of Brachyspira pilosicoli strains: genome rearrangements, reductions and correlation of genetic compliment with phenotypic diversity. BMC Genomics 2012; 13:454. [PMID: 22947175 PMCID: PMC3532143 DOI: 10.1186/1471-2164-13-454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/22/2012] [Indexed: 11/12/2022] Open
Abstract
Background The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Results Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. Conclusions The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.
Collapse
Affiliation(s)
- Luke J Mappley
- Department of Bacteriology, Animal Health and Veterinary Laboratories Agency, Reading University, Addlestone, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sallam A, Kalkandzhiev D, Steinbüchel A. Production optimization of cyanophycinase ChpEal from Pseudomonas alcaligenes DIP1. AMB Express 2011; 1:38. [PMID: 22060187 PMCID: PMC3235067 DOI: 10.1186/2191-0855-1-38] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/07/2011] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas alcaligenes DIP1 produces an extracellular cyanophycinase (CphEal). The corresponding gene (cphEal) was identified from subclones of a genomic DNA gene library by heterologously expressing the functionally active enzyme in Escherichia coli. The nucleotide sequence of the gene (1260 base pairs) was determined indicating a theoretical mass of 43.6 kDa (mature CphEal) plus a leader peptide of 2,6 kDa which corresponds well to the apparent molecular mass of 45 kDa as revealed by SDS-PAGE. The enzyme exhibited a high sequence identity of 91% with the extracellular cyanophycinase from P. anguilliseptica strain BI and carried an N-terminal Sec secretion signal peptide. Analysis of the amino acid sequence of cphE revealed a putative catalytic triad consisting of the serine motif GXSXG plus a histidine and a glutamate residue, suggesting a catalytic mechanism similar to serine-type proteases. The cyanophycinase (CphEal) was heterologously produced in two different E. coli strains (Top10 and BL21(DE3)) from two plasmid vectors (pBBR1MCS-4 and pET-23a(+)). The signal peptide of CphEal was cleaved in E. coli, suggesting active export of the protein at least to the periplasm. Substantial enzyme activity was also present in the culture supernatants. The extracellular cyanophycinase activities in E. coli were higher than activities in the wild type P. alcaligenes DIP1 in complex LB medium. Highest extracellular enzyme production was achieved with E. coli BL21(DE3) expressing CphEal from pBBR1MCS-4. Using M9 minimal medium was less effective, but the relatively low cost of mineral salt media makes these results important for the industrial-scale production of dipeptides from cyanophycin.
Collapse
|
9
|
EAL domain protein YdiV acts as an anti-FlhD4C2 factor responsible for nutritional control of the flagellar regulon in Salmonella enterica Serovar Typhimurium. J Bacteriol 2011; 193:1600-11. [PMID: 21278297 DOI: 10.1128/jb.01494-10] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Flagellar operons are divided into three classes with respect to their transcriptional hierarchy in Salmonella enterica serovar Typhimurium. The class 1 gene products FlhD and FlhC act together in an FlhD(4)C(2) heterohexamer, which binds upstream of the class 2 promoters to facilitate binding of RNA polymerase. In this study, we showed that flagellar expression was much reduced in the cells grown in poor medium compared to those grown in rich medium. This nutritional control was shown to be executed at a step after class 1 transcription. We isolated five Tn5 insertion mutants in which the class 2 expression was derepressed in poor medium. These insertions were located in the ydiV (cdgR) gene or a gene just upstream of ydiV. The ydiV gene is known to encode an EAL domain protein and to act as a negative regulator of flagellar expression. Gene disruption and complementation analyses revealed that the ydiV gene is responsible for nutritional control. Expression analysis of the ydiV gene showed that its translation, but not transcription, was enhanced by growth in poor medium. The ydiV mutation did not have a significant effect on either the steady-state level of flhDC mRNA or that of FlhC protein. Purified YdiV protein was shown in vitro to bind to FlhD(4)C(2) through interaction with FlhD subunit and to inhibit its binding to the class 2 promoter, resulting in inhibition of FlhD(4)C(2)-dependent transcription. Taking these data together, we conclude that YdiV is a novel anti-FlhD(4)C(2) factor responsible for nutritional control of the flagellar regulon.
Collapse
|
10
|
Kira I, Asano Y, Yokozeki K. Screening, purification, and identification of the enzyme producing N-(l-α-l-aspartyl)-l-phenylalanine methyl ester from l-isoasparagine and l-phenylalanine methyl ester. J Biosci Bioeng 2009; 108:190-3. [DOI: 10.1016/j.jbiosc.2009.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/23/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
|
11
|
Frottin F, Martinez A, Peynot P, Mitra S, Holz RC, Giglione C, Meinnel T. The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 2006; 5:2336-49. [PMID: 16963780 DOI: 10.1074/mcp.m600225-mcp200] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine aminopeptidase (MAP) is a ubiquitous, essential enzyme involved in protein N-terminal methionine excision. According to the generally accepted cleavage rules for MAP, this enzyme cleaves all proteins with small side chains on the residue in the second position (P1'), but many exceptions are known. The substrate specificity of Escherichia coli MAP1 was studied in vitro with a large (>120) coherent array of peptides mimicking the natural substrates and kinetically analyzed in detail. Peptides with Val or Thr at P1' were much less efficiently cleaved than those with Ala, Cys, Gly, Pro, or Ser in this position. Certain residues at P2', P3', and P4' strongly slowed the reaction, and some proteins with Val and Thr at P1' could not undergo Met cleavage. These in vitro data were fully consistent with data for 862 E. coli proteins with known N-terminal sequences in vivo. The specificity sites were found to be identical to those for the other type of MAPs, MAP2s, and a dedicated prediction tool for Met cleavage is now available. Taking into account the rules of MAP cleavage and leader peptide removal, the N termini of all proteins were predicted from the annotated genome and compared with data obtained in vivo. This analysis showed that proteins displaying N-Met cleavage are overrepresented in vivo. We conclude that protein secretion involving leader peptide cleavage is more frequent than generally thought.
