1
|
Ghisolfi R, Bandini F, Vaccari F, Bellotti G, Bortolini C, Patrone V, Puglisi E, Morelli L. Bacterial and Fungal Communities Are Specifically Modulated by the Cocoa Bean Fermentation Method. Foods 2023; 12:foods12102024. [PMID: 37238842 DOI: 10.3390/foods12102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Cocoa bean fermentation is carried out in different production areas following various methods. This study aimed to assess how the bacterial and fungal communities were affected by box, ground or jute fermentation methods, using high-throughput sequencing (HTS) of phylogenetic amplicons. Moreover, an evaluation of the preferable fermentation method was carried out based on the microbial dynamics observed. Box fermentation resulted in higher bacterial species diversity, while beans processed on the ground had a wider fungal community. Lactobacillus fermentum and Pichia kudriavzevii were observed in all three fermentation methods studied. Moreover, Acetobacter tropicalis dominated box fermentation and Pseudomonas fluorescens abounded in ground-fermented samples. Hanseniaspora opuntiae was the most important yeast in jute and box, while Saccharomyces cerevisiae prevailed in the box and ground fermentation. PICRUST analysis was performed to identify potential interesting pathways. In conclusion, there were noticeable differences between the three different fermentation methods. Due to its limited microbial diversity and the presence of microorganisms that guarantee good fermentation, the box method was found to be preferable. Moreover, the present study allowed us to thoroughly explore the microbiota of differently treated cocoa beans and to better understand the technological processes useful to obtain a standardized end-product.
Collapse
Affiliation(s)
- Rebecca Ghisolfi
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Francesca Bandini
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Filippo Vaccari
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Bellotti
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Cristian Bortolini
- Soremartec srl (Ferrero Group), Piazzale P. Ferrero 1, 12051 Alba, Italy
| | - Vania Patrone
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Lorenzo Morelli
- Dipartimento di Scienze e Tecnologie Alimentari per la Sostenibilità della Filiera Agro-Alimentare, Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
2
|
Makarova LE, Petrova IG, Sokolova NA, Makarov SS, Pionkevich VA. Influence of endophytic and epiphytic nitrogen-fixing bacteria on the content of negative allelopathic compounds in root exudates of pea (<i>Pisum sativum</i> L.) seedlings. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2022. [DOI: 10.21285/2227-2925-2022-12-3-394-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Substances that have a harmful effect on living organisms include N-phenyl-2-naphthalamine and phthalates, which are synthesized and widely used in the chemical industry. At the same time, N-phenyl-2-naphthylamine was found in the aerial parts and in the roots of some plant species, phthalates were found in many plant species and in bacteria. The aim of this research was to study the protective (antimicrobial) reaction of pea (Pisum sativum L.) seedlings of the Torsdag variety to the inoculation with bacteria Rhizobium leguminosarum bv. viceae (endosymbiont) and Azotobacter chroococcum (ectosymbiont) introduced into the aqueous medium of root growth were studied. Changes in the content of negative allelopathic compounds (pisatin, N-phenyl-2-naphthylamine, phthalates) in root exudates were the reaction indicators. After the inoculation, the seedlings grew for 24 h in the BINDER KBW-240 chamber at 21 °C, with lighting of 81 μM.m-2 . sec-1 and a 16/8 h day/night photoperiod. In ethyl acetate extracts from the aqueous medium where the seedling roots were immersed, the content of the compounds was determined by HPLC, while changes in the composition and ratio of phthalates were determined by GC-MS. Data indicating the different ability of both bacterial species to degrade N-phenyl-2-naphthylamine to phthalates and the dependence of this process activity in the bacteria studied on its concentration in the medium were presented. N-phenyl-2-naphthylamine differently but negatively affected the viability and growth of the bacteria used in the experiments. A different effect of rhizobia and azotobacter on the content of the above named compounds and on the ratio of types of phthalates in root exudates was elicited.
Collapse
Affiliation(s)
- L. E. Makarova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS
| | - I. G. Petrova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS
| | - N. A. Sokolova
- Siberian Institute of Plant Physiology and Biochemistry SB RAS
| | | | | |
Collapse
|
3
|
Yu J, Pavia MJ, Deem LM, Crow SE, Deenik JL, Penton CR. DNA-Stable Isotope Probing Shotgun Metagenomics Reveals the Resilience of Active Microbial Communities to Biochar Amendment in Oxisol Soil. Front Microbiol 2020; 11:587972. [PMID: 33329461 PMCID: PMC7717982 DOI: 10.3389/fmicb.2020.587972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/08/2020] [Indexed: 12/03/2022] Open
Abstract
The functions and interactions of individual microbial populations and their genes in agricultural soils amended with biochar remain elusive but are crucial for a deeper understanding of nutrient cycling and carbon (C) sequestration. In this study, we coupled DNA stable isotope probing (SIP) with shotgun metagenomics in order to target the active community in microcosms which contained soil collected from biochar-amended and control plots under napiergrass cultivation. Our analyses revealed that the active community was composed of high-abundant and low-abundant populations, including Actinobacteria, Proteobacteria, Gemmatimonadetes, and Acidobacteria. Although biochar did not significantly shift the active taxonomic and functional communities, we found that the narG (nitrate reductase) gene was significantly more abundant in the control metagenomes. Interestingly, putative denitrifier genomes generally encoded one gene or a partial denitrification pathway, suggesting denitrification is typically carried out by an assembly of different populations within this Oxisol soil. Altogether, these findings indicate that the impact of biochar on the active soil microbial community are transient in nature. As such, the addition of biochar to soils appears to be a promising strategy for the long-term C sequestration in agricultural soils, does not impart lasting effects on the microbial functional community, and thus mitigates un-intended microbial community shifts that may lead to fertilizer loss through increased N cycling.
