1
|
Rasmussen CB, Scavenius C, Thøgersen IB, Harwood SL, Larsen Ø, Bjerga GEK, Stougaard P, Enghild JJ, Thøgersen MS. Characterization of a novel cold-adapted intracellular serine protease from the extremophile Planococcus halocryophilus Or1. Front Microbiol 2023; 14:1121857. [PMID: 36910232 PMCID: PMC9995970 DOI: 10.3389/fmicb.2023.1121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
The enzymes of microorganisms that live in cold environments must be able to function at ambient temperatures. Cold-adapted enzymes generally have less ordered structures that convey a higher catalytic rate, but at the cost of lower thermodynamic stability. In this study, we characterized P355, a novel intracellular subtilisin protease (ISP) derived from the genome of Planococcus halocryophilus Or1, which is a bacterium metabolically active down to -25°C. P355's stability and activity at varying pH values, temperatures, and salt concentrations, as well as its temperature-dependent kinetics, were determined and compared to an uncharacterized thermophilic ISP (T0099) from Parageobacillus thermoglucosidasius, a previously characterized ISP (T0034) from Planococcus sp. AW02J18, and Subtilisin Carlsberg (SC). The results showed that P355 was the most heat-labile of these enzymes, closely followed by T0034. P355 and T0034 exhibited catalytic constants (k cat ) that were much higher than those of T0099 and SC. Thus, both P355 and T0034 demonstrate the characteristics of the stability-activity trade-off that has been widely observed in cold-adapted proteases.
Collapse
Affiliation(s)
| | | | - Ida B. Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Øivind Larsen
- NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Bergen, Norway
| | | | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
2
|
Falkenberg F, Bott M, Bongaerts J, Siegert P. Phylogenetic survey of the subtilase family and a data-mining-based search for new subtilisins from Bacillaceae. Front Microbiol 2022; 13:1017978. [PMID: 36225363 PMCID: PMC9549277 DOI: 10.3389/fmicb.2022.1017978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
The subtilase family (S8), a member of the clan SB of serine proteases are ubiquitous in all kingdoms of life and fulfil different physiological functions. Subtilases are divided in several groups and especially subtilisins are of interest as they are used in various industrial sectors. Therefore, we searched for new subtilisin sequences of the family Bacillaceae using a data mining approach. The obtained 1,400 sequences were phylogenetically classified in the context of the subtilase family. This required an updated comprehensive overview of the different groups within this family. To fill this gap, we conducted a phylogenetic survey of the S8 family with characterised holotypes derived from the MEROPS database. The analysis revealed the presence of eight previously uncharacterised groups and 13 subgroups within the S8 family. The sequences that emerged from the data mining with the set filter parameters were mainly assigned to the subtilisin subgroups of true subtilisins, high-alkaline subtilisins, and phylogenetically intermediate subtilisins and represent an excellent source for new subtilisin candidates.
Collapse
Affiliation(s)
- Fabian Falkenberg
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Johannes Bongaerts
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Jülich, Germany
| | - Petra Siegert
- Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Jülich, Germany
- *Correspondence: Petra Siegert,
| |
Collapse
|
3
|
Kuebutornye FKA, Lu Y, Wang Z, Mraz J. Functional annotation and complete genome analysis confirm the probiotic characteristics of Bacillus species isolated from the gut of Nile tilapia. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Tu Z, Setlow P, Brul S, Kramer G. Molecular Physiological Characterization of a High Heat Resistant Spore Forming Bacillus subtilis Food Isolate. Microorganisms 2021; 9:667. [PMID: 33807113 PMCID: PMC8005191 DOI: 10.3390/microorganisms9030667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial endospores (spores) are among the most resistant living forms on earth. Spores of Bacillus subtilis A163 show extremely high resistance to wet heat compared to spores of laboratory strains. In this study, we found that spores of B. subtilis A163 were indeed very wet heat resistant and released dipicolinic acid (DPA) very slowly during heat treatment. We also determined the proteome of vegetative cells and spores of B. subtilis A163 and the differences in these proteomes from those of the laboratory strain PY79, spores of which are much less heat resistant. This proteomic characterization identified 2011 proteins in spores and 1901 proteins in vegetative cells of B. subtilis A163. Surprisingly, spore morphogenic protein SpoVM had no homologs in B. subtilis A163. Comparing protein expression between these two strains uncovered 108 proteins that were differentially present in spores and 93 proteins differentially present in cells. In addition, five of the seven proteins on an operon in strain A163, which is thought to be primarily responsible for this strain's spores high heat resistance, were also identified. These findings reveal proteomic differences of the two strains exhibiting different resistance to heat and form a basis for further mechanistic analysis of the high heat resistance of B. subtilis A163 spores.
Collapse
Affiliation(s)
- Zhiwei Tu
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Peter Setlow
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, CT 06030-3303, USA;
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Gertjan Kramer
- Laboratory for Mass Spectrometry of Biomolecules, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| |
Collapse
|
5
|
Yang H, Liu Y, Ning Y, Wang C, Zhang X, Weng P, Wu Z. Characterization of an Intracellular Alkaline Serine Protease from Bacillus velezensis SW5 with Fibrinolytic Activity. Curr Microbiol 2020; 77:1610-1621. [PMID: 32274531 DOI: 10.1007/s00284-020-01977-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
ISP-SW5 is an intracellular alkaline serine protease gene from Bacillus velezensis SW5 that was heterologously expressed in Escherichia coli BL21 (DE3). Sequence analysis indicated that the ISP-SW5 gene has 960 bp open reading frame and encodes a protein of 319 amino acid residues. Three-dimensional structure of ISP-SW5 with the fibrinolytic activity from Bacillus velezensis was predicted by in silico analysis. Gly219 was the most likely active site for the fibrinolytic activity of ISP-SW5. The recombinant enzyme ISP-SW5 was purified by Ni-NTA Superflow Column. SDS-PAGE showed that this enzyme had a molecular mass of 34 kDa. The result of native-PAGE and N-terminal sequencing showed that the N-terminal propeptide of ISP-SW5 was cleaved during the maturation of protease. The optimum pH and temperature were 8.0 and 40 °C, respectively. Enzyme activity was markedly inhibited by PMSF and EDTA but enhanced by 5 mM Ca2+ and 2 mM Zn2+ by up to 143% and 115%, respectively. Additionally, ISP-SW5 retained 93%, 78%, and 49% relative enzyme activity after incubation with 0.5 M, 1 M and 2 M NaCl, respectively, at 4 °C for 12 h. The enzyme activity determined by casein as substrate was 1261 U/mg. ISP-SW5 could degrade fibrin at an activity of 3428 U/mg, and its properties reflect its potential application in developing a novel biological catalyst for efficient fibrin hydrolysis in medical treatment.
Collapse
Affiliation(s)
- Haining Yang
- Laboratory of Food Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, People's Republic of China
| | - Yang Liu
- Laboratory of Food Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, People's Republic of China.,Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, People's Republic of China
| | - Yuchang Ning
- Laboratory of Food Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, People's Republic of China.,Laboratory of Food Biotechnology, School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, People's Republic of China
| | - Changyu Wang
- Laboratory of Food Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, People's Republic of China
| | - Xin Zhang
- Laboratory of Food Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, People's Republic of China
| | - Peifang Weng
- Laboratory of Food Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, People's Republic of China
| | - Zufang Wu
- Laboratory of Food Biotechnology, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315832, People's Republic of China.
