1
|
Zhao J, Fleet GH. Degradation of RNA during the autolysis of Saccharomyces cerevisiae produces predominantly ribonucleotides. J Ind Microbiol Biotechnol 2005; 32:415-23. [PMID: 16091942 DOI: 10.1007/s10295-005-0008-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Accepted: 06/18/2005] [Indexed: 10/25/2022]
Abstract
Autolytic degradation of yeast RNA occurs in many foods and beverages and can impact on the sensory quality of the product, but the resulting complex mixture of nucleotides, nucleosides and nucleobases has not been properly characterised. In this study, yeast autolysis was induced by incubating cell suspensions of Saccharomyces cerevisiae at 30-60 degrees C (pH 7.0), and at pH 4.0-7.0 (40 degrees C) for 10-14 days, and the RNA degradation products formed during the process were determined by reversed-phase HPLC. Up to 95% of cell RNA was degraded, with consequent leakage into the extracellular environment of mainly 3'-, 5'- and 2'-ribonucleotides, and lesser amounts of polynucleotides, ribonucleosides and nucleobases. The rate of RNA degradation and the composition of the breakdown products varied with temperature and pH. RNA degradation was fastest at 50 degrees C (pH 7.0). Autolysis at lower temperatures (30 degrees C and 40 degrees C) and at pH 5.0 and 6.0 favoured the formation of 3'-nucleotides, whereas autolysis at 40 degrees C and 50 degrees C (pH 7.0) favoured 5'- and 2'-nucleotides. The best conditions for the formation of the two flavour-enhancing nucleotides, 5'-AMP and 5'-GMP, were 50 degrees C (pH 7.0) and pH 4.0 (40 degrees C), respectively.
Collapse
Affiliation(s)
- Jian Zhao
- Food Science and Technology, School of Chemical Engineering and Industrial Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | | |
Collapse
|
2
|
Charpentier C, Aussenac J, Charpentier M, Prome JC, Duteurtre B, Feuillat M. Release of nucleotides and nucleosides during yeast autolysis: kinetics and potential impact on flavor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2005; 53:3000-3007. [PMID: 15826051 DOI: 10.1021/jf040334y] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nucleotides, particularly 5'-nucleotides, are important flavoring agents found in many foods and beverages. Their precise effect on the flavor of wines aged on lees has not been examined previously. In this study nucleotides and nucleosides released by yeast during autolysis in a model wine system and in Champagne wines were identified and quantified, and their impact on wine flavor was determined. Ribonucleotides only were detected in yeast autolysate and in Champagne wines. In wines ribonucleotides were quantified by tandem mass spectrometry coupled to HPLC. The maximum concentration of total nucleotides was very low with a maximum of approximately 3 mg/L in wine aged on yeasts for 9 years. In young wines the most important nucleotide was 5'-UMP, but after 2 years of aging its concentration decreased and the concentration of 5'-GMP slowly increased. The threshold values of the most representative nucleotides in Champagne wines were higher than the concentrations found in the same wines. However, it is known that there is synergism between the different nucleotides and also in the presence of glutamic acid. This phenomenon could explain the difference observed in descriptive profiles of wines spiked with nucleotides.