Collapse
Affiliation(s)
- Frédéric Frottin
- Protein Maturation, Cell Fate, and Therapeutics, Institut des Sciences du Végétal, UPR2355, CNRS, Bâtiment 23, 1 avenue de la Terrasse, F-91198 Gif-sur-Yvette cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Sheng Y, Li S, Gou X, Kong X, Wang X, Sun Y, Zhang J. The hybrid enzymes from α-aspartyl dipeptidase and l-aspartase. Biochem Biophys Res Commun 2005; 331:107-12. [PMID: 15845365 DOI: 10.1016/j.bbrc.2005.03.140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2005] [Indexed: 10/25/2022]
Abstract
With combinative functionalities as well as the improved activity and stability, the novel hybrid enzymes (HEs) from the heterogeneous enzymes of alpha-aspartyl dipeptidase (PepE, monomer) and l-aspartase (l-AspA, tetramer) were constructed successfully by gene random deletion strategy. The wild-type hybrid enzyme (WHE) and the evolved hybrid enzyme (EHE) were selected, respectively, upon the phenotype and the enzyme activity. The relative activity of the WHE tested was about 110% of the wild-type PepE and 26% of the wild-type l-AspA, whilst the activity of EHE was about 340% of the PepE and 87% of the l-AspA. In comparison to its individual wild-type enzymes, the EHE exhibited an improved thermostability, when examined at the enzyme concentration of 10(-7)mol/L, but the WHE showed a reduced thermostability. The activity of the EHE was about 3-fold compared to that of the WHE. The current results give a good example that the hybridization of enzymes could be attained between the monomer and multimer enzymes. In addition, they also indicate that construction hybrid enzyme from evolved enzymes is feasible.
Collapse
Affiliation(s)
- Yongjie Sheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.
Collapse
Affiliation(s)
- Martin Obst
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| | | |
Collapse
|
14
|
Abstract
Extracts of a multiply peptidase-deficient (pepNABDPQTE iadA iaaA) Salmonella enterica serovar Typhimurium strain contain an aspartyl dipeptidase activity that is dependent on Mn(2+). Purification of this activity followed by N-terminal sequencing of the protein suggested that the Mn(2+)-dependent peptidase is DapE (N-succinyl-L,L-diaminopimelate desuccinylase). A dapE chromosomal disruption was constructed and transduced into a multiply peptidase-deficient (MPD) strain. Crude extracts of this strain showed no aspartyl peptidase activity, and the strain failed to utilize Asp-Leu as a leucine source. The dapE gene was cloned into expression vectors in order to overproduce either the native protein (DapE) or a hexahistidine fusion protein (DapE-His(6)). Extracts of a strain carrying the plasmid overexpresssing native DapE in the MPD dapE background showed a 3,200-fold elevation of Mn(2+)-dependent aspartyl peptidase activity relative to the MPD dapE(+) strain. In addition, purified DapE-His(6) exhibited Mn(2+)-dependent peptidase activity toward aspartyl dipeptides. Growth of the MPD strain carrying a single genomic copy of dapE on Asp-Leu as a Leu source was slow but detectable. Overproduction of DapE in the MPD dapE strain allowed growth on Asp-Leu at a much faster rate. DapE was found to be specific for N-terminal aspartyl dipeptides: no N-terminal Glu, Met, or Leu peptides were hydrolyzed, nor were any peptides containing more than two amino acids. DapE is known to bind two divalent cations: one with high affinity and the other with lower affinity. Our data indicate that the form of DapE active as a peptidase contains Zn(2+) in the high-affinity site and Mn(2+) in the low-affinity site.
Collapse
Affiliation(s)
- Daniel H Broder
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
15
|
Obst M, Oppermann-Sanio FB, Luftmann H, Steinbüchel A. Isolation of cyanophycin-degrading bacteria, cloning and characterization of an extracellular cyanophycinase gene (cphE) from Pseudomonas anguilliseptica strain BI. The cphE gene from P. anguilliseptica BI encodes a cyanophycinhydrolyzing enzyme. J Biol Chem 2002; 277:25096-105. [PMID: 11986309 DOI: 10.1074/jbc.m112267200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eleven bacteria capable of utilizing cyanophycin (cyanophycin granule polypeptide (CGP)) as a carbon source for growth were isolated. One isolate was taxonomically affiliated as Pseudomonas anguilliseptica strain BI, and the extracellular cyanophycinase (CphE) was studied because utilization of cyanophycin as a carbon source and extracellular cyanophycinases were hitherto not described. CphE was detected in supernatants of CGP cultures and purified from a corresponding culture of strain BI employing chromatography on the anion exchange matrix Q-Sepharose and on an arginine-agarose affinity matrix. The mature form of the inducible enzyme consisted of one type of subunit with M(r) = 43,000 and exhibited high specificity for CGP, whereas proteins and synthetic polyaspartic acid were not hydrolyzed or were only marginally hydrolyzed. Degradation products of the enzyme reaction were identified as aspartic acid-arginine dipeptides (beta-Asp-Arg) by high performance liquid chromatography and electrospray ionization mass spectrometry. The corresponding gene (cphE, 1254 base pairs) was identified in subclones of a cosmid gene library of strain BI by heterologous active expression in Escherichia coli, and its nucleotide sequence was determined. The enzyme exhibited only 27-28% amino acid sequence identity to intracellular cyanophycinases occurring in cyanobacteria. Analysis of the amino acid sequence of cphE revealed a putative catalytic triad consisting of the motif GXSXG plus a histidine and most probably a glutamate residue. In addition, the strong inhibition of the enzyme by Pefabloc((R)) and phenylmethylsulfonyl fluoride indicated that the catalytic mechanism of CphE is related to that of serine type proteases. Quantitative analysis on the release of beta-Asp-Arg dipeptides from C-terminal labeled CGP gave evidence for an exo-degradation mechanism.