Collapse
Affiliation(s)
- Julian Yu
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Michael J. Pavia
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- Swette Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Lauren M. Deem
- Natural Resources and Environmental Management, University of Hawai‘i at Mânoa, Honolulu, HI, United States
| | - Susan E. Crow
- Natural Resources and Environmental Management, University of Hawai‘i at Mânoa, Honolulu, HI, United States
| | - Jonathan L. Deenik
- Tropical Plant and Soil Sciences, University of Hawai‘i at Mânoa, Honolulu, HI, United States
| | - Christopher Ryan Penton
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Arizona State University, Tempe, AZ, United States
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ, United States
| |
Collapse
|
4
|
Makarova LE, Morits AS, Sokolova NA, Petrova IG, Semenov AA, Dudareva LV, Tretyakova MS, Sidorov AV. Degradation of N-phenyl-2-naphthylamine by Rhizobium leguminosarum bv. viciae, Pseudomonas syringae pv. pisi, and Clavibacter michiganensis sps. sepedonicus Bacteria. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820010123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Strodtman KN, Frank S, Stevenson S, Thelen JJ, Emerich DW. Proteomic Characterization of Bradyrhizobium diazoefficiens Bacteroids Reveals a Post-Symbiotic, Hemibiotrophic-Like Lifestyle of the Bacteria within Senescing Soybean Nodules. Int J Mol Sci 2018; 19:E3947. [PMID: 30544819 PMCID: PMC6320959 DOI: 10.3390/ijms19123947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/01/2023] Open
Abstract
The form and physiology of Bradyrhizobium diazoefficiens after the decline of symbiotic nitrogen fixation has been characterized. Proteomic analyses showed that post-symbiotic B. diazoefficiens underwent metabolic remodeling as well-defined groups of proteins declined, increased or remained unchanged from 56 to 119 days after planting, suggesting a transition to a hemibiotrophic-like lifestyle. Enzymatic analysis showed distinct patterns in both the cytoplasm and the periplasm. Similar to the bacteroid, the post-symbiotic bacteria rely on a non-citric acid cycle supply of succinate and, although viable, they did not demonstrate the ability to grow within the senescent nodule.
Collapse
Affiliation(s)
- Kent N Strodtman
- Department of Science, Columbia College, Columbia, MO 65216, USA.
| | - Sooyoung Frank
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| | - David W Emerich
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
6
|
Kynadi AS, Suchithra TV. Bacterial Degradation of Phenol to Control Environmental Pollution. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
7
|
Biological valorization of low molecular weight lignin. Biotechnol Adv 2016; 34:1318-1346. [DOI: 10.1016/j.biotechadv.2016.10.001] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/06/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
8
|
Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Appl Microbiol Biotechnol 2012; 97:1501-11. [DOI: 10.1007/s00253-012-4358-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 08/09/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
|
9
|
Abstract
This reminiscence is a celebration of my good fortune in family, biological and scientific. The biological family into which I was born gave me a strong start, although not entirely in the direction I took. I swerved from an anticipated career in medical practice into continuing delight in those who became my scientific family in microbiology. The families changed, yet they continued to give me strength and inspiration. In my youth, I was gently guided by mentors who gave me freedom to explore where curiosity beckoned. I hope I repaid this gift to my laboratory colleagues who enlightened me over the years. I learned much from my students, and my horizons were extended by industrial scientists. It has been my particular good fortune to learn the workings of microorganisms and microbiologists as editor of Journal of Bacteriology for a decade, as editor-in-chief of Applied and Environmental Microbiology for a decade, and as editor of Annual Review of Microbiology for a quarter of a century.
Collapse
Affiliation(s)
- L. Nicholas Ornston
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103
| |
Collapse
|
10
|
Tully RE. Synthesis of Exopolysaccharide by Bradyrhizobium japonicum during Growth on Hydroaromatic Substrates. Appl Environ Microbiol 2010; 54:1624-6. [PMID: 16347670 PMCID: PMC202710 DOI: 10.1128/aem.54.6.1624-1626.1988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hydroaromatic acids shikimate and quinate, which may be available as carbon sources in the soil, supported production of only low levels of acidic exopolysaccharide by Bradyrhizobium japonicum. Exopolysaccharide production (micrograms per 10 cells) was 4.9 on quinate and 4.5 on shikimate; in comparison, it was 128 on adipate, 18 on l-arabinose, and 39 on d-glucose.
Collapse
Affiliation(s)
- R E Tully
- Nitrogen Fixation and Soybean Genetics Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, Maryland 20705
| |
Collapse
|
11
|
Parke D. Application of p-Toluidine in Chromogenic Detection of Catechol and Protocatechuate, Diphenolic Intermediates in Catabolism of Aromatic Compounds. Appl Environ Microbiol 2010; 58:2694-7. [PMID: 16348758 PMCID: PMC195844 DOI: 10.1128/aem.58.8.2694-2697.1992] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the presence of p-toluidine and iron, protocatechuate and catechols yield color. Inclusion of p-toluidine in media facilitates the screening of microbial strains for alterations affecting aromatic catabolism. Such strains include mutants affected in the expression of oxygenases and Escherichia coli colonies carrying cloned or subcloned aromatic catabolic genes which encode enzymes giving rise to protocatechuate or catechol. The diphenolic detection system can also be applied to the creation of vectors relying on insertion of cloned DNA into one of the latter marker genes.
Collapse
Affiliation(s)
- D Parke
- Department of Biology, Yale University, P.O. Box 6666, New Haven, Connecticut 06511-8112
| |
Collapse
|
12
|
Binding site determinants for the LysR-type transcriptional regulator PcaQ in the legume endosymbiont Sinorhizobium meliloti. J Bacteriol 2007; 190:1237-46. [PMID: 18055594 DOI: 10.1128/jb.01456-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
LysR-type transcriptional regulators represent one of the largest groups of prokaryotic regulators described to date. In the gram-negative legume endosymbiont Sinorhizobium meliloti, enzymes involved in the protocatechuate branch of the beta-ketoadipate pathway are encoded within the pcaDCHGB operon, which is subject to regulation by the LysR-type protein PcaQ. In this work, purified PcaQ was shown to bind strongly (equilibrium dissociation constant, 0.54 nM) to a region at positions -78 to -45 upstream of the pcaD transcriptional start site. Within this region, we defined a PcaQ binding site with dyad symmetry that is required for regulation of pcaD expression in vivo and for binding of PcaQ in vitro. We also demonstrated that PcaQ participates in negative autoregulation by monitoring expression of pcaQ via a transcriptional fusion to lacZ. Although pcaQ homologues are present in many alpha-proteobacteria, this work describes the first reported purification of this regulator, as well as characterization of its binding site, which is conserved in Agrobacterium tumefaciens, Rhizobium leguminosarum, Rhizobium etli, and Mesorhizobium loti.