| |
Collapse
|
6
|
Hou Y, Lu F, Tian J, Tian Y. Cloning, Heterologous Expression and Characterization of an Intracellular Serine Protease from Bacillus sp. LCB10. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819050168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Heinrich J, Drewniok C, Neugebauer E, Kellner H, Wiegert T. The YoaW signal peptide directs efficient secretion of different heterologous proteins fused to a StrepII-SUMO tag in Bacillus subtilis. Microb Cell Fact 2019; 18:31. [PMID: 30732606 PMCID: PMC6366066 DOI: 10.1186/s12934-019-1078-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Background Heterologous gene expression is well established for various prokaryotic model systems. However, low yield, incorrect folding and instability still impede the production of soluble, bioactive proteins. To improve protein production with the Gram-positive host Bacillus subtilis, a secretory expression system was designed that enhances translocation, folding and stability of heterologous proteins, and simplifies purification. Based on the theta-replication plasmid pHT01, a B. subtilis secretory expression vector was constructed that encodes a fusion protein consisting of a signal peptide and a StrepII-tag linked to a SUMO-tag serving as a folding catalyst. The gene of a protein of interest can be translationally fused to the SUMO cassette and an additional 6xHis-tag encoding region. In order to maximize secretory expression of the construct by fitting the signal peptide to the StrepII-SUMO part of the fusion protein, a B. subtilis signal-peptide library was screened with the Escherichia coli alkaline phosphatase PhoA as a reporter. Results The YoaW signal peptide-encoding region (SPyoaW) was identified with highest secretory expression capacity in context with the StrepII-SUMO-tag fusion in a B. subtilis eightfold extracellular protease deletion strain. PhoA activity and fusion protein production was elevated by a factor of approximately five when compared to an α-amylase (AmyQ) signal peptide construct. Replacement of PhoA with a single-chain variable fragment antibody specific for GFP or the B. amyloliquefaciens RNase barnase, respectively, resulted in a similar enhancement of secretory expression, demonstrating universality of the YoaW signal peptide-StrepII-SUMO encoding cassette for secretory expression in B. subtilis. Optimisation of codon usage and culture conditions further increased GFP-specific scFv fusion-protein production, and a simple affinity purification strategy from culture supernatant with removal of the StrepII-SUMO-tag by SenP-processing yielded 4 mg of pure, soluble and active GFP-specific scFv from 1 l of culture under standard laboratory conditions. Conclusions The new expression system employing a YoaW signal peptide-StrepII-SUMO fusion will simplify secretory protein production and purification with B. subtilis. It can obviate the need for time consuming individual signal-peptide fitting to maximize yield for many different heterologous proteins of interest. Electronic supplementary material The online version of this article (10.1186/s12934-019-1078-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janine Heinrich
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Chris Drewniok
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany
| | - Eva Neugebauer
- EUROIMMUN AG, Im Kreppel 1, 02747, Herrnhut/Rennersdorf, Germany
| | - Harald Kellner
- Department of Bio- and Environmental Sciences, International Institute Zittau, Technical University of Dresden, Markt 23, 02763, Zittau, Germany
| | - Thomas Wiegert
- Department of Microbiology, Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, Theodor-Körner-Allee 16, 02763, Zittau, Germany.
| |
Collapse
|
8
|
Jeong YJ, Baek SC, Kim H. Cloning and characterization of a novel intracellular serine protease (IspK) from Bacillus megaterium with a potential additive for detergents. Int J Biol Macromol 2018; 108:808-816. [DOI: 10.1016/j.ijbiomac.2017.10.173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/21/2017] [Accepted: 10/27/2017] [Indexed: 11/15/2022]
|
9
|
Genome-wide identification of Bacillus subtilis CodY-binding sites at single-nucleotide resolution. Proc Natl Acad Sci U S A 2013; 110:7026-31. [PMID: 23569278 DOI: 10.1073/pnas.1300428110] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The CodY protein is a global transcriptional regulator that controls, directly or indirectly, expression of more than 100 genes and operons in Bacillus subtilis. We used in vitro DNA affinity purification combined with massively parallel sequencing, to identify B. subtilis chromosomal DNA fragments that bind CodY in vitro. A nonstandard strand-specific analysis of the data allowed us to pinpoint CodY-binding sites at single-nucleotide resolution. By comparing the extent of binding at decreasing CodY concentrations, we were able to classify binding regions according to their relative strengths and construct a subset of the 323 strongest CodY-binding regions that included sites associated with nearly all genes reported to be direct CodY targets. Many of the identified sites were located within coding regions. At such sites within the ispA, rapA, and rapE genes CodY-dependent repression was demonstrated using lacZ fusions and mutational analysis.
Collapse
|
10
|
Liu R, Chen J, Li K, Zhang X. Identification and evaluation as a DNA vaccine candidate of a virulence-associated serine protease from a pathogenic Vibrio parahaemolyticus isolate. FISH & SHELLFISH IMMUNOLOGY 2011; 30:1241-1248. [PMID: 21536140 DOI: 10.1016/j.fsi.2011.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 05/30/2023]
Abstract
A putative serine protease gene was cloned from the genomic DNA of Vibrio parahaemolyticus FYZ8621.4. The gene consisted of 1779 base pairs and encoded a 592 amino acid protein. The gene was expressed in Escherichia coli. The expressed protease was purified by Ni-NTA His-Bind Resin column and showed a 63 kDa band on SDS-PAGE. The protease exhibited proteolytic activity on gelatin agar plate and showed maximal proteolytic activity at pH 8.0 and 37 °C. It hydrolyzed N-α-benzoyl-L-tyrosine p-nitroanilide (BAPNA), but did not N-benzoyl-L-arginine ethylester (BAEE), N-benzoyl-L-tyrosine ethylester (BTEE) and N-acetyl-L-tyrosine ethylester (ATEE). Mutants at conserved residues Asp(51) (Asp(51)-Asn), His(89) (His(89)-Asp) and Ser(318) (Ser(318)-Leu, Ser(318)-Pro) lost proteolytic activities completely. The protein was confirmed to belong to serine protease. The purified serine protease was toxic to zebrafish with a LD(50) of 15.4 μg/fish. A DNA vaccine was constructed by inserting the mutated serine protease (Ser(318)-Pro) gene into pEGFP-N1 plasmid. The pEGFP-N1/m-vps was transfected in HeLa cells. The serine protease was confirmed to be expressed by fluorescence microscopy observation and Western blotting analysis. The pEGFP-N1/m-vps was further observed to express in muscle of the injected turbot (Scophthalmus maximus) by Western blotting seven days after immunization. Efficient protection against lethal V. parahaemolyticus challenge was observed on the vaccinated turbot with pEGFP-N1/m-vps, with the highest relative percent survival (RPS) of 96.11%. Significant specific antibody responses were also observed in the turbot vaccinated with the DNA vaccine. The results indicated that the serine protease might be a potential virulence factor and could be used as an efficient vaccine candidate for the disease control caused by V. parahaemolyticus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Proteins/metabolism
- Bacterial Proteins/toxicity
- Base Sequence
- Blotting, Western
- Cloning, Molecular
- Electrophoresis, Polyacrylamide Gel
- Flatfishes
- HeLa Cells
- Humans
- Lethal Dose 50
- Microscopy, Fluorescence
- Molecular Sequence Data
- Muscle, Skeletal/immunology
- Muscle, Skeletal/metabolism
- Plasmids/genetics
- Sequence Analysis, DNA
- Serine Proteases/genetics
- Serine Proteases/immunology
- Serine Proteases/metabolism
- Serine Proteases/toxicity
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vibrio parahaemolyticus/enzymology
- Vibrio parahaemolyticus/genetics
- Zebrafish
Collapse
Affiliation(s)
- Rui Liu
- Department of Marine Biology, College of Marine Life Sciences, Ocean University of China, 5# Yushan Road, Qingdao 266003, PR China
| | | | | | | |
Collapse
|
11
|
Regulation of an intracellular subtilisin protease activity by a short propeptide sequence through an original combined dual mechanism. Proc Natl Acad Sci U S A 2011; 108:3536-41. [PMID: 21307308 DOI: 10.1073/pnas.1014229108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A distinct class of the biologically important subtilisin family of serine proteases functions exclusively within the cell and forms a major component of the bacilli degradome. However, the mode and mechanism of posttranslational regulation of intracellular protease activity are unknown. Here we describe the role played by a short N-terminal extension prosequence novel amongst the subtilisins that regulates intracellular subtilisin protease (ISP) activity through two distinct modes: active site blocking and catalytic triad rearrangement. The full-length proenzyme (proISP) is inactive until specific proteolytic processing removes the first 18 amino acids that comprise the N-terminal extension, with processing appearing to be performed by ISP itself. A synthetic peptide corresponding to the N-terminal extension behaves as a mixed noncompetitive inhibitor of active ISP with a K(i) of 1 μM. The structure of the processed form has been determined at 2.6 Å resolution and compared with that of the full-length protein, in which the N-terminal extension binds back over the active site. Unique to ISP, a conserved proline introduces a backbone kink that shifts the scissile bond beyond reach of the catalytic serine and in addition the catalytic triad is disrupted. In the processed form, access to the active site is unblocked by removal of the N-terminal extension and the catalytic triad rearranges to a functional conformation. These studies provide a new molecular insight concerning the mechanisms by which subtilisins and protease activity as a whole, especially within the confines of a cell, can be regulated.