Collapse
Affiliation(s)
- Martin Obst
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, Germany
| | | | | | | |
Collapse
|
16
|
Kong X, Liu Y, Gou X, Zhu S, Zhang H, Wang X, Zhang J. Directed evolution of alpha-aspartyl dipeptidase from Salmonella typhimurium. Biochem Biophys Res Commun 2001; 289:137-42. [PMID: 11708790 DOI: 10.1006/bbrc.2001.5937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Model-free approaches (error-prone PCR to introduce random mutations, DNA shuffling to combine positive mutations, and screening of the resultant mutant libraries) have been used to enhance the catalytic activity and thermostability of alpha-aspartyl dipeptidase from Salmonella typhimurium, which is uniquely able to hydrolyze Asp-X dipeptides (where X is any amino acid) and one tripeptide (Asp-Gly-Gly). Under double selective pressures of activity and thermostability, through two rounds of error-prone PCR and three sequential generations of DNA shuffling, coupled with screening, a mutant pepEM3074 with approximately 47-fold increased enzyme activity compared with its wild-type parent was obtained. Moreover, the stability of pepEM3074 is increased significantly. Three amino acid substitutions (Asn89His, Gln153Glu, and Leu205Arg), two of them are near the active site and substrate binding pocket, were identified by sequencing the genes encoding this evolved enzyme. The mechanism of the enhancement of activity and stability was analyzed in this paper.
Collapse
Affiliation(s)
- X Kong
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun 130023, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
17
|
Larsen RA, Knox TM, Miller CG. Aspartic peptide hydrolases in Salmonella enterica serovar typhimurium. J Bacteriol 2001; 183:3089-97. [PMID: 11325937 PMCID: PMC95209 DOI: 10.1128/jb.183.10.3089-3097.2001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two well-characterized enzymes in Salmonella enterica serovar Typhimurium and Escherichia coli are able to hydrolyze N-terminal aspartyl (Asp) dipeptides: peptidase B, a broad-specificity aminopeptidase, and peptidase E, an Asp-specific dipeptidase. A serovar Typhimurium strain lacking both of these enzymes, however, can still utilize most N-terminal Asp dipeptides as sources of amino acids, and extracts of such a strain contain additional enzymatic activities able to hydrolyze Asp dipeptides. Here we report two such activities from extracts of pepB pepE mutant strains of serovar Typhimurium identified by their ability to hydrolyze Asp-Leu. Although each of these activities hydrolyzes Asp-Leu at a measurable rate, the preferred substrates for both are N-terminal isoAsp peptides. One of the activities is a previously characterized isoAsp dipeptidase from E. coli, the product of the iadA gene. The other is the product of the serovar Typhimurium homolog of E. coli ybiK, a gene of previously unknown function. This gene product is a member of the N-terminal nucleophile structural family of amidohydrolases. Like most other members of this family, the mature enzyme is generated from a precursor protein by proteolytic cleavage and the active enzyme is a heterotetramer. Based on its ability to hydrolyze an N-terminal isoAsp tripeptide as well as isoAsp dipeptides, the enzyme appears to be an isoAsp aminopeptidase, and we propose that the gene encoding it be designated iaaA (isoAsp aminopeptidase). A strain lacking both IadA and IaaA in addition to peptidase B and peptidase E has been constructed. This strain utilizes Asp-Leu as a leucine source, and extracts of this strain contain at least one additional, as-yet-uncharacterized, peptidase able to cleave Asp dipeptides.
Collapse
Affiliation(s)
- R A Larsen
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
18
|
Håkansson K, Wang AH, Miller CG. The structure of aspartyl dipeptidase reveals a unique fold with a Ser-His-Glu catalytic triad. Proc Natl Acad Sci U S A 2000; 97:14097-102. [PMID: 11106384 PMCID: PMC18877 DOI: 10.1073/pnas.260376797] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The three-dimensional structure of Salmonella typhimurium aspartyl dipeptidase, peptidase E, was solved crystallographically and refined to 1.2-A resolution. The structure of this 25-kDa enzyme consists of two mixed beta-sheets forming a V, flanked by six alpha-helices. The active site contains a Ser-His-Glu catalytic triad and is the first example of a serine peptidase/protease with a glutamate in the catalytic triad. The active site Ser is located on a strand-helix motif reminiscent of that found in alpha/beta-hydrolases, but the polypeptide fold and the organization of the catalytic triad differ from those of the known serine proteases. This enzyme is a member of a family of serine hydrolases and appears to represent a new example of convergent evolution of peptidase activity.