Collapse
|
3
|
Affiliation(s)
- David Kennell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
4
|
Lalioti VS, Ballesta JP, Fragoulis EG. Purification and characterization of a novel poly(U), poly(C) ribonuclease from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1342:62-72. [PMID: 9366271 DOI: 10.1016/s0167-4838(97)00078-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A new ribonuclease from Saccharomyces cerevisiae, specific for poly(U) and poly(C) substrate, was purified near to homogeneity by successive fractionation with DEAE-Sepharose, Heparin-Sepharose and CM-Sepharose chromatography. The purified molecule detected by SDS/polyacrylimide gel electrophoresis has a molecular mass of 29 kDa. The optimum pH for the enzyme activity is 5.5-7 and its isoelectric point is 7.5. The purified enzyme was able to degrade 26S, 18S and 5S rRNAs as well as mRNA obtained from in vitro transcription. No catalytic activity was observed when the RNase was incubated with tRNA and double stranded substrate. Our findings suggest that this novel RNase may play an important role in the processing of RNA in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- V S Lalioti
- University of Athens, Department of Biochemistry and Molecular Biology, Greece
| | | | | |
Collapse
|
5
|
Mathur S, Cannistraro VJ, Kennell D. Identification of an intracellular pyrimidine-specific endoribonuclease from Bacillus subtilis. J Bacteriol 1993; 175:6717-20. [PMID: 8407848 PMCID: PMC206785 DOI: 10.1128/jb.175.20.6717-6720.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Two intracellular RNases which were easily separated by fractionation on strong anion- or cation-exchange resins were identified from Bacillus subtilis. One cleaved any phosphodiester bond, while the second cleaved only pyrimidine-N bonds. The enzyme with pyrimidine-N specificity was approximately 15 kDa, had a pH optimum of approximately 6.2, degraded C-C bonds approximately 10 times faster than U-U bonds, and was completely inactive against single-stranded DNA. The enzyme is called RNase C and may be the first reported broad-specificity endoribonuclease from B. subtilis.
Collapse
Affiliation(s)
- S Mathur
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
6
|
Abstract
The turnover of mRNA plays an important role in the regulation of gene expression. The two best understood model systems are those of the prokaryote Escherichia coli and the lower eukaryote Saccharomyces cerevisiae. Considerable progress in recent years has helped define the general pathways by which mRNA is degraded in E coli. Much less is known about the pathways of decay, or the enzymes involved, in eukaryotic cells. However, both cis-acting sequences and trans-acting factors have recently been characterized in S. cerevisiae and an indispensable role for translation has been identified. A comparison of these model species highlights both similarities and differences in mRNA turnover between prokaryotic and eukaryotic systems.
Collapse
Affiliation(s)
- C F Higgins
- ICRF Laboratories, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, UK
| | | | | |
Collapse
|
7
|
The rate-limiting step in yeast PGK1 mRNA degradation is an endonucleolytic cleavage in the 3'-terminal part of the coding region. Mol Cell Biol 1992. [PMID: 1320194 DOI: 10.1128/mcb.12.7.2986] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Insertion of an 18-nucleotide-long poly(G) tract into the 3'-terminal untranslated region of yeast phosphoglycerate kinase (PGK1) mRNA increases its chemical half-life by about a factor of 2 (P. Vreken, R. Van der Veen, V. C. H. F. de Regt, A. L. de Maat, R. J. Planta, and H. A. Raué, Biochimie 73:729-737, 1991). In this report, we show that this insertion also causes the accumulation of a degradation intermediate extending from the poly(G) sequence down to the transcription termination site. Reverse transcription and S1 nuclease mapping experiments demonstrated that this intermediate is the product of shorter-lived primary fragments resulting from endonucleolytic cleavage immediately downstream from the U residue of either of two 5'-GGUG-3' sequences present between positions 1100 and 1200 close to the 3' terminus (position 1251) of the coding sequence. Similar endonucleolytic cleavages appear to initiate degradation of wild-type PGK1 mRNA. Insertion of a poly(G) tract just upstream from the AUG start codon resulted in the accumulation of a 5'-terminal degradation intermediate extending from the insertion to the 1100-1200 region. RNase H degradation in the presence of oligo(dT) demonstrated that the wild-type and mutant PGK1 mRNAs are deadenylated prior to endonucleolytic cleavage and that the half-life of the poly(A) tail is three- to sixfold lower than that of the remainder of the mRNA. Thus, the endonucleolytic cleavage constitutes the rate-limiting step in degradation of both wild-type and mutant PGK1 transcripts, and the resulting fragments are degraded by a 5'----3' exonuclease, which appears to be severely retarded by a poly(G) sequence.
