1
|
Camacho EM, Casadesús J. Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol 2002; 44:1589-98. [PMID: 12067346 DOI: 10.1046/j.1365-2958.2002.02981.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Host-encoded functions that regulate the transfer operon (tra) in the virulence plasmid of Salmonella enterica (pSLT) were identified with a genetic screen. Mutations that decreased tra operon expression mapped in the lrp gene, which encodes the leucine-responsive regulatory protein (Lrp). Reduced tra operon expression in an Lrp- background is caused by lowered transcription of the traJ gene, which encodes a transcriptional activator of the tra operon. Gel retardation assays indicated that Lrp binds a DNA region upstream of the traJ promoter. Deletion of the Lrp binding site resulted in lowered and Lrp-independent traJ transcription. Conjugal transfer of pSLT decreased 50-fold in a Lrp- background. When a FinO- derivative of pSLT was used, conjugal transfer from an Lrp- donor decreased 1000-fold. Mutations that derepressed tra operon expression mapped in dam, the gene encoding Dam methyltransferase. Expression of the tra operon and conjugal transfer remain repressed in an Lrp- Dam- background. These observations support the model that Lrp acts as a conjugation activator by promoting traJ transcription, whereas Dam methylation acts as a conjugation repressor by activating FinP RNA synthesis. This dual control of conjugal transfer may also operate in other F-like plasmids such as F and R100.
Collapse
Affiliation(s)
- Eva M Camacho
- Department of Genetics, School of Biology, University of Seville, Apartado 1095, 41080 Seville, Spain
| | | |
Collapse
|
2
|
Stockwell D, Lelianova V, Thompson T, Dempsey WB. Transcription of the transfer genes traY and traM of the antibiotic resistance plasmid R100-1 is linked. Plasmid 2000; 43:35-48. [PMID: 10610818 DOI: 10.1006/plas.1999.1435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three separate traY deletion mutants of R100-1 were prepared by allele replacement. These mutants retained the ability to transfer at a level 100 times greater than R100 and 1/50 that of the parental R100-1. The mutants were complemented to normal R100-1 transfer levels by pDSP06, a multicopy traY clone. Comparison of transcripts initiated at the traY promoter, P(Y), by primer extension experiments showed that there was no detectable P(Y) activity in R100 and that the level of P(Y) activity in the traY deletion mutants was lower than that in R100-1. Similar measurements performed on RNA from a set of previously described traM deletion mutants showed that those traM deletion mutants that produced more traM and finM (M) transcripts than the parental R100-1 also produced more traY transcripts than R100-1 and that those traM mutants that produced fewer M transcripts than R100-1 also produced fewer traY transcripts than R100-1. We conclude that in R100, TraY regulates P(Y) activity and that transcripts originating in traM affect P(Y) activity.
Collapse
Affiliation(s)
- D Stockwell
- Veterans Affairs Medical Center and University of Texas Southwestern Medical Center, Dallas, Texas, 75216, USA
| | | | | | | |
Collapse
|
3
|
Anthony KG, Klimke WA, Manchak J, Frost LS. Comparison of proteins involved in pilus synthesis and mating pair stabilization from the related plasmids F and R100-1: insights into the mechanism of conjugation. J Bacteriol 1999; 181:5149-59. [PMID: 10464182 PMCID: PMC94017 DOI: 10.1128/jb.181.17.5149-5159.1999] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
F and R100-1 are closely related, derepressed, conjugative plasmids from the IncFI and IncFII incompatibility groups, respectively. Heteroduplex mapping and genetic analyses have revealed that the transfer regions are extremely similar between the two plasmids. Plasmid specificity can occur at the level of relaxosome formation, regulation, and surface exclusion between the two transfer systems. There are also differences in pilus serology, pilus-specific phage sensitivity, and requirements for OmpA and lipopolysaccharide components in the recipient cell. These phenotypic differences were exploited in this study to yield new information about the mechanism of pilus synthesis, mating pair stabilization, and surface and/or entry exclusion, which are collectively involved in mating pair formation (Mpf). The sequence of the remainder of the transfer region of R100-1 (trbA to traS) has been completed, and the complete sequence is compared to that of F. The differences between the two transfer regions include insertions and deletions, gene duplications, and mosaicism within genes, although the genes essential for Mpf are conserved in both plasmids. F+ cells carrying defined mutations in each of the Mpf genes were complemented with the homologous genes from R100-1. Our results indicate that the specificity in recipient cell recognition and entry exclusion are mediated by TraN and TraG, respectively, and not by the pilus.