Collapse
Affiliation(s)
- K Håkansson
- Departments of Microbiology and Cell and Structural Biology, B103 Chemical and Life Science Laboratory, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | |
Collapse
|
19
|
Mathew Z, Knox TM, Miller CG. Salmonella enterica serovar typhimurium peptidase B is a leucyl aminopeptidase with specificity for acidic amino acids. J Bacteriol 2000; 182:3383-93. [PMID: 10852868 PMCID: PMC101900 DOI: 10.1128/jb.182.12.3383-3393.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidase B (PepB) of Salmonella enterica serovar Typhimurium is one of three broad-specificity aminopeptidases found in this organism. We have sequenced the pepB gene and found that it encodes a 427-amino-acid (46.36-kDa) protein, which can be unambiguously assigned to the leucyl aminopeptidase (LAP) structural family. PepB has been overexpressed and purified. The active enzyme shows many similarities to other members of the LAP family: it is a heat-stable (70 degrees C; 20 min) hexameric ( approximately 270-kDa) metallopeptidase with a pH optimum of 8.5 to 9.5. A detailed study of the substrate specificity of the purified protein shows that it differs from other members of the family in its ability to hydrolyze peptides with N-terminal acidic residues. The preferred substrates for PepB are peptides with N-terminal Asp or Glu residues. Comparison of the amino acid sequence of PepB with those of other LAPs leads to the conclusion that PepB is the prototype of a new LAP subfamily with representatives in several other eubacterial species and to the prediction that the members of this family share the ability to hydrolyze peptides with N-terminal acidic residues. Site-directed mutagenesis has been used to show that this specificity appears to be determined by a single Lys residue present in a sequence motif conserved in all members of the subfamily.
Collapse
Affiliation(s)
- Z Mathew
- Department of Microbiology, University of Illinois at Urbana-Champaign, 61801, USA
| | | | | |
Collapse
|
20
|
Lassy RA, Miller CG. Peptidase E, a peptidase specific for N-terminal aspartic dipeptides, is a serine hydrolase. J Bacteriol 2000; 182:2536-43. [PMID: 10762256 PMCID: PMC111318 DOI: 10.1128/jb.182.9.2536-2543.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium peptidase E (PepE) is an N-terminal Asp-specific dipeptidase. PepE is not inhibited by any of the classical peptidase inhibitors, and its amino acid sequence does not place it in any of the known peptidase structural classes. A comparison of the amino acid sequence of PepE with a number of related sequences has allowed us to define the amino acid residues that are strongly conserved in this family. To ensure the validity of this comparison, we have expressed one of the most distantly related relatives (Xenopus) in Escherichia coli and have shown that it is indeed an Asp-specific dipeptidase with properties very similar to those of serovar Typhimurium PepE. The sequence comparison suggests that PepE is a serine hydrolase. We have used site-directed mutagenesis to change all of the conserved Ser, His, and Asp residues and have found that Ser120, His157, and Asp135 are all required for activity. Conversion of Ser120 to Cys leads to severely reduced (10(4)-fold) but still detectable activity, and this activity but not that of the parent is inhibited by thiol reagents; these results confirm that this residue is likely to be the catalytic nucleophile. These results suggest that PepE is the prototype of a new family of serine peptidases. The phylogenetic distribution of the family is unusual, since representatives are found in eubacteria, an insect (Drosophila), and a vertebrate (Xenopus) but not in the Archaea or in any of the other eukaryotes for which genome sequences are available.
Collapse
Affiliation(s)
- R A Lassy
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
21
|
Wegmann U, Klein JR, Drumm I, Kuipers OP, Henrich B. Introduction of peptidase genes from Lactobacillus delbrueckii subsp. lactis into Lactococcus lactis and controlled expression. Appl Environ Microbiol 1999; 65:4729-33. [PMID: 10543778 PMCID: PMC91636 DOI: 10.1128/aem.65.11.4729-4733.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidases PepI, PepL, PepW, and PepG from Lactobacillus delbrueckii subsp. lactis, which have no counterparts in Lactococcus lactis, and peptidase PepQ were examined to determine their potential to confer new peptidolytic properties to lactococci. Controllable expression of the corresponding genes (pep genes) was achieved by constructing translational fusions with the promoter of the nisA gene (P(nisA)). A suitable host strain, UKLc10, was constructed by chromosomal integration of the genes encoding the NisRK two-component system into the fivefold peptidase-deficient mutant IM16 of L. lactis. Recombinants of this strain were used to analyze growth, peptidase activities, peptide utilization, and intracellular protein cleavage products. After nisin induction of P(nisA)::pep fusions, all of the peptidases were visible as distinct bands in protein gels. Despite the fact that identical transcription and translation signals were used to express the pep genes, the relative amounts of individual peptidases varied considerably. All of the peptidases exhibited activities in extracts of recombinant UKLc10 clones, but only PepL and PepG allowed the clones to utilize specific peptide substrates as sources of essential amino acids. In milk medium, induction of pepG and induction of pepW resulted in growth acceleration. The activities of all five peptidases during growth in milk medium were revealed by high-performance liquid chromatography analyses of intracellular amino acid and peptide pools.