Collapse
|
12
|
Vévodová J, Gamble M, Künze G, Ariza A, Dodson E, Jones DD, Wilson KS. Crystal structure of an intracellular subtilisin reveals novel structural features unique to this subtilisin family. Structure 2010; 18:744-55. [PMID: 20541512 DOI: 10.1016/j.str.2010.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/11/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
The intracellular subtilisin proteases (ISPs) are the only known members of the important and ubiquitous subtilisin family that function exclusively within the cell, constituting a major component of the degradome in many Gram-positive bacteria. The first ISP structure reported herein at a spacing of 1.56 A reveals features unique among subtilisins that has enabled potential functional and physiological roles to be assigned to sequence elements exclusive to the ISPs. Unlike all other subtilisins, ISP from B. clausii is dimeric, with residues from the C terminus making a major contribution to the dimer interface by crossing over to contact the partner subunit. A short N-terminal extension binds back across the active site to provide a potential novel regulatory mechanism of intrinsic proteolytic activity: a proline residue conserved throughout the ISPs introduces a kink in the polypeptide backbone that lifts the target peptide bond out of reach of the catalytic residues.
Collapse
Affiliation(s)
- Jitka Vévodová
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Mikhailova EO, Mardanova AM, Balaban NP, Rudenskaya GN, Ilyinskaya ON, Sharipova MR. Biochemical properties of Bacillus intermedius subtilisin-like proteinase secreted by a Bacillus subtilis recombinant strain in its stationary phase of growth. BIOCHEMISTRY (MOSCOW) 2009; 74:308-15. [PMID: 19364326 DOI: 10.1134/s0006297909030109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Biochemical properties of Bacillus intermedius subtilisin-like proteinase (AprBi) secreted by a B. subtilis recombinant strain in the early and late stationary phases of growth have been determined. Protein structure was analyzed and its stability estimated. It was noted that the enzyme corresponding to different phases of bacterial growth retains activity in the presence of reducing and oxidizing agents (C2H5OH and H2O2). Different effects of bivalent metal ions on activity of two proteinase fractions were found. Calcium ions more efficiently activate proteinase secreted in the late stationary phase. Unlike the first enzyme fraction, the second forms catalytically active dimers.
Collapse
|
14
|
Purification of a subtilisin-like serine proteinase from recombinantBacillus subtilis during different phases of growth. ANN MICROBIOL 2009. [DOI: 10.1007/bf03178332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
|
16
|
Setyorini E, Kim YJ, Takenaka S, Murakami S, Aoki K. Purification and characterization of a halotolerant intracellular protease fromBacillus subtilis strain FP-133. J Basic Microbiol 2006; 46:294-304. [PMID: 16847833 DOI: 10.1002/jobm.200510086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A halotolerant strain FP-133, able to grow at concentrations of 0-12.5% (w/v) NaCl, was isolated from a fish paste and identified as Bacillus subtilis . B. subtilis strain FP-133 produced an intracellular protease which showed catalytic activity under saline conditions. The enzyme was purified to homogeneity 143-fold with a yield of 0.9%. The purified enzyme showed an optimum activity at a concentration of 5% (w/v) NaCl. After storage in 7.5% (w/v) NaCl at 4 degrees C for 24 h, the enzyme kept 100% of its activity. The molecular mass of the protease was determined to be 59 kDa by gel filtration; the protein consisted of four subunits each with a molecular mass of 14 kDa. The enzyme showed aminopeptidase activity. It acted on L-leucyl-p-nitroanilide, L-leucyl-beta-naphthylamide, and oligopeptides containing glycine, L-histidine, or L-leucine. The K(m ) and V (max) values for L-leucyl-p-nitroanilide were 18 microm and 2.2 mm/h mg, respectively. The enzyme was activated by Fe(2+), Fe(3+), and Ni(2+) in synergism with Mg(2+).
Collapse
Affiliation(s)
- Endang Setyorini
- Division of Life Science, Graduate School of Science and Technology, Kobe University, Rokko, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
17
|
Lee AY, Goo Park S, Kho CW, Young Park S, Cho S, Lee SC, Lee DH, Myung PK, Park BC. Identification of the degradome of Isp-1, a major intracellular serine protease of Bacillus subtilis, by two-dimensional gel electrophoresis and matrix- assisted laser desorption/ionization-time of flight analysis. Proteomics 2005; 4:3437-45. [PMID: 15529410 DOI: 10.1002/pmic.200400997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intracellular serine protease-1 (Isp-1) is a major intracellular serine protease of Bacillus subtilis, whose functions still remain largely unknown. Furthermore, physiological substrates are yet to be determined. To identify Isp-1 substrates, we digested extract obtained from an Isp-1 deficient Bacillus mutant with purified Isp-1 and examined eliminated or decreased spots by two-dimensional gel and matrix-assisted laser desorption/ionization-time of flight analyses. Proteins degraded by Isp-1, termed the Isp-1 degradome, are involved in a variety of cellular functions such as DNA packing, genetic competence, and protein secretion. From the degradome we selected ClpC and EF-Tu as putative Isp-1 substrates and studied their in vitro degradation. ClpC and EF-Tu contain putative cleavage sites for Isp-1. N-terminal sequencing of in vitro proteolytic fragments of ClpC and EF-Tu revealed that these sites are indeed recognized and cleaved by Isp-1. Moreover, the cellular levels of ClpC and EF-Tu were dramatically reduced at the late stationary phase, where the expression level of Isp-1 was greatly increased. These results suggest that the regulated proteolysis of ClpC by Isp-1 plays an important role in the stationary phase adaptive response. This degradomic approach could provide a powerful tool for finding physiological substrates of many proteolytic enzymes whose functions remain to be determined.
Collapse
Affiliation(s)
- Ah Young Lee
- Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jürgen B, Tobisch S, Wümpelmann M, Gördes D, Koch A, Thurow K, Albrecht D, Hecker M, Schweder T. Global expression profiling ofBacillus subtilis cells during industrial-close fed-batch fermentations with different nitrogen sources. Biotechnol Bioeng 2005; 92:277-98. [PMID: 16178035 DOI: 10.1002/bit.20579] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A detailed gene expression analysis of industrial-close Bacillus subtilis fed-batch fermentation processes with casamino acids as the only nitrogen source and with a reduced casamino acid concentration but supplemented by ammonia was carried out. Although glutamine and arginine are supposed to be the preferred nitrogen sources of B. subtilis, we demonstrate that a combined feeding of ammonia and casamino acids supports cell growth under fed-batch fermentation conditions. The transcriptome and proteome analyses revealed that the additional feeding of ammonia in combination with a reduced amino acid concentration results in a significantly lower expression level of the glnAR or tnrA genes, coding for proteins, which are mainly involved in the nitrogen metabolism of B. subtilis. However, the mRNA levels of the genes of the ilvBHC-leuABD and hom-thrCB operons were significantly increased, indicating a valine, leucine, isoleucine, and threonine limitation under these fermentation conditions. In contrast, during the fermentation with casamino acids as the only nitrogen source, several genes, which play a crucial role in nitrogen metabolism of B. subtilis (e.g., glnAR, nasCDE, nrgAB, and ureABC), were up-regulated, indicating a nitrogen limitation under these conditions. Furthermore, increased expression of genes, which are involved in motility and chemotaxis (e.g., hag, fliT) and in acetoin metabolism (e.g., acoABCL), was determined during the fermentation with the mixed nitrogen source of casamino acids and ammonia, indicating a carbon limitation under these fermentation conditions. Under high cell density and slow growth rate conditions a weak up-regulation of autolysis genes could be observed as well as the induction of a number of genes involved in motility, chemotaxis and general stress response. Results of this study allowed the selection of marker genes, which could be used for the monitoring of B. subtilis fermentation processes. The data suggest for example acoA as a marker gene for glucose limitation or glnA as an indicator for nitrogen limitation.