Collapse
|
13
|
El Azhari N, Chabaud S, Percept A, Bru D, Martin-Laurent F. pcaH, a molecular marker for estimating the diversity of the protocatechuate-degrading bacterial community in the soil environment. PEST MANAGEMENT SCIENCE 2007; 63:459-67. [PMID: 17427160 DOI: 10.1002/ps.1357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Microorganisms degrading phenolic compounds play an important role in soil carbon cycling as well as in pesticide degradation. The pcaH gene encoding a key ring-cleaving enzyme of the beta-ketoadipate pathway was selected as a functional marker. Using a degenerate primer pair, pcaH fragments were cloned from two agricultural soils. Restriction fragment length polymorphism (RFLP) screening of 150 pcaH clones yielded 68 RFLP families. Comparison of 86 deduced amino acid sequences displayed 70% identity to known PcaH sequences. Phylogenetic analysis results in two major groups mainly related to PcaH sequences from Actinobacteria and Proteobacteria phyla. This confirms that the developed primer pair targets a wide diversity of pcaH sequences, thereby constituting a suitable molecular marker to estimate the response of the pca community to agricultural practices.
Collapse
Affiliation(s)
- Najoi El Azhari
- UMR Microbiologie du Sol et de l'Environnement, INRA-Université de Bourgogne, 17 Rue Sully, BP 86510, 21065 Dijon Cedex, France
| | | | | | | | | |
Collapse
|
14
|
Cooper J. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 2007; 103:1355-65. [DOI: 10.1111/j.1365-2672.2007.03366.x] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Yoshida M, Oikawa T, Obata H, Abe K, Mihara H, Esaki N. Biochemical and genetic analysis of the gamma-resorcylate (2,6-dihydroxybenzoate) catabolic pathway in Rhizobium sp. strain MTP-10005: identification and functional analysis of its gene cluster. J Bacteriol 2006; 189:1573-81. [PMID: 17158677 PMCID: PMC1855702 DOI: 10.1128/jb.01675-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a gene cluster that is involved in the gamma-resorcylate (2,6-dihydroxybenzoate) catabolism of the aerobic bacterium Rhizobium sp. strain MTP-10005. The cluster consists of the graRDAFCBEK genes, and graA, graB, graC, and graD were heterologously expressed in Escherichia coli. Enzymological studies showed that graD, graA, graC, and graB encode the reductase (GraD) and oxygenase (GraA) components of a resorcinol hydroxylase (EC 1.14.13.x), a maleylacetate reductase (GraC) (EC 1.3.1.32), and a hydroxyquinol 1,2-dioxygenase (GraB) (EC 1.13.11.37). Bioinformatic analyses suggested that graE, graR, and graK encode a protein with an unknown function (GraE), a MarR-type transcriptional regulator (GraR), and a benzoate transporter (GraK). Quantitative reverse transcription-PCR of graF, which encodes gamma-resorcylate decarboxylase, revealed that the maximum relative mRNA expression level ([5.93 +/- 0.82] x 10(-4)) of graF was detected in the total RNA of the cells after one hour of cultivation when gamma-resorcylate was used as the sole carbon source. Reverse transcription-PCR of graDAFCBE showed that these genes are transcribed as a single mRNA and that the transcription of the gene cluster is induced by gamma-resorcylate. These results suggested that the graDAFCBE genes are responsible as an operon for the growth of Rhizobium sp. strain MTP-10005 on gamma-resorcylate and are probably regulated by GraR at the transcriptional level. This is the first report of the gamma-resorcylate catabolic pathway in an aerobic bacterium.
Collapse
Affiliation(s)
- Masahiro Yoshida
- Department of Biotechnology, Faculty of Engineering, Kansai University, Suita, Osaka-Fu 564-8680, Japan
| | | | | | | | | | | |
Collapse
|
16
|
MacLean AM, MacPherson G, Aneja P, Finan TM. Characterization of the beta-ketoadipate pathway in Sinorhizobium meliloti. Appl Environ Microbiol 2006; 72:5403-13. [PMID: 16885292 PMCID: PMC1538742 DOI: 10.1128/aem.00580-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aromatic compounds represent an important source of energy for soil-dwelling organisms. The beta-ketoadipate pathway is a key metabolic pathway involved in the catabolism of the aromatic compounds protocatechuate and catechol, and here we show through enzymatic analysis and mutant analysis that genes required for growth and catabolism of protocatechuate in the soil-dwelling bacterium Sinorhizobium meliloti are organized on the pSymB megaplasmid in two transcriptional units designated pcaDCHGB and pcaIJF. The pcaD promoter was mapped by primer extension, and expression from this promoter is demonstrated to be regulated by the LysR-type protein PcaQ. Beta-ketoadipate succinyl-coenzyme A (CoA) transferase activity in S. meliloti was shown to be encoded by SMb20587 and SMb20588, and these genes have been renamed pcaI and pcaJ, respectively. These genes are organized in an operon with a putative beta-ketoadipyl-CoA thiolase gene (pcaF), and expression of the pcaIJF operon is shown to be regulated by an IclR-type transcriptional regulator, SMb20586, which we have named pcaR. We show that pcaR transcription is negatively autoregulated and that PcaR is a positive regulator of pcaIJF expression and is required for growth of S. meliloti on protocatechuate as the carbon source. The characterization of the protocatechuate catabolic pathway in S. meliloti offers an opportunity for comparison with related species, including Agrobacterium tumefaciens. Differences observed between S. meliloti and A. tumefaciens pcaIJ offer the first evidence of pca genes that may have been acquired after speciation in these closely related species.