Collapse
|
8
|
Vreken P, Raué HA. The rate-limiting step in yeast PGK1 mRNA degradation is an endonucleolytic cleavage in the 3'-terminal part of the coding region. Mol Cell Biol 1992; 12:2986-96. [PMID: 1320194 PMCID: PMC364512 DOI: 10.1128/mcb.12.7.2986-2996.1992] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Insertion of an 18-nucleotide-long poly(G) tract into the 3'-terminal untranslated region of yeast phosphoglycerate kinase (PGK1) mRNA increases its chemical half-life by about a factor of 2 (P. Vreken, R. Van der Veen, V. C. H. F. de Regt, A. L. de Maat, R. J. Planta, and H. A. Raué, Biochimie 73:729-737, 1991). In this report, we show that this insertion also causes the accumulation of a degradation intermediate extending from the poly(G) sequence down to the transcription termination site. Reverse transcription and S1 nuclease mapping experiments demonstrated that this intermediate is the product of shorter-lived primary fragments resulting from endonucleolytic cleavage immediately downstream from the U residue of either of two 5'-GGUG-3' sequences present between positions 1100 and 1200 close to the 3' terminus (position 1251) of the coding sequence. Similar endonucleolytic cleavages appear to initiate degradation of wild-type PGK1 mRNA. Insertion of a poly(G) tract just upstream from the AUG start codon resulted in the accumulation of a 5'-terminal degradation intermediate extending from the insertion to the 1100-1200 region. RNase H degradation in the presence of oligo(dT) demonstrated that the wild-type and mutant PGK1 mRNAs are deadenylated prior to endonucleolytic cleavage and that the half-life of the poly(A) tail is three- to sixfold lower than that of the remainder of the mRNA. Thus, the endonucleolytic cleavage constitutes the rate-limiting step in degradation of both wild-type and mutant PGK1 transcripts, and the resulting fragments are degraded by a 5'----3' exonuclease, which appears to be severely retarded by a poly(G) sequence.
Collapse
Affiliation(s)
- P Vreken
- Faculty of Chemistry, Department of Biochemistry and Molecular Biology, Vrije Universiteit de Boelelaan, Amsterdam, The Netherlands
| | | |
Collapse
|
9
|
Affiliation(s)
- A J Brown
- Biotechnology Unit, Institute of Genetics, University of Glasgow, U.K
| |
Collapse
|
10
|
Cannistraro VJ, Kennell D. Purification and characterization of ribonuclease M and mRNA degradation in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1989; 181:363-70. [PMID: 2653829 DOI: 10.1111/j.1432-1033.1989.tb14733.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A previously unreported endoribonuclease has been identified in Escherichia coli, which has a preference for hydrolysis of pyrimidine-adenosine (Pyd-Ado) bonds in RNA. It was purified about 7000-fold to give a single band after SDS/polyacrylamide gel electrophoresis; the eluted protein gave the same RNase specificity. The sizes of the native and denatured enzymes agreed suggesting that the enzyme exists as a monomer of approximately 26 kDa. It is called RNase M. The only other reported broadly specific endoribonuclease in E. coli is RNase I, a periplasmic enzyme. Based on differences in charge, heat stability and substrate specificity, it was clear that RNase M is not RNase I. The specificity of RNase M was remarkably similar to that of pancreatic RNase A even though the two enzymes differ in charge characteristics and size. Earlier studies had shown that mRNA from the lactose operon of E. coli is hydrolyzed in vivo primarily between Pyd-Ado bonds [Cannistraro et al. (1986) J. Mol. Biol. 192, 257-274] We propose that this major RNase activity accounts for these cleavages observed in vivo and that it is the endonuclease for mRNA degradation in E. coli.