Collapse
Affiliation(s)
- Britta Jürgen
- Institute of Microbiology, Ernst-Moritz-Arndt-University Greifswald, F.L. Jahnstrasse 15, D-17487 Greifswald, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen FC, Shen LF, Chak KF. A facile analytical method for the identification of protease gene profiles from Bacillus thuringiensis strains. J Microbiol Methods 2004; 56:125-32. [PMID: 14706757 DOI: 10.1016/j.mimet.2003.09.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Five pairs of degenerate universal primers have been designed to identify the general protease gene profiles from some distinct Bacillus thuringiensis strains. Based on the PCR amplification patterns and DNA sequences of the cloned fragments, it was noted that the protease gene profiles of the three distinct strains of B. thuringiensis subsp. kurstaki HD73, tenebrionis and israelensis T14001 are varied. Seven protease genes, neutral protease B (nprB), intracellular serine protease A (ispA), extracellular serine protease (vpr), envelope-associated protease (prtH), neutral protease F (nprF), thermostable alkaline serine protease and alkaline serine protease (aprS), with known functions were identified from three distinct B. thuringiensis strains. In addition, five DNA sequences with unknown functions were also identified by this facile analytical method. However, based on the alignment of the derived protein sequences with the protein domain database, it suggested that at least one of these unknown genes, yunA, might be highly protease-related. Thus, the proposed PCR-mediated amplification design could be a facile method for identifying the protease gene profiles as well as for detecting novel protease genes of the B. thuringiensis strains.
Collapse
Affiliation(s)
- Fu-Chu Chen
- Institute of Biochemistry, National Yang Ming University, No. 155, Li-Nong St., Sec. 2, Peitou, Taipei 11221, Taiwan, ROC
| | | | | |
Collapse
|
20
|
Chen FC, Shen LF, Tsai MC, Chak KF. The IspA protease's involvement in the regulation of the sporulation process of Bacillus thuringiensis is revealed by proteomic analysis. Biochem Biophys Res Commun 2004; 312:708-15. [PMID: 14680823 DOI: 10.1016/j.bbrc.2003.10.155] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Indexed: 11/20/2022]
Abstract
We have observed that the process of sporulation of the ispA-deficient mutant was delayed under phase-contrast microscopy. The protein profiles of the ispA-deficient mutant have been analyzed using two-dimensional gel electrophoresis. The results of a proteomic analysis using MALDI-TOF MS indicated that a sporulation-associated protein, pro- [Formula: see text], was upregulated, while two other sporulation-associated proteins, SpoVD and SpoVR, were downregulated in the ispA-deficient mutant. It has been known that pro- [Formula: see text] is a precursor of [Formula: see text] and is required for gene expression related to the late stage of sporulation. Moreover, SpoVD and SpoVR are known to be involved in the formation of the spore cortex. Based on these observations, we propose that the delay in the sporulation process observed in the ispA-deficient mutant may be due to a failure of [Formula: see text] to signal sporulation. This phenomenon may be further enhanced by insufficient amount of SpoVD and SpoVR for cortex formation. In this study, we have revealed for the first time a possible pathway for the regulation of sporulation-associated proteins via IspA.
Collapse
Affiliation(s)
- Fu-Chu Chen
- Institute of Biochemistry, National Yang Ming University, Shih-Pai, Taipei 11221, Taiwan, R.O.C
| | | | | | | |
Collapse
|
21
|
Farrow KA, Lyras D, Rood JI. Genomic analysis of the erythromycin resistance element Tn5398 from Clostridium difficile. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2717-2728. [PMID: 11577151 DOI: 10.1099/00221287-147-10-2717] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clostridium difficile is a nosocomial pathogen that causes a range of chronic intestinal diseases, usually as a result of antimicrobial therapy. Macrolide-lincosamide-streptogramin B (MLS) resistance in C. difficile is encoded by the Erm B resistance determinant, which is thought to be located on a conjugative transposon, Tn5398. The 9630 bp Tn5398 element has been cloned and completely sequenced and its insertion site determined. Analysis of the resultant data reveals that Tn5398 is not a classical conjugative transposon but appears to be a mobilizable non-conjugative element. It does not carry any transposase or site-specific recombinase genes, nor any genes likely to be involved in conjugation. Furthermore, using PCR analysis it has been shown that isolates of C. difficile obtained from different geographical locations exhibit heterogeneity in the genetic arrangement of both Tn5398 and their Erm B determinants. These results indicate that genetic exchange and recombination between these determinants occurs in the clinical and natural environment.
Collapse
Affiliation(s)
- Kylie A Farrow
- Bacterial Pathogenesis Research Group, Department of Microbiology, PO Box 53, Monash University, Victoria 3800, Australia1
| | - Dena Lyras
- Bacterial Pathogenesis Research Group, Department of Microbiology, PO Box 53, Monash University, Victoria 3800, Australia1
| | - Julian I Rood
- Bacterial Pathogenesis Research Group, Department of Microbiology, PO Box 53, Monash University, Victoria 3800, Australia1
| |
Collapse
|
22
|
Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 2000; 64:515-47. [PMID: 10974125 PMCID: PMC99003 DOI: 10.1128/mmbr.64.3.515-547.2000] [Citation(s) in RCA: 589] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the most salient features of Bacillus subtilis and related bacilli is their natural capacity to secrete a variety of proteins into their environment, frequently to high concentrations. This has led to the commercial exploitation of bacilli as major "cell factories" for secreted enzymes. The recent sequencing of the genome of B. subtilis has provided major new impulse for analysis of the molecular mechanisms underlying protein secretion by this organism. Most importantly, the genome sequence has allowed predictions about the composition of the secretome, which includes both the pathways for protein transport and the secreted proteins. The present survey of the secretome describes four distinct pathways for protein export from the cytoplasm and approximately 300 proteins with the potential to be exported. By far the largest number of exported proteins are predicted to follow the major "Sec" pathway for protein secretion. In contrast, the twin-arginine translocation "Tat" pathway, a type IV prepilin-like export pathway for competence development, and ATP-binding cassette transporters can be regarded as "special-purpose" pathways, through which only a few proteins are transported. The properties of distinct classes of amino-terminal signal peptides, directing proteins into the various protein transport pathways, as well as the major components of each pathway are discussed. The predictions and comparisons in this review pinpoint important differences as well as similarities between protein transport systems in B. subtilis and other well-studied organisms, such as Escherichia coli and the yeast Saccharomyces cerevisiae. Thus, they may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- H Tjalsma
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, 9750 AA Haren, The Netherlands
| | | | | | | | | |
Collapse
|
23
|
Valbuzzi A, Ferrari E, Albertini AM. A novel member of the subtilisin-like protease family from Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 11):3121-3127. [PMID: 10589719 DOI: 10.1099/00221287-145-11-3121] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
aprX is a 1326 bp gene of Bacillus subtilis strain 168 that encodes a serine protease, probably intracellular, characterized by significant similarity with subtilisins, thermitases and pyrolysins. Transcription analysis, performed by RT-PCR and primer extension, allowed the localization of the active promoter and showed that aprX is expressed in stationary phase. The pattern of expression of aprX and its dependence on various transition state regulatory genes (degU, degQ, hpr, abrB, sinR), monitored by lacZ transcriptional fusions, are distinctive from those of subtilisin and other degradative enzymes. aprX is not essential for either growth or sporulation.
Collapse
Affiliation(s)
- Angela Valbuzzi
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Via Abbiategrasso, 207, 27100 Pavia, Italy1
| | - Eugenio Ferrari
- Genencor International, 925 Page Mill Road, Palo Alto, CA 94304, USA2
| | - Alessandra M Albertini
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, Via Abbiategrasso, 207, 27100 Pavia, Italy1
| |
Collapse
|
24
|
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998; 62:597-635. [PMID: 9729602 PMCID: PMC98927 DOI: 10.1128/mmbr.62.3.597-635.1998] [Citation(s) in RCA: 1039] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Proteases represent the class of enzymes which occupy a pivotal position with respect to their physiological roles as well as their commercial applications. They perform both degradative and synthetic functions. Since they are physiologically necessary for living organisms, proteases occur ubiquitously in a wide diversity of sources such as plants, animals, and microorganisms. Microbes are an attractive source of proteases owing to the limited space required for their cultivation and their ready susceptibility to genetic manipulation. Proteases are divided into exo- and endopeptidases based on their action at or away from the termini, respectively. They are also classified as serine proteases, aspartic proteases, cysteine proteases, and metalloproteases depending on the nature of the functional group at the active site. Proteases play a critical role in many physiological and pathophysiological processes. Based on their classification, four different types of catalytic mechanisms are operative. Proteases find extensive applications in the food and dairy industries. Alkaline proteases hold a great potential for application in the detergent and leather industries due to the increasing trend to develop environmentally friendly technologies. There is a renaissance of interest in using proteolytic enzymes as targets for developing therapeutic agents. Protease genes from several bacteria, fungi, and viruses have been cloned and sequenced with the prime aims of (i) overproduction of the enzyme by gene amplification, (ii) delineation of the role of the enzyme in pathogenecity, and (iii) alteration in enzyme properties to suit its commercial application. Protein engineering techniques have been exploited to obtain proteases which show unique specificity and/or enhanced stability at high temperature or pH or in the presence of detergents and to understand the structure-function relationships of the enzyme. Protein sequences of acidic, alkaline, and neutral proteases from diverse origins have been analyzed with the aim of studying their evolutionary relationships. Despite the extensive research on several aspects of proteases, there is a paucity of knowledge about the roles that govern the diverse specificity of these enzymes. Deciphering these secrets would enable us to exploit proteases for their applications in biotechnology.