Collapse
Affiliation(s)
- Allyson M MacLean
- Centre for Enviromental Genomics, Department of Biology, McMaster University, Hamilton L8S 4K1, Ontario, Canada
| | | | | | | |
Collapse
|
17
|
Parke D. Acquisition, reorganization, and merger of genes: novel management of the β-ketoadipate pathway in Agrobacterium tumefaciens. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10164.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Ito N, Itakura M, Eda S, Saeki K, Oomori H, Yokoyama T, Kaneko T, Tabata S, Ohwada T, Tajima S, Uchiumi T, Masai E, Tsuda M, Mitsui H, Minamisawa K. Global Gene Expression in Bradyrhizobium japonicum Cultured with Vanillin, Vanillate, 4-Hydroxybenzoate and Protocatechuate. Microbes Environ 2006. [DOI: 10.1264/jsme2.21.240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Naofumi Ito
- Graduate School of Life Sciences, Tohoku University
| | | | - Shima Eda
- Graduate School of Life Sciences, Tohoku University
| | - Kazuhiko Saeki
- Department of Biological Science, Faculty of Science, Nara Women's University
| | - Hirofumi Oomori
- Department of Biology Graduate School of Science, Osaka University
| | | | | | | | - Takuji Ohwada
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | | | - Toshiki Uchiumi
- Department of Chemistry and BioScience, Faculty of Science, Kagoshima University
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology
| | | | | | | |
Collapse
|
19
|
Sarma AD, Emerich DW. Global protein expression pattern of Bradyrhizobium japonicum bacteroids: a prelude to functional proteomics. Proteomics 2005; 5:4170-84. [PMID: 16254929 DOI: 10.1002/pmic.200401296] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As a prelude to using functional proteomics towards understanding the process of symbiotic nitrogen fixation between the legume soybean and the soil bacteria Bradyrhizobium japonicum, we examined the total protein expression pattern of the nodule bacteria, often referred to as bacteroids. A partial proteome map was constructed by separating the total bacteroid proteins using high-resolution 2-DE. Of the several hundred protein spots analyzed using PMF, 180 spots were tentatively identified by searching the available database for B. japonicum, (http://www.kazusa.or.jp/index.html). The data showed that the bacteroid expressed a dominant and elaborate protein network for nitrogen and carbon metabolism, which is closely dependent on the plant supplied metabolites, and seems aptly supported by a selective group of bacteroid transporter proteins. However, they seem to lack a defined fatty acid and nucleic acid metabolism. Interestingly, the proteins related to protein synthesis, scaffolding and degradation were among the most predominant spots of the bacteroid proteome. In addition, several proteins, which showed fairly good expression, were identified to be involved with cellular detoxification, stress regulation and signaling communication components. This preliminary proteomic data matches very well with several biochemical and genetic reports, and clearly shows the inter-connection between several metabolic pathways that meet the needs of the bacteroid. It is expected that in the future this will allow us to develop testable hypotheses about the roles of several of these proteins in context to the metabolic pathway connections and metabolite fluxes.
Collapse
Affiliation(s)
- Annamraju D Sarma
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
20
|
Yoshida M, Fukuhara N, Oikawa T. Thermophilic, reversible gamma-resorcylate decarboxylase from Rhizobium sp. strain MTP-10005: purification, molecular characterization, and expression. J Bacteriol 2004; 186:6855-63. [PMID: 15466039 PMCID: PMC522189 DOI: 10.1128/jb.186.20.6855-6863.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found the occurrence of thermophilic reversible gamma-resorcylate decarboxylase (gamma-RDC) in the cell extract of a bacterium isolated from natural water, Rhizobium sp. strain MTP-10005, and purified the enzyme to homogeneity. The molecular mass of the enzyme was determined to be about 151 kDa by gel filtration, and that of the subunit was 37.5 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis; in other words, the enzyme was a homotetramer. The enzyme was induced specifically by the addition of gamma-resorcylate to the medium. The enzyme required no coenzyme and did not act on 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 3,4-dihydroxybenzoate, 3,5-dihydroxybenzoate, 2-hydroxybenzoate, or 3-hydroxybenzoate. It was relatively thermostable to heat treatment, and its half-life at 50 degrees C was estimated to be 122 min; furthermore, it catalyzed the reverse carboxylation of resorcinol. The values of k(cat)/K(m) (mMu(-1) . s(-1)) for gamma-resorcylate and resorcinol at 30 degrees C and pH 7 were 13.4 and 0.098, respectively. The enzyme contains 327 amino acid residues, and sequence identities were found with those of hypothetical protein AGR C 4595p from Agrobacterium tumefaciens strain C58 (96% identity), 5-carboxyvanillate decarboxylase from Sphingomonas paucimobilis (32%), and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylases from Bacillus cereus ATCC 10987 (26%), Rattus norvegicus (26%), and Homo sapiens (25%). The genes (graA [1,230 bp], graB [888 bp], and graC [1,056 bp]) that are homologous to those in the resorcinol pathway also exist upstream and downstream of the gamma-RDC gene. Judging from these results, the resorcinol pathway also exists in Rhizobium sp. strain MTP-10005, and gamma-RDC probably catalyzes a reaction just before the hydroxylase in it does.
Collapse
Affiliation(s)
- Masahiro Yoshida
- Department of Biotechnology, Faculty of Engineering, Kansai University, Suita, Osaka-Fu 564-8680, Japan
| | | | | |
Collapse
|
21
|
Young DM, D'Argenio DA, Jen M, Parke D, Nicholas Ornston L. Gunsalus and Stanier set the stage for selection of cold-sensitive mutants apparently impaired in movement of FAD within 4-hydroxybenzoate hydroxylase. Biochem Biophys Res Commun 2004; 312:153-60. [PMID: 14630034 DOI: 10.1016/j.bbrc.2003.09.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- David M Young
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave., D1-219, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
22
|
Rich JJ, Heichen RS, Bottomley PJ, Cromack K, Myrold DD. Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 2004; 69:5974-82. [PMID: 14532052 PMCID: PMC201216 DOI: 10.1128/aem.69.10.5974-5982.2003] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated communities of denitrifying bacteria from adjacent meadow and forest soils. Our objectives were to explore spatial gradients in denitrifier communities from meadow to forest, examine whether community composition was related to ecological properties (such as vegetation type and process rates), and determine phylogenetic relationships among denitrifiers. nosZ, a key gene in the denitrification pathway for nitrous oxide reductase, served as a marker for denitrifying bacteria. Denitrifying enzyme activity (DEA) was measured as a proxy for function. Other variables, such as nitrification potential and soil C/N ratio, were also measured. Soil samples were taken along transects that spanned meadow-forest boundaries at two sites in the H. J. Andrews Experimental Forest in the Western Cascade Mountains of Oregon. Results indicated strong functional and structural community differences between the meadow and forest soils. Levels of DEA were an order of magnitude higher in the meadow soils. Denitrifying community composition was related to process rates and vegetation type as determined on the basis of multivariate analyses of nosZ terminal restriction fragment length polymorphism profiles. Denitrifier communities formed distinct groups according to vegetation type and site. Screening 225 nosZ clones yielded 47 unique denitrifying genotypes; the most dominant genotype occurred 31 times, and half the genotypes occurred once. Several dominant and less-dominant denitrifying genotypes were more characteristic of either meadow or forest soils. The majority of nosZ fragments sequenced from meadow or forest soils were most similar to nosZ from the Rhizobiaceae group in alpha-Proteobacteria species. Denitrifying community composition, as well as environmental factors, may contribute to the variability of denitrification rates in these systems.