Collapse
Affiliation(s)
- U Wegmann
- Universität Kaiserslautern, Fachbereich Biologie, Abteilung Mikrobiologie, D-67653 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
22
|
Richter R, Hejazi M, Kraft R, Ziegler K, Lockau W. Cyanophycinase, a peptidase degrading the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartic acid (cyanophycin): molecular cloning of the gene of Synechocystis sp. PCC 6803, expression in Escherichia coli, and biochemical characterization of the purified enzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:163-9. [PMID: 10429200 DOI: 10.1046/j.1432-1327.1999.00479.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The branched polypeptide multi-L-arginyl-poly-L-aspartic acid, also called cyanophycin, is a water-insoluble reserve material of cyanobacteria. The polymer is degraded by a specific hydrolytic enzyme called cyanophycinase. By heterologous expression in Escherichia coli, a gene encoding cyanophycinase has been identified in the sequenced genome of Synechocystis sp. PCC 6803. The gene, designated cphB, codes for a protein of 29.4 kDa. The high level of expression of active cyanophycinase in E. coli from the Synechocystis gene allowed for its purification to electrophoretic homogeneity. The enzyme, which appears to be specific for cyanophycin, hydrolysed the polymer to a dipeptide consisting of aspartic acid and arginine. Based on inhibitor sensitivity and primary sequence, cyanophycinase appears to be a serine-type exopeptidase related to dipeptidase E [Conlin, C.A., Haakensson, K., Liljas, A. & Miller, C.G. (1994) J. Bacteriol. 176, 166-172].
Collapse
Affiliation(s)
- R Richter
- Biochemie der Pflanzen, Humboldt-Universität, Berlin, Germany
| | | | | | | | | |
Collapse
|
23
|
Lu J, Zhang J, Zhang H, Hao S. Studies on the amino acid residues of the active site of alpha-aspartyl dipeptidase. Ann N Y Acad Sci 1998; 864:626-30. [PMID: 9928149 DOI: 10.1111/j.1749-6632.1998.tb10393.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- J Lu
- State Key Laboratory of Enzyme Engineering, Jilin University, Changchun, China
| | | | | | | |
Collapse
|
24
|
Zhang H, Zhang J, Wang X, Yang W, Lu J. Biochemical characterization of alpha-aspartyl dipeptidase. Cloning and expression of its gene. Ann N Y Acad Sci 1998; 864:621-5. [PMID: 9928148 DOI: 10.1111/j.1749-6632.1998.tb10392.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- H Zhang
- State Key Laboratory of Enzyme Engineering, Jilin University, Changchun, China
| | | | | | | | | |
Collapse
|
25
|
Klein JR, Schick J, Henrich B, Plapp R. Lactobacillus delbrueckii subsp. lactis DSM7290 pepG gene encodes a novel cysteine aminopeptidase. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 2):527-537. [PMID: 9043129 DOI: 10.1099/00221287-143-2-527] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A number of Escherichia coli clones were isolated from a Lactobacillus delbrueckii subsp. lactis gene library capable of hydrolysing the chromogenic substrate Gly-Ala-beta-naphthylamide (Gly-Ala-beta NA). Some of the recombinant plasmids carried by these clones have been shown to encode the cysteine aminopeptidase gene pepC. Nucleotide sequence analyses of the plasmid inserts of the remaining clones resulted in the identification of two adjacent ORFs encoding proteins exhibiting a high degree of similarity between themselves (72.6%) and with PepC. One gene, designated pepG, was overexpressed in E. coli and the crude extracts obtained were shown to be peptidolytically active both against chromogenic substrates and peptides, and in a Salmonella typhimurium growth test. PepC and PepG activities were compared using chromogenic beta NA and p-nitroanilide substrates and leucine or proline-containing peptides were applied in growth experiments of recombinant Sal. typhimurium. The results indicate that the enzymes, although structurally related, have different substrate preferences. No enzyme activity could be ascribed to the second ORF (orfW), despite the production of a visible protein using a T7 RNA polymerase system. Primer extension analysis, using mRNA isolated from Lb. delbrueckii subsp. lactis DSM7290 did establish that orfW was transcribed.
Collapse
Affiliation(s)
- Jurgen R Klein
- Abteilung Mikrobiologie der Universität,Postfach 3049, 67653 Kaiserslautern,Germany
| | - Joachim Schick
- Abteilung Mikrobiologie der Universität,Postfach 3049, 67653 Kaiserslautern,Germany
| | - Bemhard Henrich
- Abteilung Mikrobiologie der Universität,Postfach 3049, 67653 Kaiserslautern,Germany
| | - Roland Plapp
- Abteilung Mikrobiologie der Universität,Postfach 3049, 67653 Kaiserslautern,Germany
| |
Collapse
|
26
|
Abstract
Aminopeptidases are exopeptidases that selectively release N-terminal amino acid residues from polypeptides and proteins. Bacteria display several aminopeptidasic activities which may be localised in the cytoplasm, on membranes, associated with the cell envelope or secreted into the extracellular media. Studies on the bacterial aminopeptide system have been carried out over the past three decades and are significant in fundamental and biotechnological domains. At present, about one hundred bacterial aminopeptidases have been purified and biochemically studied. About forty genes encoding aminopeptidases have also been cloned and characterised. Recently, the three-dimensional structure of two aminopeptidases, the methionine aminopeptidase from Escherichia coli and the leucine aminopeptidase from Aeromonas proteolytica, have been elucidated by crystallographic studies. Most of the quoted studies demonstrate that bacterial aminopeptidases generally show Michaelis-Menten kinetics and can be placed into either of two categories based on their substrate specificity: broad or narrow. These enzymes can also be classified by another criterium based on their catalytic mechanism: metallo-, cysteine- and serine-aminopeptidases, the former type being predominant in bacteria. Aminopeptidases play a role in several important physiological processes. It is noteworthy that some of them take part in the catabolism of exogenously supplied peptides and are necessary for the final steps of protein turnover. In addition, they are involved in some specific functions, such as the cleavage of N-terminal methionine from newly synthesised peptide chains (methionine aminopeptidases), the stabilisation of multicopy ColE1 based plasmids (aminopeptidase A) and the pyroglutamyl aminopeptidase (Pcp) present in many bacteria and responsible for the cleavage of the N-terminal pyroglutamate.