Collapse
Affiliation(s)
- M B Rao
- Division of Biochemical Sciences, National Chemical Laboratory, Pune 411008, India
| | | | | | | |
Collapse
|
25
|
Váchová L, KuÄerová H. Calcium as a regulator of Bacillus megateriumcytoplasmic proteolytic activity in vitro. FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb13010.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Mine OM, Carnegie PR. Use of degenerate primers and heat-soaked polymerase chain reaction (PCR) to clone a serine protease antigen from Dermatophilus congolensis. Immunol Cell Biol 1997; 75:484-91. [PMID: 9429897 DOI: 10.1038/icb.1997.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Serine proteases are thought to be involved in the initial attack on sheep skin by Dermatophilus congolensis and are obvious antigens for inclusion in a vaccine to prevent lumpy wool disease (dermatophilosis). Degenerate primers were designed after alignment of seven bacterial serine proteases. Inosine was incorporated into the primers at positions of three- and four-base redundancy, and this reduced the complexity of the primer mixtures from several thousand to sixteen different sequences for each primer. The primers were validated by production and sequencing of amplicons from serine protease genes in Bacillus subtilis and Serratia marcescens. The primers were used with heat-soaked polymerase chain reaction (PCR) to produce amplicons from two D. congolensis strains, AG and MB. In the amplicon codons for arginine, rather than the expected serine, were found where inosine was used for both the first and third positions for a codon in the primer. A search with the deduced amino acid sequences of the amplicons showed significant similarity to a keratinase and other serine proteases from various organisms. Similarity was most apparent around the active site residues and other essential secondary structural elements.
Collapse
Affiliation(s)
- O M Mine
- State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia.
| | | |
Collapse
|
27
|
Kučerová H, Váchová L, Chaloupka J. Opposite regulation by temperature of the intracellular Ca2+-dependent serine proteinase in growing and nongrowingBacillus megaterium. Folia Microbiol (Praha) 1997. [DOI: 10.1007/bf02816939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Chang BY, Liao CT, Wen YD, Wang WH. The temperature sensitivity of Bacillus subtilis DB1005 is due to insufficient activity, rather than insufficient concentration, of the mutant delta A factor. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1299-1308. [PMID: 9141692 DOI: 10.1099/00221287-143-4-1299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The delta A factor of Bacillus subtilis DB1005 contains two amino acid substitutions (I198A and I202A) in the promoter-10 binding region. It has been confirmed that this delta factor is responsible for the temperature sensitivity of B. subtilis DB1005. An investigation was conducted into how the mutant delta A could cause temperature-sensitive (Ts) cell growth by analysing its structural stability, cellular concentration and transcriptional activity. The mutant delta A was unstable even at the permissive temperature of 37 degrees C (t1/2 59 min), whereas the wild-type counterpart was fairly stable under the same conditions (t1/2 > 600 min). However, neither wild-type delta A nor mutant delta A was stable at 49 degrees C (t1/2 34 min and 23 min, respectively). Analyses of the rates of delta A synthesis revealed that B. subtilis DB1005 was able to compensate for unstable delta A by elevating the level of delta A at 37 degrees C but not at 49 degrees C. Moreover, overexpression of the mutant delta A at 49 degrees C could not suppress the Ts phenotype of B. subtilis DB1005. This indicates that the temperature sensitivity of B. subtilis DB1005 is not due to insufficient delta A concentration in the cell. The greater decline of an already reduced activity of the mutant delta A at 49 degrees C suggests that the temperature sensitivity of B. subtilis DB1005 is instead the result of a very low activity of delta A; probably below a critical level necessary for cell growth.
Collapse
Affiliation(s)
- Ban-Yang Chang
- Agricultural Biotechnology Laboratories, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Chao-Tsai Liao
- Agricultural Biotechnology Laboratories, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yu-Der Wen
- Agricultural Biotechnology Laboratories, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Wen-Horng Wang
- Agricultural Biotechnology Laboratories, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| |
Collapse
|
29
|
Gallegos NG, Jun J, Hageman JH. Preparation of general proteinase substrates using 3,5-dinitrosalicylaldehyde. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1996; 33:31-41. [PMID: 8905466 DOI: 10.1016/0165-022x(96)00013-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To search for new proteinases in Bacillus subtilis we have developed a general method for synthesizing chromogenic proteinase substrates using 3,5-dinitrosalicylaldehyde (DNSA). Hammersten casein and soluble protein from extracts from B. subtilis cells were labeled with DNSA in the presence of NaBH4. After dialysis (pH 7.8), the resultant 3,5-dinitro-2-hydroxybenzyl-casein (DNHB-casein) and DNHB-bacterial cell protein solutions were a light orange color. A model compound, N-benzyl-3,5-dinitro-2-hydroxybenzylamine was synthesized and estimated to have a molar absorption coefficient of 14,100 M-1 cm-1 at 366 nm at pH 8, which was used to calculate dye loading on casein. Chromogenic substrates prepared in this way should retain positive charges on lysine residues. DNHB-casein and DNHB-bacterial cell protein were incubated with varying concentrations of subtilisin BPN' for varying times, precipitated with trichloroacetic acid and centrifuged. The acid-soluble supernatant fractions were made basic with NaOH and absorbances were measured at 366 nm, the absorption maximum. Color production was proportional to subtilisin concentration and times of incubation; under the assay conditions used, the limit of detection of subtilisin was about 100 ng. Five proteinase activities were detected in soluble extracts of B. subtilis using DNHB-labeled proteins as substrates.
Collapse
Affiliation(s)
- N G Gallegos
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces 88003, USA
| | | | | |
Collapse
|
30
|
Entian KD, de Vos WM. Genetics of subtilin and nisin biosyntheses: biosynthesis of lantibiotics. Antonie Van Leeuwenhoek 1996; 69:109-17. [PMID: 8775971 DOI: 10.1007/bf00399416] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several peptide antibiotics have been described as potent inhibitors of bacterial growth. With respect to their biosynthesis, they can be divided into two classes: (i) those that are synthesized by a non-ribosomal mechanism, and (ii) those that are ribosomally synthesized. Subtilin and nisin belong to the ribosomally synthesized peptide antibiotics. They contain the rare amino acids dehydroalanine, dehydrobutyrine, meso-lanthionine, and 3-methyllanthionine. They are derived from prepeptides which are post-translationally modified and have been termed lantibiotics because of their characteristic lanthionine bridges (Schnell et al. 1988). Nisin is the most prominent lantibiotic and is used as a food preservative due to its high potency against certain gram-positive bacteria (Mattick & Hirsch 1944, 1947; Rayman & Hurst 1984). It is produced by Lactococcus lactis strains belonging to serological group N. The potent bactericidal activities of nisin and other lantibiotics are based on depolarization of energized bacterial cytoplasmic membranes. Breakdown of the membrane potential is initiated by the formation of pores through which molecules of low molecular weight are released. A trans-negative membrane potential of 50 to 100 mV is necessary for pore formation by nisin (Ruhr & Sahl 1985; Sahl et al. 1987). Nisin occurs as a partially amphiphilic molecule (Van de Ven et al. 1991). Apart from the detergent-like effect of nisin on cytoplasmic membranes, an inhibition of murein synthesis has also been discussed as the primary effect (Reisinger et al. 1980). In several countries nisin is used to prevent the growth of clostridia in cheese and canned food. The nisin peptide structure was first described by Gross & Morall (1971), and its structural gene was isolated in 1988 (Buchman et al. 1988; Kaletta & Entian 1989). Nisin has two natural variants, nisin A, and nisin Z, which differ in a single amino acid residue at position 27 (histidin in nisin A is replaced by asparagin in nisin Z (Mulders et al. 1991; De Vos et al. 1993). Subtilin is produced by Bacillus subtilis ATCC 6633. Its chemical structure was first unravelled by Gross & Kiltz (1973) and its structural gene was isolated in 1988 (Banerjee & Hansen 1988). Subtilin shares strong similarities to nisin with an identical organization of the lanthionine ring structures (Fig. 1), and both lantibiotics possess similar antibiotic activities. Due to its easy genetic analysis B. subtilis became a very suitable model organism for the identification and characterization of genes and proteins involved in lantibiotic biosynthesis. The pathway by which nisin is produced is very similar to that of subtilin, and the proteins involved share significant homologies over the entire proteins (for review see also De Vos et al. 1995b). The respective genes have been identified adjacent to the structural genes, and are organized in operon-like structures (Fig. 2). These genes are responsible for post-translational modification, transport of the modified prepeptide, proteolytic cleavage, and immunity which prevents toxic effects on the producing bacterium. In addition to this, biosynthesis of subtilin and nisin is strongly regulated by a two-component regulatory system which consists of a histidin kinase and a response regulator protein.