Collapse
Affiliation(s)
- J J Rich
- Departments of Crop and Soil Science, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | | | |
Collapse
|
23
|
Buchan A, Neidle EL, Moran MA. Diversity of the ring-cleaving dioxygenase gene pcaH in a salt marsh bacterial community. Appl Environ Microbiol 2001; 67:5801-9. [PMID: 11722937 PMCID: PMC93374 DOI: 10.1128/aem.67.12.5801-5809.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of lignin-related aromatic compounds is an important ecological process in the highly productive salt marshes of the southeastern United States, yet little is known about the mediating organisms or their catabolic pathways. Here we report the diversity of a gene encoding a key ring-cleaving enzyme of the beta-ketoadipate pathway, pcaH, amplified from bacterial communities associated with decaying Spartina alterniflora, the salt marsh grass that dominates these coastal systems, as well as from enrichment cultures with aromatic substrates (p-hydroxybenzoate, anthranilate, vanillate, and dehydroabietate). Sequence analysis of 149 pcaH clones revealed 85 unique sequences. Thirteen of the 53 amino acid residues compared were invariant in the PcaH proteins, suggesting that these residues have a required catalytic or structural function. Fifty-eight percent of the clones matched sequences amplified from a collection of 36 bacterial isolates obtained from seawater, marine sediments, or senescent Spartina. Fifty-two percent of the pcaH clones could be assigned to the roseobacter group, a marine lineage of the class alpha-Proteobacteria abundant in coastal ecosystems. Another 6% of the clones matched genes retrieved from isolates belonging to the genera Acinetobacter, Bacillus, and Stappia, and 42% of the clones could not be assigned to a cultured bacterium based on sequence identity. These results suggest that the diversity of the genes encoding a single step in aromatic compound degradation in the coastal marsh examined is high.
Collapse
Affiliation(s)
- A Buchan
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
24
|
Lorite MJ, Sanjuan J, Velasco L, Olivares J, Bedmar EJ. Characterization of Bradyrhizobium japonicum pcaBDC genes involved in 4-hydroxybenzoate degradation. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1397:257-61. [PMID: 9582432 DOI: 10.1016/s0167-4781(98)00048-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pca structural genes encode enzymes that participate in the conversion of protocatechuate to succinate and acetylcoenzyme A. A 3. 05-kb region of the Bradyrhizobium japonicum strain USDA110 genome has been characterized, which contains the pcaB, pcaD and pcaC genes. The predicted protein sequences of the three genes have extensive homologies with beta-carboxy-cis,cis-muconate cycloisomerase (PcaB), beta-ketodiapate enol-lactone hydrolase (PcaD), and gamma-carboxymuconolactone decarboxylase (PcaC), respectively, from Acinetobacter calcoaceticus and Pseudomonas putida. The DNA sequence revealed that the pca genes are probably arranged in a single transcriptional unit, pcaBDC, similar to that described in P. putida. A pcaB deletion mutant constructed by marker exchange mutagenesis lost the ability to use 4-hydroxybenzoate or protocatechuate as the only carbon source, demonstrating functionality of the characterized genes in catabolism of hydroxyaromatics by B. japonicum. Furthermore, 4-hydroxybenzoate and protocatechuate became toxic for the pcaB mutant, indicating that hydroxyaromatics catabolism serves both nutritional and detoxifying purposes.
Collapse
Affiliation(s)
- M J Lorite
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, P.O. Box 419, 18080-Granada, Spain
| | | | | | | | | |
Collapse
|
25
|
Gerischer U, Segura A, Ornston LN. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter. J Bacteriol 1998; 180:1512-24. [PMID: 9515921 PMCID: PMC107052 DOI: 10.1128/jb.180.6.1512-1524.1998] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Acinetobacter pcaIJFBDKCHG operon encodes the six enzymes that convert protocatechuate to citric acid cycle intermediates. Directly downstream from the operon are qui and pob genes encoding sets of enzymes that convert quinate and p-hydroxybenzoate, respectively, to protocatechuate. Prior to this investigation, the only known regulatory gene in the pca-qui-pob cluster was pobR, which encodes a transcriptional activator that responds to p-hydroxybenzoate and activates transcription of pobA. The pca and qui genes were known to be expressed in response to protocatechuate, but a protein that mediated this induction had not been identified. This study was initiated by characterization of a spontaneous mutation that mapped upstream from pcaI and prevented expression of the pca genes. Sequencing of wild-type DNA extending from the translational start of pcaI through and beyond the location of the mutation revealed a 282-bp intergenic region and a divergently transcribed open reading frame, designated pcaU. Downstream from pcaU are two open reading frames encoding proteins similar in amino acid sequence to those associated with the oxidation of acyl thioesters. Inactivation of pcaU reduced the induced expression of pca structural genes by about 90% and impeded but did not completely prevent growth of the mutant cells with protocatechuate. PcaU was expressed in Escherichia coli and shown to bind to a portion of the pcaI-pcaU intergenic region containing a sequence identical in 16 of 19 nucleotide residues to a segment of the pob operator. Further similarity of the two regulatory systems is indicated by 54% amino acid sequence identity in the aligned primary structures of PobR and PcaU. The pob and pca systems were shown to differ, however, in the relative orientations of transcriptional starts with respect to the site where the activator binds to DNA, the size of the intergenic region, and the tightness of transcriptional control. The spontaneous mutation blocking pca gene expression was located in the promoter for the pca operon. The 19-nucleotide residue operator sequences were shown to be parts of a consensus associated with transcriptional activation of genes associated with protocatechuate catabolism. Two different binding sites for Pseudomonas putida PcaR differ from the consensus in only a single nucleotide residue, and DNA directly downstream from Acinetobacter pcaU contains a 19-bp segment differing from the consensus in only two residues. PcaU was shown to bind to DNA containing this segment as well as to the DNA in the pcaU-pcaI intergenic region.