Collapse
Affiliation(s)
- V J Cannistraro
- Department of Microbiology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | | |
Collapse
|
11
|
Brown AJ, Purvis IJ, Santiago TC, Bettany AJ, Loughlin L, Moore J. Messenger RNA degradation in Saccharomyces cerevisiae. Gene X 1988; 72:151-60. [PMID: 3072247 DOI: 10.1016/0378-1119(88)90137-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The analysis of 17 functional mRNAs and two recombinant mRNAs in the yeast Saccharomyces cerevisiae suggests that the length of an mRNA influences its half-life in this organism. The mRNAs are clearly divisible into two populations when their lengths and half-lives are compared. Differences in ribosome loading amongst the mRNAs cannot account for this division into relatively stable and unstable populations. Also, specific mRNAs seem to be destabilized to differing extents when their translation is disrupted by N-terminus-proximal stop codons. The analysis of a mutant mRNA, generated by the fusion of the yeast PYK1 and URA3 genes, suggests that a destabilizing element exists within the URA3 sequence. The presence of such elements within relatively unstable mRNAs might account for the division between the yeast mRNA populations. On the basis of these, and other previously published observations, a model is proposed for a general pathway of mRNA degradation in yeast. This model may be relevant to other eukaryotic systems. Also, only a minor extension to the model is required to explain how the stability of some eukaryotic mRNAs might be regulated.
Collapse
Affiliation(s)
- A J Brown
- Institute of Genetics, University of Glasgow, U.K
| | | | | | | | | | | |
Collapse
|
12
|
mRNA-decapping enzyme from Saccharomyces cerevisiae: purification and unique specificity for long RNA chains. Mol Cell Biol 1988. [PMID: 2838740 DOI: 10.1128/mcb.8.5.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An enzyme that hydrolyzes one PPi bond of the cap structure of mRNA, yielding m7GDP and 5'-p RNA was purified from Saccharomyces cerevisiae to a stage suitable for characterization. The specificity of the enzyme was studied, using both yeast mRNA and synthetic RNAs labeled in the cap structure. A synthetic capped RNA (540 nucleotides) was not reduced in size, while as much as 80% was decapped. Yeast mRNA treated with high concentrations of RNase A, nuclease P1, or micrococcal nuclease was inactive as a substrate. The use of synthetic capped RNAs of different sizes (50 to 540 nucleotides) as substrates showed that the larger RNA can be a better substrate by as much as 10-fold. GpppG-RNA was hydrolyzed at a rate similar to that at which 5'-triphosphate end group were not hydrolyzed.
Collapse
|
13
|
Stevens A. mRNA-decapping enzyme from Saccharomyces cerevisiae: purification and unique specificity for long RNA chains. Mol Cell Biol 1988; 8:2005-10. [PMID: 2838740 PMCID: PMC363379 DOI: 10.1128/mcb.8.5.2005-2010.1988] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An enzyme that hydrolyzes one PPi bond of the cap structure of mRNA, yielding m7GDP and 5'-p RNA was purified from Saccharomyces cerevisiae to a stage suitable for characterization. The specificity of the enzyme was studied, using both yeast mRNA and synthetic RNAs labeled in the cap structure. A synthetic capped RNA (540 nucleotides) was not reduced in size, while as much as 80% was decapped. Yeast mRNA treated with high concentrations of RNase A, nuclease P1, or micrococcal nuclease was inactive as a substrate. The use of synthetic capped RNAs of different sizes (50 to 540 nucleotides) as substrates showed that the larger RNA can be a better substrate by as much as 10-fold. GpppG-RNA was hydrolyzed at a rate similar to that at which 5'-triphosphate end group were not hydrolyzed.