Collapse
Affiliation(s)
- K D Entian
- Institute for Microbiology, University of Frankfurt, Germany
| | | |
Collapse
|
31
|
Yamagata Y, Ichishima E. A new alkaline serine protease from alkalophilic Bacillus sp.: cloning, sequencing, and characterization of an intracellular protease. Curr Microbiol 1995; 30:357-66. [PMID: 7773103 DOI: 10.1007/bf00369863] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To obtain a new serine protease from alkalophilic Bacillus sp. NKS-21, shotgun cloning was carried out. As a result, a new protease gene was obtained. It encoded an intracellular serine protease (ISP-1) in which there was no signal sequence. The molecular weight was 34,624. The protease showed about 50% homology with those of intracellular serine proteases (ISP-1) from Bacillus subtilis, B. polymyxa, and alkalophilic Bacillus sp. No. 221. The amino acid residues that form the catalytic triad, Ser, His and Asp, were completely conserved in comparison with subtilisins (the extracellular proteases from Bacillus). The cloned intracellular protease was expressed in Escherichia coli, and its purification and characterization were carried out. The enzyme showed stability under alkaline condition at pH 10 and tolerance to surfactants. The cloned ISP-1 digested well nucleoproteins, clupein and salmin, for the substrates.
Collapse
Affiliation(s)
- Y Yamagata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Tohoku University, Sendai, Japan
| | | |
Collapse
|
32
|
Tomkinson B. Characterization of cDNA for murine tripeptidyl-peptidase II reveals alternative splicing. Biochem J 1994; 304 ( Pt 2):517-23. [PMID: 7998988 PMCID: PMC1137522 DOI: 10.1042/bj3040517] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tripeptidyl-peptidase II (TPP II) is a cytosolic high-M(r) exopeptidase with an active site of the subtilisin type. This paper describes cloning of cDNA encoding murine TPP II. Four clones were isolated from a murine mastocytoma cDNA library and the 5'-end was isolated by use of 5'-RACE (rapid amplification of cDNA ends). A total of 4611 bp were isolated, including the complete coding region. The deduced amino acid sequence shows a 96% overall identity when compared with the previously cloned human TPP II. The remarkably high identity indicates that not only the catalytic domain, but almost the entire subunit, must be of functional importance. Alignment with subtilisin-like serine peptidases identified Asp44, His264 and Ser449 as the catalytic triad, thus defining an extra domain of approximately 200 amino acids between the catalytic Asp and His in TPP II as compared with other subtilases. In addition, it was demonstrated that different polyadenylation signals can be utilized, since two different clones with untranslated 3'-ends of 155 bp and 781 bp respectively have been isolated. Finally, one of the isolated clones contains an extra 39 bp insert encoding 13 amino acids, which implies alternative splicing of the mRNA.
Collapse
Affiliation(s)
- B Tomkinson
- Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala
| |
Collapse
|
33
|
Maciver B, McHale RH, Saul DJ, Bergquist PL. Cloning and sequencing of a serine proteinase gene from a thermophilic Bacillus species and its expression in Escherichia coli. Appl Environ Microbiol 1994; 60:3981-8. [PMID: 7993087 PMCID: PMC201925 DOI: 10.1128/aem.60.11.3981-3988.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gene for a serine proteinase from a thermophilic Bacillus species was identified by PCR amplification, and the complete gene was cloned after identification and isolation of suitably sized restriction fragments from Southern blots by using the PCR product as a probe. Two additional, distinct PCR products, which were shown to have been derived from other serine proteinase genes present in the thermophilic Bacillus species, were also obtained. Sequence analysis showed an open reading frame of 1,206 bp, coding for a polypeptide of 401 amino acids. The polypeptide was determined to be an extracellular serine proteinase with a signal sequence and prosequence. The mature proteinase possessed homology to the subtilisin-like serine proteinases from a number of Bacillus species and had 61% homology to thermitase, a serine proteinase from Thermoactinomyces vulgaris. The gene was expressed in Escherichia coli in the expression vector pJLA602 and as a fusion with the alpha-peptide of the lacZ gene in the cloning vector pGEM5. A recombinant proteinase from the lacZ fusion plasmid was used to determine some characteristics of the enzyme, which showed a pH optimum of 8.5, a temperature optimum of 75 degrees C, and thermostabilities ranging from a half-life of 12.2 min at 90 degrees C to a half-life of 40.3 h at 75 degrees C. The enzyme was bound to a bacitracin column, and this method provided a simple, one-step method for producing the proteinase, purified to near homogeneity.
Collapse
Affiliation(s)
- B Maciver
- Centre for Gene Technology, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
34
|
Barbosa MDFS, Ingram LO. Expression of theZymomonas mobilis alcohol dehydrogenase II (adhB) and pyruvate decarboxylase (pdc) genes inBacillus. Curr Microbiol 1994. [DOI: 10.1007/bf01573206] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Engelke G, Gutowski-Eckel Z, Kiesau P, Siegers K, Hammelmann M, Entian KD. Regulation of nisin biosynthesis and immunity in Lactococcus lactis 6F3. Appl Environ Microbiol 1994; 60:814-25. [PMID: 8161176 PMCID: PMC201397 DOI: 10.1128/aem.60.3.814-825.1994] [Citation(s) in RCA: 142] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The biosynthetic genes of the nisin-producing strain Lactococcus lactis 6F3 are organized in an operon-like structure starting with the structural gene nisA followed by the genes nisB, nisT, and nisC, which are probably involved in chemical modification and secretion of the prepeptide (G. Engelke, Z. Gutowski-Eckel, M. Hammelmann, and K.-D. Entian, Appl. Environ. Microbiol. 58:3730-3743, 1992). Subcloning of an adjacent 5-kb downstream region revealed additional genes involved in nisin biosynthesis. The gene nisI, which encodes a lipoprotein, causes increased immunity after its transformation into nisin-sensitive L. lactis MG1614. It is followed by the gene nisP, coding for a subtilisin-like serine protease possibly involved in processing of the secreted leader peptide. Adjacent to the 3' end of nisP the genes nisR and nisK were identified, coding for a regulatory protein and a histidine kinase, showing marked similarities to members of the OmpR/EnvZ-like subgroup of two-component regulatory systems. The deduced amino acid sequences of nisR and nisK exhibit marked similarities to SpaR and SpaK, which were recently identified as the response regulator and the corresponding histidine kinase of subtilin biosynthesis. By using antibodies directed against the nisin prepeptide and the NisB protein, respectively, we could show that nisin biosynthesis is regulated by the expression of its structural and biosynthetic genes. Prenisin expression starts in the exponential growth phase and precedes that of the NisB protein by approximately 30 min. Both proteins are expressed to a maximum in the stationary growth phase.