Collapse
MESH Headings
- Acetyl-CoA C-Acyltransferase/genetics
- Acinetobacter/genetics
- Acinetobacter/metabolism
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Base Sequence
- Carboxylic Ester Hydrolases/genetics
- Carrier Proteins/genetics
- Citric Acid/metabolism
- Conjugation, Genetic
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA-Binding Proteins
- Gene Expression
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Hydroxybenzoates/metabolism
- Membrane Transport Proteins
- Molecular Sequence Data
- Mutagenesis, Insertional
- Open Reading Frames
- Operon
- Parabens/metabolism
- Phylogeny
- Plasmids
- Quinic Acid/metabolism
- Recombination, Genetic
- Restriction Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription, Genetic
- Transformation, Genetic
Collapse
Affiliation(s)
- U Gerischer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | | | |
Collapse
|
26
|
Abstract
The beta-ketoadipate pathway is a chromosomally encoded convergent pathway for aromatic compound degradation that is widely distributed in soil bacteria and fungi. One branch converts protocatechuate, derived from phenolic compounds including p-cresol, 4-hydroxybenzoate and numerous lignin monomers, to beta-ketoadipate. The other branch converts catechol, generated from various aromatic hydrocarbons, amino aromatics, and lignin monomers, also to beta-ketoadipate. Two additional steps accomplish the conversion of beta-ketoadipate to tricarboxylic acid cycle intermediates. Enzyme studies and amino acid sequence data indicate that the pathway is highly conserved in diverse bacteria, including Pseudomonas putida, Acinetobacter calcoaceticus, Agrobacterium tumefaciens, Rhodococcus erythropolis, and many others. The catechol branch of the beta-ketoadipate pathway appears to be the evolutionary precursor for portions of the plasmid-borne ortho-pathways for chlorocatechol degradation. However, accumulating evidence points to an independent and convergent evolutionary origin for the eukaryotic beta-ketoadipate pathway. In the face of enzyme conservation, the beta-ketoadipate pathway exhibits many permutations in different bacterial groups with respect to enzyme distribution (isozymes, points of branch convergence), regulation (inducing metabolites, regulatory proteins), and gene organization. Diversity is also evident in the behavioral responses of different bacteria to beta-ketoadipate pathway-associated aromatic compounds. The presence and versatility of transport systems encoded by beta-ketoadipate pathway regulons is just beginning to be explored in various microbial groups. It appears that in the course of evolution, natural selection has caused the beta-ketoadipate pathway to assume a characteristic set of features or identity in different bacteria. Presumably such identities have been shaped to optimally serve the diverse lifestyles of bacteria.
Collapse
Affiliation(s)
- C S Harwood
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
27
|
Parke D. Conservation of PcaQ, a transcriptional activator of pca genes for catabolism of phenolic compounds, in Agrobacterium tumefaciens and Rhizobium species. J Bacteriol 1996; 178:3671-5. [PMID: 8655573 PMCID: PMC178145 DOI: 10.1128/jb.178.12.3671-3675.1996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In Agrobacterium tumefaciens A348, control of five genes for catabolism of the phenolic compound protocatechuate to beta-ketoadipate is exerted by the gene pcaQ. The product of pcaQ is a transcriptional activator which is distinct from regulators of the beta-ketoadipate pathway characterized in other bacterial groups. An investigation of whether pcaQ is present and conserved in related Rhizobium species employed Southern hybridization and an agrobacterial pcaD::LacZ promoter probe plasmid. These studies revealed that homologs of the activator are widespread among members of the family Rhizobiaceae, being present in Rhizobium leguminosarum, Rhizobium fredii, Rhizobium meliloti, Rhizobium etli, and Rhizobium tropici.
Collapse
Affiliation(s)
- D Parke
- Department of Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
28
|
Parke D. Supraoperonic clustering of pca genes for catabolism of the phenolic compound protocatechuate in Agrobacterium tumefaciens. J Bacteriol 1995; 177:3808-17. [PMID: 7601847 PMCID: PMC177100 DOI: 10.1128/jb.177.13.3808-3817.1995] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The protocatechuate branch of the beta-ketoadipate pathway comprises the last six enzymatic steps in the catabolism of diverse phenolic compounds to citric acid cycle intermediates. In this paper, the regulation and tight supraoperonic clustering of the protocatechuate (pca) genes from Agrobacterium tumefaciens A348 are elucidated. A previous study found that the pcaD gene is controlled by an adjacent regulatory gene, pcaQ, which encodes an activator. The activator responded to beta-carboxy-cis,cis-muconate and was shown to control the synthesis of at least three genes (pcaD and pcaHG). In this work, eight genes required for the catabolism of protocatechuate were localized within a 13.5-kb SalI region of DNA. Isolation and characterization of transposon Tn5 mutant strains facilitated the localization of pca genes. Five structural genes were found to respond to the tricarboxylic acid and to be contiguous in an operon transcribed in the order pcaDCHGB. These genes encode enzymes beta-ketoadipate enol-lactone hydrolase, gamma-carboxymuconolactone decarboxylase, protocatechuate 3,4-dioxygenase (pcaHG), and beta-carboxy-cis,cis-muconate lactonizing enzyme, respectively. Approximately 4 kb from the pcaD gene are the pcaIJ genes, which encode beta-ketoadipate succinyl-coenzyme A transferase for the next-to-last step of the pathway. The pcaIJ genes are transcribed divergently from the pcaDCHGB operon and are expressed in response to beta-ketoadipate. The pattern of induction of pca genes by beta-carboxy-cis,cis-muconate and beta-ketoadipate in A. tumefaciens is similar to that observed in Rhizobium leguminosarum bv. trifolii and is distinct from induction patterns for the genes from other microbial groups.