Collapse
Affiliation(s)
- T Gonzales
- Laboratoire de Génétique Moléculaire des Microorganismes et des Interactions Cellulaires, C.N.R.S. UMR 5577, Bâtiment, Villeurbanne, France
| | | |
Collapse
|
27
|
|
28
|
Klein JR, Dick A, Schick J, Matern HT, Henrich B, Plapp R. Molecular Cloning and DNA Sequence Analysis of Pepl, a Leucyl Aminopeptidase Gene from Lactobacillus delbrueckii Subsp. Lactis DSM7290. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0570m.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Conlin CA, Miller CG. Dipeptidyl carboxypeptidase and oligopeptidase A from Escherichia coli and Salmonella typhimurium. Methods Enzymol 1995; 248:567-79. [PMID: 7674945 DOI: 10.1016/0076-6879(95)48036-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C A Conlin
- Department of Biological Sciences, Mankato State University, Minnesota 56002, USA
| | | |
Collapse
|
30
|
Rawlings ND, Barrett AJ. Families of aspartic peptidases, and those of unknown catalytic mechanism. Methods Enzymol 1995; 248:105-20. [PMID: 7674916 DOI: 10.1016/0076-6879(95)48009-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- N D Rawlings
- Department of Biochemistry, Strangeways Research Laboratory, Cambridge, United Kingdom
| | | |
Collapse
|
31
|
Cloning, characterization and insertional inactivation of the Lactobacillus helveticus D(?) lactate dehydrogenase gene. Appl Microbiol Biotechnol 1994. [DOI: 10.1007/bf00212254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Bhowmik T, Steele JL. Cloning, characterization and insertional inactivation of the Lactobacillus helveticus D(-) lactate dehydrogenase gene. Appl Microbiol Biotechnol 1994; 41:432-9. [PMID: 7765104 DOI: 10.1007/bf00939032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A plasmid, designated pSUW100, encoding the D(-)lactate dehydrogenase [D(-)-LDH; NAD+ oxidoreductase, EC 1.1.1.28] from Lactobacillus helveticus CNRZ32 was identified from a genomic library by complementation of Escherichia coli FMJ39. The D(-)LDH gene was localized by Tn5 mutagenesis and subcloning to a 1.4-kb region of pSUW100. A 2-kb DraI fragment of pSUW100 encoding D(-)LDH activity was subcloned and its nucleotide sequence determined. Analysis of this sequence identified a putative 1,014-bp D(-)LDH open reading frame that encodes a polypeptide of 337 amino acid residues with a deduced molecular mass of 38 kDa. The distribution of homology to the CNRZ32 D(-)LDH gene in several lactic acid bacteria was determined by Southern hybridization using an internal fragment of the D(-)LDH gene as a probe. Hybridization was detected in leuconostocs and pediococci but not in lactococci or Lactobacillus casei. An integration plasmid was constructed from pSA3 and a 0.60-kb internal fragment of the D(-)LDH gene. This plasmid was used to construct a D(-)LDH-negative derivative of L. helveticus CNRZ 32 by gene disruption; this derivative was determined as producing only L(+)lactic acid. No significant difference in growth or total lactic acid production was observed between CNRZ32 and its D(-)LDH mutant.
Collapse
Affiliation(s)
- T Bhowmik
- Department of Food Science, University of Wisconsin-Madison 53706
| | | |
Collapse
|
33
|
Conlin CA, Knox TM, Miller CG. Cloning and physical map position of an alpha-aspartyl dipeptidase gene, pepE, from Escherichia coli. J Bacteriol 1994; 176:1552-3. [PMID: 8113205 PMCID: PMC205232 DOI: 10.1128/jb.176.5.1552-1553.1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- C A Conlin
- Department of Microbiology, University of Illinois at Urbana-Champaign 61801
| | | | | |
Collapse
|
34
|
Conlin CA, Håkensson K, Liljas A, Miller CG. Cloning and nucleotide sequence of the cyclic AMP receptor protein-regulated Salmonella typhimurium pepE gene and crystallization of its product, an alpha-aspartyl dipeptidase. J Bacteriol 1994; 176:166-72. [PMID: 8282693 PMCID: PMC205028 DOI: 10.1128/jb.176.1.166-172.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Salmonella typhimurium pepE gene, encoding an N-terminal-Asp-specific dipeptidase, has been cloned on pBR328 by complementation of the Asp-Pro growth defect conferred by a pepE mutation. Strains carrying the complementing plasmids greatly overproduce peptidase E. The enzyme has been purified from an extract of such a strain, its N-terminal amino acid sequence has been determined, and crystals suitable for X-ray diffraction have been grown. A new assay using L-aspartic acid p-nitroanilide as a substrate has been used to determine the pH optimum (approximately 7.5) and to test the effect of potential inhibitors. Insertions of transposon gamma delta (Tn1000) into one of the plasmids have been used to localize the gene and as sites for priming sequencing reactions. The nucleotide sequence of a 1,088-bp region of one of these plasmids has been determined. This sequence contains an open reading frame that predicts a 24.8-kDa protein with an N-terminal sequence that agrees with that determined for peptidase E. The predicted peptidase E amino acid sequence is not similar to that of any other known protein. The nucleotide sequence of the region upstream from pepE contains a promoter with a cyclic AMP receptor protein (CRP) site, and the effects of growth medium and of a crp mutation on expression of a pepE-lacZ fusion indicate that pepE is a member of the CRP regulon. The unique specificity of peptidase E and its lack of sequence similarity to any other peptidase suggest that this enzyme may be the prototype of a new class of peptidases. Its regulation by CPR and its specificity suggest that the enzyme may play a role in allowing the cell to use peptide aspartate to spare carbon otherwise required for the synthesis of the aspartate family of amino acids.