Collapse
Affiliation(s)
- G Engelke
- Institut für Mikrobiologie, Johann Wolfgang Goethe-Universität Frankfurt, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
36
|
States DJ, Gish W. Combined use of sequence similarity and codon bias for coding region identification. J Comput Biol 1994; 1:39-50. [PMID: 8790452 DOI: 10.1089/cmb.1994.1.39] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A computer program called BLASTX was previously shown to be effective in identifying and assigning putative function to likely protein coding regions by detecting significant similarity between a conceptually translated nucleotide query sequence and members of a protein sequence database. We present and assess the sensitivity of a new option to this software tool, herein called BLASTC, which employs information obtained from biases in codon utilization, along with the information obtained from sequence similarity. A rationale for combining these diverse information sources was derived, and analyses of the information available from codon utilization in several species were performed, with wide variation seen. Codon bias information was found on average to improve the sensitivity of detection of short coding regions of human origin by about a factor of 5. The implications of combining information sources on the interpretation of positive findings are discussed.
Collapse
Affiliation(s)
- D J States
- Institute for Biomedical Computing, Washington University, St. Louis, MO 63108, USA
| | | |
Collapse
|
37
|
Shiga Y, Yamagata H, Udaka S. Characterization of the gene encoding an intracellular proteinase inhibitor of Bacillus subtilis and its role in regulation of the major intracellular proteinase. J Bacteriol 1993; 175:7130-7. [PMID: 8226659 PMCID: PMC206853 DOI: 10.1128/jb.175.22.7130-7137.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene (ipi) for an intracellular proteinase inhibitor (BsuPI) from Bacillus subtilis was cloned and found to encode a polypeptide consisting of 119 amino acids with no cysteine residues. The deduced amino acid sequence contained the N-terminal amino acid sequence of the inhibitor, which was chemically determined previously, and showed no significant homology to any other proteinase inhibitors. Analysis of the transcription initiation site and mRNA showed that the ipi gene formed an operon with an upstream open reading frame with an unknown function. The transcriptional control of ipi gene expression was demonstrated by Northern (RNA) blot analysis, and the time course of transcriptional enhancement roughly corresponded to the results observed at the protein level. Strains in which the ipi gene was disrupted or in which BsuPI was overexpressed constitutively sporulated normally. Analysis of the time course of production of the intracellular proteinase and proteinase inhibitor in these strains suggested that BsuPI directly regulated the major intracellular proteinase (ISP-1) activity in vivo.
Collapse
Affiliation(s)
- Y Shiga
- Department of Applied Biological Sciences, Faculty of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
38
|
Dependence of intracellular proteolytic enzymes in growing and sporulating cells ofBacillus megaterium on Ca2+ concentration. Folia Microbiol (Praha) 1993. [DOI: 10.1007/bf02814377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Lilley GG, Stewart DJ, Kortt AA. Amino acid and DNA sequences of an extracellular basic protease of Dichelobacter nodosus show that it is a member of the subtilisin family of proteases. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 210:13-21. [PMID: 1446666 DOI: 10.1111/j.1432-1033.1992.tb17385.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A DNA fragment encoding an extracellular basic protease (pI approximately 9.5) from Dichelobacter nodosus, a Gram-negative obligate anaerobe and the causative agent of ovine footrot, has been cloned and expressed in Escherichia coli and sequenced. E. coli harbouring a plasmid with a 3-kb DNA fragment containing the D. nodosus basic-protease gene exhibited proteolytic activity when tested on skim-milk plates. The sequence of the native basic protease isolated from D. nodosus was also determined by direct amino acid sequencing. Comparison of the deduced sequence of the primary translation product (603 residues) and that of the native protease (344 residues) indicates that the protease is synthesized as a precursor molecule, containing a signal peptide (21 residues), a 111 amino acid pro-peptide and a 127 residue C-terminal extension which is subsequently processed to the mature active form. Comparison of the D. nodosus basic protease sequence with that of other serine proteases showed that it is related to the subtilisin family of proteases with strong conservation of sequence identity around the catalytic site residues. A remarkable similarity in structure was found to the serine protease of Xanthomonas campestris, a plant pathogen, with respect to the length of the precursor segments, conservation of disulfide bridges and approximately 50% sequence identity of the mature proteases.
Collapse
Affiliation(s)
- G G Lilley
- Commonwealth Scientific and Industrial Research Organisation, Division of Biomolecular Engineering, Parkville, Melbourne, Australia
| | | | | |
Collapse
|
40
|
Schnell N, Engelke G, Augustin J, Rosenstein R, Ungermann V, Götz F, Entian KD. Analysis of genes involved in the biosynthesis of lantibiotic epidermin. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:57-68. [PMID: 1740156 DOI: 10.1111/j.1432-1033.1992.tb16605.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structural gene of the lanthionine-containing peptide antibiotic epidermin is located on a 54-kb plasmid of Staphylococcus epidermidis [Schnell et al. (1988) Nature 333, 276-278]. A 13.5-kb DNA region neighbouring the epidermin structural gene (epiA) was subcloned and its sequencing revealed five additional open reading frames. Three of these reading frames, epiB, epiC and epiD shared no homology with previously described proteins stored in data bases. They were located 3' adjacent to epiA. Using epiB as a probe, a 5-kb mRNA was identified indicating that three or all four reading frames are transcribed as an operon. Additionally, a 0.3-kb mRNA specific for epiA was identified. Two open reading frames (epiP and epiQ) were located 3' to epiA, epiB, epiC and epiD, but in the reverse orientation. The epiQ gene product shows similarity to the positive regulatory factor PhoB. This might indicate a regulatory function of epiQ in epidermin biosynthesis. The epiP gene product shows striking similarity to several serine proteases which makes epiP a likely candidate for processing the epidermin prepeptide. Heterologous epidermin synthesis in the non-producing organism Staphylococcus carnosus finally proved that these reading frames are necessary for epidermin biosynthesis.
Collapse
Affiliation(s)
- N Schnell
- Institute for Microbiology, Johann Wolfgang Goethe-Universität, Frankfurt/M., Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
He XS, Shyu YT, Nathoo S, Wong SL, Doi RH. Construction and use of a Bacillus subtilis mutant deficient in multiple protease genes for the expression of eukaryotic genes. Ann N Y Acad Sci 1991; 646:69-77. [PMID: 1809207 DOI: 10.1111/j.1749-6632.1991.tb18565.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- X S He
- Department of Biochemistry and Biophysics, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
42
|
Takekawa S, Uozumi N, Tsukagoshi N, Udaka S. Proteases involved in generation of beta- and alpha-amylases from a large amylase precursor in Bacillus polymyxa. J Bacteriol 1991; 173:6820-5. [PMID: 1834632 PMCID: PMC209033 DOI: 10.1128/jb.173.21.6820-6825.1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The genes for extracellular neutral protease (Npr) and intracellular serine protease (Isp) were cloned from Bacillus polymyxa in order to elucidate the process involved in the generation of multiple beta-amylases and an alpha-amylase from a large amylase precursor. The npr gene was composed of 1,770 bp and 570 amino acids, while the isp gene was composed of 978 bp and 326 amino acids. Both proteases produced by E. coli cleaved the amylase precursor to generate beta- and alpha-amylases. Furthermore, several other proteases produced the same products from the precursor. A 130-kDa amylase precursor has two large domain structures responsible for the generation of beta- and alpha-amylases. The junction region of approximately 200 amino acids may be exposed on the surface of the molecule and susceptible to proteolytic enzymes, which results in the formation of multiple amylases.
Collapse
Affiliation(s)
- S Takekawa
- Department of Food Science and Technology, Faculty of Agriculture, Nagoya University, Japan
| | | | | | | |
Collapse
|
43
|
Sloma A, Rufo GA, Theriault KA, Dwyer M, Wilson SW, Pero J. Cloning and characterization of the gene for an additional extracellular serine protease of Bacillus subtilis. J Bacteriol 1991; 173:6889-95. [PMID: 1938892 PMCID: PMC209042 DOI: 10.1128/jb.173.21.6889-6895.1991] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have purified a minor extracellular serine protease from a strain of Bacillus subtilis bearing null mutations in five extracellular protease genes: apr, npr, epr, bpr, and mpr (A. Sloma, C. Rudolph, G. Rufo, Jr., B. Sullivan, K. Theriault, D. Ally, and J. Pero, J. Bacteriol. 172:1024-1029, 1990). During purification, this novel protease (Vpr) was found bound in a complex in the void volume after gel filtration chromatography. The amino-terminal sequence of the purified protein was determined, and an oligonucleotide probe was constructed on the basis of the amino acid sequence. This probe was used to clone the structural gene (vpr) for this protease. The gene encodes a primary product of 806 amino acids. The amino acid sequence of the mature protein was preceded by a signal sequence of approximately 28 amino acids and a prosequence of approximately 132 amino acids. The mature protein has a predicted molecular weight of 68,197; however, the isolated protein has an apparent molecular weight of 28,500, suggesting that Vpr undergoes C-terminal processing or proteolysis. The vpr gene maps in the ctrA-sacA-epr region of the chromosome and is not required for growth or sporulation.