Collapse
Affiliation(s)
- D Parke
- Department of Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| |
Collapse
|
29
|
Chen YP, Lovell CR. Purification and properties of a homodimeric protocatechuate 4,5-dioxygenase from Rhizobium leguminosarum. Arch Microbiol 1994. [DOI: 10.1007/bf00276482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Podila GK, Kotagiri S, Shantharam S. Cloning of Protocatechuate 3,4-Dioxygenase Genes from
Bradyrhizobium japonicum
USDA110. Appl Environ Microbiol 1993; 59:2717-9. [PMID: 16349024 PMCID: PMC182344 DOI: 10.1128/aem.59.8.2717-2719.1993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A heterologous gene probe encoding the α and β subunits of the
Pseudomonas cepacia
protocatechuate 3,4-dioxygenase (PCD) was used to detect its homolog in the genome of
Bradyrhizobium japonicum
USDA110. Three cosmid clones carrying a 2.2-kb
Bam
HI insert showed high levels of PCD activity.
Sac
I digestion of one of the genomic clones, pBjG17, produced a 2.5-kb insert DNA that complemented a PCD mutant of
P. cepacia.
Collapse
Affiliation(s)
- G K Podila
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, and Animal and Plant Health Inspection Service, U.S. Department of Agriculture, Hyattsville, Maryland 20782
| | | | | |
Collapse
|
31
|
Parke D. Positive regulation of phenolic catabolism in Agrobacterium tumefaciens by the pcaQ gene in response to beta-carboxy-cis,cis-muconate. J Bacteriol 1993; 175:3529-35. [PMID: 8501056 PMCID: PMC204753 DOI: 10.1128/jb.175.11.3529-3535.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An Escherichia coli system for generating a commercially unavailable catabolite in vivo was developed and was used to facilitate molecular genetic studies of phenolic catabolism. Introduction of the plasmid-borne Acinetobacter pcaHG genes, encoding the 3,4-dioxygenase which acts on protocatechuate, into E. coli resulted in bioconversion of exogenously supplied protocatechuate into beta-carboxy-cis,cis-muconate. This compound has been shown to be an inducer of the protocatechuate (pca) genes required for catabolism of protocatechuate to tricarboxylic acid cycle intermediates in Rhizobium leguminosarum biovar trifolii. The E. coli bioconversion system was used to explore regulation of the pca genes in a related bacterium, Agrobacterium tumefaciens. The pcaD gene, which encodes beta-ketoadipate enol-lactone hydrolase, from A. tumefaciens A348 was cloned and was shown to be adjacent to a regulatory region which responds strongly to beta-carboxy-cis,cis-muconate in E. coli. Site-specific insertional mutagenesis of the regulatory region eliminated expression of the pcaD gene in E. coli. When the mutation was incorporated into the A. tumefaciens chromosome, it eliminated expression of the pcaD gene and at least three other pca genes as well. The regulatory region was shown to activate gene expression in trans. The novel regulatory gene was termed pcaQ to differentiate it from pca regulatory genes identified in other microbes, which bind different metabolites.
Collapse
Affiliation(s)
- D Parke
- Department of Biology, Yale University, New Haven, Connecticut 06511-8112
| |
Collapse
|
32
|
Evidence for two uptake systems in Rhizobium leguminosarum for hydroxy-aromatic compounds metabolized by the 3-oxoadipate pathway. Arch Microbiol 1991. [DOI: 10.1007/bf00248715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Parke D, Rynne F, Glenn A. Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. J Bacteriol 1991; 173:5546-50. [PMID: 1885531 PMCID: PMC208269 DOI: 10.1128/jb.173.17.5546-5550.1991] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In members of the family Rhizobiaceae, many phenolic compounds are degraded by the protocatechuate branch of the beta-ketoadipate pathway. In this paper we describe a novel pattern of induction of protocatechuate (pca) genes in Rhizobium leguminosarum biovar trifolii. Isolation of pca mutant strains revealed that 4-hydroxybenzoate, quinate, and 4-coumarate are degraded via the protocatechuate pathway. At least three inducers govern catabolism of 4-hydroxybenzoate to succinyl coenzyme A and acetyl coenzyme A. The enzyme that catalyzes the initial step is induced by its substrate, whereas the catabolite beta-carboxy-cis,cis-muconate induces enzymes for the upper protocatechuate pathway, and beta-ketoadipate elicits expression of the enzyme for a subsequent step, beta-ketoadipate succinyl-coenzyme A transferase. Elucidation of the induction pattern relied in part on complementation of mutant Rhizobium strains by known subclones of Acinetobacter genes expressed off the lac promoter in a broad-host-range vector.
Collapse
Affiliation(s)
- D Parke
- Department of Biology, Yale University, New Haven, Connecticut 06511-8112
| | | | | |
Collapse
|
34
|
Charles TC, Finan TM. Analysis of a 1600-kilobase Rhizobium meliloti megaplasmid using defined deletions generated in vivo. Genetics 1991; 127:5-20. [PMID: 1849856 PMCID: PMC1204311 DOI: 10.1093/genetics/127.1.5] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A series of 120-600 kilobase deletions with defined endpoints were made in the 1600-kilobase Rhizobium meliloti megaplasmid pRmeSU47b, by homologous recombination between the IS50 elements of transposon insertions. Utilizing IS 50-mediated homologous recombination we also made defined reductions in deletion size and combined adjacent deletions. Deletion structure was confirmed by phage transduction and Southern hybridization analysis. Collectively these deletions span 1400 kilobases of pRmeSU47b, indicating that the majority of the plasmid is not essential for cell viability. This was further confirmed by the construction of a strain SU47 derivative which carries only 450 kilobases of the pRmeSU47b megaplasmid. Examination of the deletion mutants for phenotype revealed novel loci required for dulcitol, melibiose, raffinose, beta-hydroxybutyrate, acetoacetate, protocatechuate and quinate utilization. Previously unidentified loci required for effective root nodule development and exopolysaccharide synthesis were also found. Various deletion mutants were deficient in dicarboxylate transport, lactose utilization, and thiamine and exopolysaccharide biosynthesis, as predicted from earlier studies of this megaplasmid.