Collapse
Affiliation(s)
- A Stevens
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831
| |
Collapse
|
14
|
Stevens A, Maupin MK. A 5'----3' exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. Arch Biochem Biophys 1987; 252:339-47. [PMID: 3545079 DOI: 10.1016/0003-9861(87)90040-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purification scheme for a 5'----3' exoribonuclease of Saccharomyces cerevisiae has been modified to facilitate purification of larger amounts of enzyme and further extended to yield highly purified enzyme by use of poly(A)-agarose chromatography. As determined by either sodium dodecyl sulfate-polyacrylamide gel electrophoresis or physical characterization, the enzyme has a molecular weight of about 160,000. Further studies of its substrate specificity show that poly(C) and poly(U) preparations require 5' phosphorylation for activity and that poly(A) with a 5'-triphosphate end group is hydrolyzed at only 12% of the rate of poly(A) with a 5'-monophosphate end group. DNA is not hydrolyzed, but synthetic polydeoxyribonucleotides are strong competitive inhibitors of the hydrolysis of noncomplementary ribopolymers. Poly(A).poly(U) and poly(A).poly(dT) are hydrolyzed at 60 and 50%, respectively, of the rate of poly(A) at 37 degrees C. The RNase H activity of the enzyme can also be demonstrated using an RNA X M13 DNA hybrid as a substrate. When poly(dT).poly(dA) with a 5'-terminal poly(A) segment on the poly(dA) is used as a substrate, the enzyme hydrolyzes the poly(A) "tail," removing the last ribonucleotide, but does not hydrolyze the poly(dA).
Collapse
|
15
|
Stevens A, Maupin MK. A 5'----3' exoribonuclease of human placental nuclei: purification and substrate specificity. Nucleic Acids Res 1987; 15:695-708. [PMID: 2434925 PMCID: PMC340460 DOI: 10.1093/nar/15.2.695] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An exoribonuclease that hydrolyzes single-stranded RNA by a 5'----3' mode yielding 5'-mononucleotides has been purified from human placental nuclei. Chromatographic studies of crude placental nuclear extracts suggest that the enzyme is a relatively abundant nuclear RNase. Poly(A) is degraded by a processive mechanism while rRNA is degraded in a partially non-processive manner, possibly because of its secondary structure. The enzyme has an apparent molecular weight of 113,000, derived from determinations of the Stokes radius (43 A) and sedimentation coefficient (6.3 S). Substrates with 5'-phosphomonoester end groups are 10-20 times better than 5'-dephosphorylated substrates. The locale of the enzyme in nuclei of normal human cells as well as its mode of action suggest a role in nuclear RNA processing or turnover.
Collapse
|
16
|
Cannistraro VJ, Subbarao MN, Kennell D. Specific endonucleolytic cleavage sites for decay of Escherichia coli mRNA. J Mol Biol 1986; 192:257-74. [PMID: 2435917 DOI: 10.1016/0022-2836(86)90363-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The polycistronic lac mRNA of Escherichia coli contains three messages. The rate of degradation of the second (lacY) message was observed to be equal to that of the third (lacA), and each decayed twice as fast as did the first (lacZ). Specific 5'- and 3'-ended lacY mRNA molecules could be recovered from cells; most likely, they are generated from endonucleolytic cleavages that are a part of the degradative process. They were observed by S1 nuclease mapping, and the exact 5'- and 3'-end oligonucleotides of many of them were identified by direct sequencing. Almost all of the molecules started with a 5' adenosine that would be preceded by a pyrimidine. The specificity was further restricted by neighboring nucleotides, and analysis of the data suggested that 5'-U-U decreases-A-U- is especially vulnerable. Also, computer analyses predicted the most stable secondary structures of selected segments of the mRNA and suggested that cleavages may only occur in regions of single strandedness. A model of mRNA degradation is proposed based on these observations and earlier ones. There is no unique target on a message for the initial inactivating attack: any region free of ribosomes is vulnerable, but for statistical reasons the initial attack of most molecules is near the ribosome-loading site. With no further ribosome loading, the newly unprotected 5' ends are "chopped off" at one of the next preferred target sites almost as fast as the last ribosomes moves down the mRNA.
Collapse
|
17
|
Abstract
Investigations of the cleavage specificity of a cyclizing endoribonuclease of yeast show that it hydrolyzes Y-A bonds of single-stranded regions of RNA and that oligonucleotides are hydrolyzed poorly. The stringent specificity of the enzyme suggests that it may be useful for generating specific fragments of polyribonucleotides. An isolation technique employing ethanol extraction has now been used to isolate the enzyme free of other RNases, and the studies show that it is a small protein, 10 kDa or less in molecular mass.
Collapse
|