Collapse
Affiliation(s)
- A Sloma
- OmniGene, Inc., Cambridge, Massachusetts 02140
| | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- X S He
- Department of Biochemistry and Biophysics University of California, Davis 95616
| | | | | |
Collapse
|
45
|
Sheehan SM, Switzer RL. Intracellular serine protease-4, a new intracellular serine protease activity from Bacillus subtilis. Arch Microbiol 1991; 156:186-91. [PMID: 1953303 DOI: 10.1007/bf00249113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A previously undiscovered intracellular serine protease activity, which we have called intracellular serine protease-4, was identified in extracts of stationary Bacillus subtilis cells, purified 260 fold from the cytoplasmic fraction, and characterized. The new protease was stable and active in the absence of Ca2+ ions and hydrolyzed azocasein and the chromogenic substrate carbobenzoxy-carbonyl-alanyl-alanyl-leucyl-p-nitroanilide, but not azocollagen or a variety of other chromogenic substrates. The protease was strongly inhibited by phenylmethylsulfonylfluoride, chymostatin and antipain, but not by chelators, sulfhydryl-reactive agents or trypsin inhibitors. Its activity was stimulated by Ca2+ ions and gramicidin S; its pH and temperature optima were 9.0 and 37 degrees C, respectively. Although intracellular serine protease-4 was immunochemically distinct from intracellular serine protease-1, it was absent from a mutant in which the gene encoding the latter was disrupted.
Collapse
Affiliation(s)
- S M Sheehan
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | |
Collapse
|
46
|
Wu XC, Lee W, Tran L, Wong SL. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J Bacteriol 1991; 173:4952-8. [PMID: 1907264 PMCID: PMC208183 DOI: 10.1128/jb.173.16.4952-4958.1991] [Citation(s) in RCA: 229] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We describe the development of an expression-secretion system in Bacillus subtilis to improve the quality and quantity of the secreted foreign proteins. This system consists of a strain (WB600) deficient in six extracellular proteases and a set of sacB-based expression vectors. With the inactivation of all six chromosomal genes encoding neutral protease A, subtilisin, extracellular protease, metalloprotease, bacillopeptidase F, and neutral protease B, WB600 showed only 0.32% of the wild-type extracellular protease activity. No residual protease activity could be detected when WB600 was cultured in the presence of 2 mM phenylmethylsulfonyl fluoride. By using TEM beta-lactamase as a model, we showed that WB600 can significantly improve the stability of the secreted enzyme. To further increase the production level we constructed an expression cassette carrying sacY, a sacB-specific regulatory gene. This gene was placed under the control of a strong, constitutively expressed promoter, P43. With this cassette in the expression vector, an 18-fold enhancement in beta-lactamase production was observed. An artificial operon, P43-sacY-degQ, was also constructed. However, only a partial additive enhancement effect (24-fold enhancement) was observed. Although degQ can stimulate the production of beta-lactamase in the system, its ability to increase the residual extracellular protease activity from WB600 limits its application. The use of the P43-sacY cassette and WB600 would be a better combination for producing intact foreign proteins in high yield.
Collapse
Affiliation(s)
- X C Wu
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
47
|
Schülein R, Kreft J, Gonski S, Goebel W. Preprosubtilisin Carlsberg processing and secretion is blocked after deletion of amino acids 97-101 in the mature part of the enzyme. MOLECULAR & GENERAL GENETICS : MGG 1991; 227:137-43. [PMID: 1904534 DOI: 10.1007/bf00260718] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During an investigation into the substrate specificity and processing of subtilisin Carlsberg from Bacillus licheniformis, two major independent findings were made: (i) as has been shown previously, a stretch of five amino acids (residues 97-101 of the mature enzyme) that loops out into the binding cleft is involved in substrate binding by subtilisin Carlsberg. In order to see whether this loop element also determines substrate specificity, the coding region for these five amino acids was deleted from the cloned gene for subtilisin Carlsberg by site-directed mutagenesis. Unexpectedly the resulting mutant preproenzyme (P42c, Mr = 42 kDa) was not processed to the mature form (Mr = 30 kDa) and was not released into the medium by a protease-deficient B. subtilis host strain; rather, it accumulated in the cell membrane. This result demonstrates that the integrity of this loop element, which is very distant from the processing cleavage sites in the preproenzyme, is required for secretion of subtilisin Carlsberg. (ii) In culture supernatants from B. subtilis harbouring the cloned wild-type subtilisin Carlsberg gene the transient appearance (at 0-3 h after onset of stationary phase) of a processing intermediate (P38c, Mr = 38 kDa) of this protease could be demonstrated. P38c very probably represents a genuine proform of subtilisin Carlsberg.
Collapse
Affiliation(s)
- R Schülein
- Institut für Genetik und Mikrobiologie, Universität Würzburg, FRG
| | | | | | | |
Collapse
|
48
|
O'Hara MB, Hageman JH. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J Bacteriol 1990; 172:4161-70. [PMID: 2115863 PMCID: PMC213238 DOI: 10.1128/jb.172.8.4161-4170.1990] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Bacterial cells degrade intracellular proteins at elevated rates during starvation and can selectively degrade proteins by energy-dependent processes. Sporulating bacteria can degrade protein with apparent first-order rate constants of over 0.20 h-1. We have shown, with an optimized [14C]leucine-labeling and chasing procedure, in a chemically defined sporulation medium, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent. Sodium arsenate, sodium azide, carbonyl cyanide m-chlorophenylhydrozone, and N,N'-dicyclohexylcarbodiimide, at levels which did not induce appreciable lysis (less than or equal to 10%) over 10-h periods of sporulation, inhibited intracellular proteolysis by 13 to 93%. Exponentially growing cells acquired arsenate resistance. In contrast to earlier reports, we found that chloramphenicol (100 micrograms/ml) strongly inhibited proteolysis (68%) even when added 6 h into the sporulation process. Restricting the calcium ion concentration (less than 2 microM) in the medium had no effect on rates or extent of vegetative growth, strongly inhibited sporulation (98%), and inhibited rates of proteolysis by 60% or more. Inhibitors of energy metabolism, at the same levels which inhibited proteolysis, did not affect the rate or degree of uptake of Ca2+ by cells, which suggested that the Ca2+ and metabolic energy requirements of proteolysis were independent. Restricting the Ca2+ concentration in the medium reduced by threefold the specific activity in cells of the major intracellular serine proteinase after 12 h of sporulation. Finally, cells of a mutant of B. subtilis bearing an insertionally inactivated gene for the Ca2(+)-dependent intracellular proteinase-1 degraded protein in chemically defined sporulation medium at a rate indistinguishable from that of the wild-type cells for periods of 8 h.
Collapse
Affiliation(s)
- M B O'Hara
- Department of Chemistry, New Mexico State University, Las Cruces 88003
| | | |
Collapse
|
49
|
Cloning, genetic organization, and characterization of a structural gene encoding bacillopeptidase F from Bacillus subtilis. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39225-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
50
|
Sloma A, Rufo GA, Rudolph CF, Sullivan BJ, Theriault KA, Pero J. Bacillopeptidase F of Bacillus subtilis: purification of the protein and cloning of the gene. J Bacteriol 1990; 172:1470-7. [PMID: 2106512 PMCID: PMC208622 DOI: 10.1128/jb.172.3.1470-1477.1990] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We have purified a minor extracellular serine protease from Bacillus subtilis. Characterization of this enzyme indicated that it was most likely the previously reported enzyme bacillopeptidase F. The amino-terminal sequence of the purified protein was determined, and a "guess-mer" oligonucleotide hybridization probe was constructed on the basis of that sequence. This probe was used to identify and clone the structural gene (bpr) for bacillopeptidase F. The deduced amino acid sequence for the mature protein (496 amino acids) was preceded by a putative signal sequence of 30 residues and a putative propeptide region of 164 amino acids. The bpr gene mapped near pyrD on the chromosome and was not required for growth or sporulation.
Collapse
Affiliation(s)
- A Sloma
- BioTechnica International, Inc., Cambridge, Massachusetts 02140
| | | | | | | | | | | |
Collapse
|