Collapse
Affiliation(s)
- T C Charles
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
35
|
Abstract
Mobilizable narrow-host-range plasmids were constructed from pUC18 and pUC19 by addition of a segment of pSUP2021 bearing the basis of mobilization (bom) site and origin of transfer (oriT) of RP4. One pair of expression vectors, pARO180 and pARO190, retains the beta-lactamase (bla) gene and twelve of the 13 restriction enzyme multiple cloning sites (MCS) of pUC18/19. Another pair was created by replacing the bla gene with the gene encoding kanamycin resistance (kan) from Tn5. The molecules replicate to high copy number in Escherichia coli and Enterobacter aerogenes. They can be transferred efficiently to other Gram- bacteria from the mobilizing strain, E. coli S17-1. In non-enteric strains, the new plasmids can be used as suicide vectors in site-specific insertional mutagenesis.
Collapse
Affiliation(s)
- D Parke
- Department of Biology, Yale University, New Haven, CT 06511
| |
Collapse
|
36
|
Neidle EL, Hartnett C, Ornston LN. Characterization of Acinetobacter calcoaceticus catM, a repressor gene homologous in sequence to transcriptional activator genes. J Bacteriol 1989; 171:5410-21. [PMID: 2793826 PMCID: PMC210378 DOI: 10.1128/jb.171.10.5410-5421.1989] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Two structural genes needed for catechol degradation, catA and catB, encode the respective enzymes catechol 1,2-dioxygenase (EC 1.13.11.1) and muconate cycloisomerase (EC 5.5.1.1). Catechol is an intermediate in benzoate degradation, and the catA and catB genes are clustered within a 17-kilobase-pair (kbp) region of Acinetobacter calcoaceticus chromosomal DNA containing all of the structural genes required for the conversion of benzoate to tricarboxylic acid cycle intermediates. catA and catB were transcribed in the same direction and were separated by 3.8 kbp of DNA. The 3.8-kbp sequence revealed that directly downstream from catA and potentially transcribed in the same direction were two open reading frames encoding polypeptides of 48 and 36 kilodaltons (kDa). Genetic disruption of these open reading frames did not discernably alter either catechol metabolism or its regulation. A third open reading frame, beginning 123 bp upstream from catB and transcribed divergently from this gene, was designated catM. This gene was found to encode a 28-kDa trans-acting repressor protein that, in the absence of cis,cis-muconate, prevented expression of the cat structural genes. Constitutive expression of the genes was caused by a mutation substituting Arg-156 with His-156 in the catM-encoded repressor. The repressor protein proved to be a member of a diverse family of procaryotic regulatory proteins which, with rare exception, are transcriptional activators. Repression mediated by catM was not the sole transcriptional control exercised over catA in A. calcoaceticus. Expression of catA was elicited by either benzoate or cis,cis-muconate in a genetic background from which catM had been deleted. This induction required DNA in a segment lying 1 kbp upstream from the catA gene. It is likely that an additional gene, lying outside the region containing the structural genes necessary for benzoate metabolism, contributes to this control.
Collapse
Affiliation(s)
- E L Neidle
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
37
|
Chen YP, Dilworth MJ, Glenn AR. Degradation of mandelate and 4-hydroxymandelate by Rhizobium leguminosarum biovar trifolii TA1. Arch Microbiol 1989. [DOI: 10.1007/bf00454868] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Sterjiades R, Pelmont J. Occurrence of two different forms of protocatechuate 3,4-dioxygenase in a Moraxella sp. Appl Environ Microbiol 1989; 55:340-7. [PMID: 2541659 PMCID: PMC184112 DOI: 10.1128/aem.55.2.340-347.1989] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two alternative forms of protocatechuate 3,4-dioxygenase (PCase) have been purified from Moraxella sp. strain GU2, a bacterium that is able to grow on guaiacol or various other phenolic compounds as the sole source of carbon and energy. One of these forms (PCase-P) was induced by protocatechuate and had an apparent molecular weight of 220,000. The second form (PCase-G) was induced by guaiacol or other phenolic compounds, such as 2-ethoxyphenol or 4-hydroxybenzoate. It appeared to be smaller (Mr 158,000), and its turnover number was about double that of the former enzyme. Both dioxygenases had similar properties and were built from the association of equal amounts of nonidentical subunits, alpha and beta, which were estimated to have molecular weights of 29,500 and 25,500, respectively. The (alpha beta)3 and (alpha beta)4 structures were suggested for PCases G and P, respectively. On the basis of two-dimensional gel electrophoresis, the alpha and beta polypeptides of PCase-G differed from those of PCase-P. Amino acid analysis supported this conclusion. Both PCases, however, had several other properties in common. It is proposed that both isoenzymes were generated from different sets of alpha and beta subunits, and the significance of these data is discussed.
Collapse
Affiliation(s)
- R Sterjiades
- Laboratoire de Biochimie des Micro-organismes, C.E.R.M.O., Université Grenoble, France
| | | |
Collapse
|
39
|
Parke D, Ornston LN, Nester EW. Chemotaxis to plant phenolic inducers of virulence genes is constitutively expressed in the absence of the Ti plasmid in Agrobacterium tumefaciens. J Bacteriol 1987; 169:5336-8. [PMID: 3667536 PMCID: PMC213951 DOI: 10.1128/jb.169.11.5336-5338.1987] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The virulence (vir) genes are required in the early stages of plant tumor formation and are located together on the tumor-inducing (Ti) plasmid in Agrobacterium tumefaciens. Five of the vir genes are expressed inducibly in response to the following monocyclic phenolic compounds: acetosyringone, catechol, gallate, beta-resorcylate, protocatechuate, p-hydroxybenzoate, and vanillin. Of these compounds, only the latter six, excluding vanillin [corrected] served as chemoattractants and only the latter three served as growth substrates for A. tumefaciens A348. Strain A136, isogenic except for lack of the Ti plasmid, demonstrated chemotactic behavior and nutritional capabilities similar to those of strain A348. The chemotactic response to the vir gene inducers was expressed constitutively.
Collapse
Affiliation(s)
- D Parke
- Department of Biology, Yale University, New Haven, Connecticut 06520
| | | | | |
Collapse
|