Collapse
Affiliation(s)
- C A Conlin
- Department of Microbiology, University of Illinois at Urbana--Champaign 61801
| | | | | | | |
Collapse
|
35
|
Suzuki H, Hashimoto W, Kumagai H. Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential. J Bacteriol 1993; 175:6038-40. [PMID: 8104180 PMCID: PMC206686 DOI: 10.1128/jb.175.18.6038-6040.1993] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Escherichia coli K-12 can utilize a gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase (EC 2.3.2.2) is essential. We suggest that the gamma-glutamyl linkage of a gamma-glutamyl peptide is hydrolyzed by gamma-glutamyltranspeptidase located in the periplasmic space, and the released amino acid is taken up and utilized by E. coli.
Collapse
Affiliation(s)
- H Suzuki
- Department of Food Science and Technology, Faculty of Agriculture, Kyoto University, Japan
| | | | | |
Collapse
|
36
|
Yoshpe-Besançon I, Auriol D, Paul F, Monsan P, Gripon JC, Ribadeau-Dumas B. Purification and characterization of an aminopeptidase A from Staphylococcus chromogenes and its use for the synthesis of amino-acid derivatives and dipeptides. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:105-10. [PMID: 8425520 DOI: 10.1111/j.1432-1033.1993.tb19875.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
An aminopeptidase with original specificity was purified 3800-fold to homogeneity from a cellular extract of Staphylococcus chromogenes. The enzyme was specific for acidic amino acids (Asp and Glu) at the N-terminus of peptides and thus can be classified as an aminopeptidase A. However, its specificity was not restricted to acidic amino acids: alpha-hydroxy acids such as L-malic and L-lactic acids were also accepted in position P1. The enzyme had a broad specificity for the residue at position P' 1, accepting all types of amino acids, including Pro, in this position. The optimal conditions for the hydrolysis of Asp-Phe-NH2 were pH 9.5 and 60 degrees C. The enzyme was inhibited by chelating agents and serine-protease inhibitors. The activity lost by treatment with chelating agents could be restored by Mn2+ or Zn2+ which also stimulated the native enzyme. This suggests that it is a metalloprotease with a serine residue essential for the activity. The native enzyme had an apparent molecular mass of 430 kDa on gradient-gel electrophoresis and subunits of 43 kDa as determined by SDS/PAGE. The enzyme catalyzed the synthesis of peptide and amino acid derivatives such as Asp-Phe-OMe (Aspartame) and malyl-Tyr-OEt from L-Asp and L-malic acid as acyl donors and L-Phe-OMe and L-Tyr-OEt as nucleophiles, respectively. The use of the enzyme as a reagent in protease-catalyzed peptide synthesis, N-terminal protection and subsequent deprotection, is described.
Collapse
Affiliation(s)
- I Yoshpe-Besançon
- Enzymology Unit, Bât. 224, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | | | |
Collapse
|
37
|
Conlin CA, Miller CG. Cloning and nucleotide sequence of opdA, the gene encoding oligopeptidase A in Salmonella typhimurium. J Bacteriol 1992; 174:1631-40. [PMID: 1537805 PMCID: PMC206560 DOI: 10.1128/jb.174.5.1631-1640.1992] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The opdA gene (formerly called optA) of Salmonella typhimurium encodes a metallopeptidase, oligopeptidase A (OpdA), first recognized by its ability to cleave and allow utilization of N-acetyl-L-Ala4 (E. R. Vimr, L. Green, and C. G. Miller, J. Bacteriol. 153:1259-1265, 1983). Derivatives of pBR328 carrying the opdA gene were isolated and shown to express oligopeptidase activity at levels approximately 100-fold higher than that of the wild type. These plasmids complemented all of the phenotypes associated with opdA mutations (failure to use N-acetyl-L-Ala4, defective phage P22 development, and diminished endopeptidase activity). The opdA region of one of these plasmids (pCM127) was defined by insertions of Tn1000 (gamma delta), and these insertions were used as priming sites to determine the nucleotide sequence of a 2,843-bp segment of the insert DNA. This region contained an open reading frame coding for a 680-amino-acid protein, the N terminus of which agreed with that determined for purified OpdA. This open reading frame contained both a sequence motif typical of Zn2+ metalloproteases and a putative sigma 32 promoter. However, no induction was detected upon temperature shift by using a beta-galactosidase operon fusion. The predicted OpdA sequence showed similarity to dipeptidyl carboxypeptidase, the product of the S. typhimurium gene dcp, and to rat metallopeptidase EC 3.4.24.15., which is involved in peptide hormone processing.
Collapse
Affiliation(s)
- C A Conlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
38
|
Chang YH, Teichert U, Smith JA. Purification and characterization of a methionine aminopeptidase from Saccharomyces cerevisiae. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(17)45456-1] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
39
|
Petrović S, Vitale L. Purification and properties of glutamyl aminopeptidase from chicken egg-white. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1990; 95:589-95. [PMID: 2331880 DOI: 10.1016/0305-0491(90)90026-p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hydrolytic activities characteristic for different aminopeptidases were detected in the egg-white of unfertilized chicken eggs, and one aminopeptidase was isolated in an electrophoretically homogeneous form. The isolated aminopeptidase preferentially hydrolyzed bonds of alpha-glutamyl residue at the NH(2)-end of synthetic substrates and peptides. The enzyme is a dimer with an M(r) of 320,000 and pI of 4.2. Its optimal pH and temperature are 7.6 and 60 degrees C, respectively. EDTA, amastatin, and N-bromosuccinimide are inhibitors, while Ca2++ and Mn2+ are activators of the enzyme Ca2+ also stabilizes the enzyme. According to the observed properties, the isolated chicken egg-white aminopeptidase belongs to the glutamyl aminopeptidases.
Collapse
Affiliation(s)
- S Petrović
- Department of Organic Chemistry and Biochemistry, "Rudjer Bosković" Institute, Zagreb, Yugoslavia
| | | |
Collapse
|
40
|
|
41
|
Wingfield P, Graber P, Turcatti G, Movva NR, Pelletier M, Craig S, Rose K, Miller CG. Purification and characterization of a methionine-specific aminopeptidase from Salmonella typhimurium. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 180:23-32. [PMID: 2651123 DOI: 10.1111/j.1432-1033.1989.tb14610.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An aminopeptidase specific for methionine (peptidase M) has been purified from wild-type and mutant Salmonella typhimurium strains. Recombinant peptidase M was also purified from Escherichia coli. These preparations were characterized with respect to their physicochemical properties using analytical ultracentrifugation, SDS/PAGE, isoelectric focusing, titration curve analysis, amino acid analysis, N-and C-terminal sequencing and various spectroscopic methods. Peptidase M activity is stimulated by Co2+, in agreement with previous studies using crude extracts of Salmonella. The purified preparations did not contain significant amounts of any metal. Enzymically important metal is loosely associated and lost during enzyme purification. Peptidase M was shown to contain seven free sulphydryl residues none of which are involved in either intra-or inter-molecular disulphide bonds. Most appear solvent-accessible as evidenced by their reactivity under native conditions. Limited modification of the sulphydryl residues with either iodoacetamide or 5,5'-dithiobis(2-nitrobenzoic acid) led to inactivation. Several cysteines were shown to be labelled to various degrees by peptide mapping of inactivated S-[14C]carboxymethylated protein. Whether cysteine modification affects enzymic activity directly (blocking an active site) or indirectly (by causing conformational change) remains to be established.
Collapse
|
42
|
|
43
|
Exterkate FA, de Veer GJ. Purification and Some Properties of a Membrane-Bound Aminopeptidase A from
Streptococcus cremoris. Appl Environ Microbiol 1987; 53:577-83. [PMID: 16347306 PMCID: PMC203709 DOI: 10.1128/aem.53.3.577-583.1987] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A membrane-bound
l
-α-glutamyl (aspartyl)-peptide hydrolase (aminopeptidase A) (EC 3.4.11.7) from
Streptococcus cremoris
HP has been purified to homogeneity. The free γ-carboxyl group rather than the amino group of the N-terminal
l
-α-glutamyl (aspartyl) residue appeared to be essential for catalysis. No endopeptidase activity could be established with this enzyme. The native enzyme is a polymeric, most probably trimeric, metalloenzyme (relative molecular weight, approximately 130,000) which shows on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels apparent high relative molecular weight values due to (lipid?) material dissociable with butanol. The subunit (relative molecular weight, approximately 43,000) is catalytically inactive. The enzyme is inactivated completely by dithiothreitol, chelating agents, and the bivalent metal ions Cu
2+
and Hg
2+
. Of the sulfhydryl-blocking reagents tested, only
p
-hydroxymercuribenzoate appeared to inhibit the enzyme. Activity lost by treatment with a chelating agent could be restored by Co
2+
and Zn
2+
. The importance of the occurrence of an aminopeptidase A in
S. cremoris
with respect to growth in milk is discussed.
Collapse
Affiliation(s)
- F A Exterkate
- Netherlands Institute for Dairy Research, 6710 BA Ede, The Netherlands
| | | |
Collapse
|
44
|
Ben-Bassat A, Bauer K, Chang SY, Myambo K, Boosman A, Chang S. Processing of the initiation methionine from proteins: properties of the Escherichia coli methionine aminopeptidase and its gene structure. J Bacteriol 1987; 169:751-7. [PMID: 3027045 PMCID: PMC211843 DOI: 10.1128/jb.169.2.751-757.1987] [Citation(s) in RCA: 427] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Methionine aminopeptidase (MAP) catalyzes the removal of amino-terminal methionine from proteins. The Escherichia coli map gene encoding this enzyme was cloned; it consists of 264 codons and encodes a monomeric enzyme of 29,333 daltons. In vitro analyses with purified enzyme indicated that MAP is a metallo-oligopeptidase with absolute specificity for the amino-terminal methionine. The methionine residues from the amino-terminal end of the recombinant proteins interleukin-2 (Met-Ala-Pro-IL-2) and ricin A (Met-Ile-Phe-ricin A) could be removed either in vitro with purified MAP enzyme or in vivo in MAP-hyperproducing strains of E. coli. In vitro analyses of the substrate preference of the E. coli MAP indicated that the residues adjacent to the initiation methionine could significantly influence the methionine cleavage process. This conclusion is consistent, in general, with the deduced specificity of the enzyme based on the analysis of known amino-terminal sequences of intracellular proteins (S. Tsunasawa, J. W. Stewart, and F. Sherman, J. Biol. Chem. 260:5382-5391, 1985).
Collapse
|