Collapse
Affiliation(s)
- K G Anthony
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | | | | | | |
Collapse
|
4
|
Taki K, Abo T, Ohtsubo E. Regulatory mechanisms in expression of the traY-I operon of sex factor plasmid R100: involvement of traJ and traY gene products. Genes Cells 1998; 3:331-45. [PMID: 9734780 DOI: 10.1046/j.1365-2443.1998.00194.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The plasmid R100 encodes tra genes essential for conjugal DNA transfer in Escherichia coli. Genetic evidence suggests that the traJ gene encodes a positive regulator for the traY-I operon, which includes almost all the tra genes located downstream of traJ. The molecular mechanism of regulation by TraJ, however, is not yet understood. traY is the most proximal gene in the traY-I operon. TraY promotes DNA transfer by binding to a site, sbyA, near the origin of transfer. TraY is suggested to have another role in regulation of the traY-I operon, since it binds to two other sites, named sbyB and sbyC, located in the region preceding traY-I. RESULTS Using a traY-lacZ fusion gene, we showed that the traY-I operon was expressed only in the presence of traJ. The TraJ-dependent expression of traY-I required the E. coli arcA gene, which encodes a host factor required for conjugation. TraJ-dependent transcription occurred from a promoter (named pY) located upstream of traY-I. The isolated TraJ protein was found to bind to a dyad symmetry sequence, named sbj (specific binding site of TraJ), which existed in the intergenic region between traJ and traY-I. We also demonstrated that TraY repressed the TraJ-dependent expression of traY-I at the TraY binding sites, sbyB and sbyC, which overlapped with pY. CONCLUSIONS TraJ is a protein which binds to the sbj site in the region upstream of the promoter pY and positively regulates expression of the traY-I operon in the presence of the E. coli arcA gene. Since sbj is located 93bp upstream of pY in the intergenic region between traJ and traY-I, TraJ presumably contacts with a transcription apparatus to promote transcription from pY. TraY, which is known to activate the initiation of conjugal DNA transfer, has a new role in the transcriptional autoregulation of traY-I expression. At levels which are sufficient to initiate conjugal DNA transfer, TraY represses traY-I transcription in the presence of TraJ.
Collapse
Affiliation(s)
- K Taki
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Japan
| | | | | |
Collapse
|
5
|
Abstract
Deletion mutants of R100-1 were constructed by classical methods to remove various segments of the traM open reading frame, pTraM-binding sites and the traM promoters. Complementation tests showed that traM was efficiently complemented only when the trans-acting fragment contained both the complete traM gene and the adjacent traJ promoter and leader sequences. The conclusion is that traM and traJ constitute a complex operon. A deletion mutant lacking all of the traJ gene, and one containing a frameshifting traM deletion, retained the ability to transfer at a low level, thereby showing that neither pTraM nor pTraJ is absolutely essential for transfer.
Collapse
Affiliation(s)
- W B Dempsey
- Veterans' Affairs Medical Center, Dallas, Texas
| |
Collapse
|
6
|
Dempsey WB. traJ sense RNA initiates at two different promoters in R100-1 and forms two stable hybrids with antisense finP RNA. Mol Microbiol 1994; 13:313-26. [PMID: 7527120 DOI: 10.1111/j.1365-2958.1994.tb00425.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
RNase protection experiments show that the sizes of the two R100 finP molecules are 74 and 135 nucleotides. In an RNase III mutant, finP transcripts form stable double-stranded hybrids of 108 bp and 68 bp with traJ transcripts. RNase protection experiments also show that most R100-1 transcripts originating in traM cross the traM-traJ intergenic region and end inside the untranslated leader region of traJ. Some extend into the traJ open reading frame. These findings mean that the antisense finP RNA, thought to regulate traJ translation, must regulate traJ transcripts from both J and M promoters.
Collapse
Affiliation(s)
- W B Dempsey
- Veterans' Affairs Medical Center, Dallas, Texas
| |
Collapse
|
7
|
Frost LS, Ippen-Ihler K, Skurray RA. Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev 1994; 58:162-210. [PMID: 7915817 PMCID: PMC372961 DOI: 10.1128/mr.58.2.162-210.1994] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bacterial conjugation results in the transfer of DNA of either plasmid or chromosomal origin between microorganisms. Transfer begins at a defined point in the DNA sequence, usually called the origin of transfer (oriT). The capacity of conjugative DNA transfer is a property of self-transmissible plasmids and conjugative transposons, which will mobilize other plasmids and DNA sequences that include a compatible oriT locus. This review will concentrate on the genes required for bacterial conjugation that are encoded within the transfer region (or regions) of conjugative plasmids. One of the best-defined conjugation systems is that of the F plasmid, which has been the paradigm for conjugation systems since it was discovered nearly 50 years ago. The F transfer region (over 33 kb) contains about 40 genes, arranged contiguously. These are involved in the synthesis of pili, extracellular filaments which establish contact between donor and recipient cells; mating-pair stabilization; prevention of mating between similar donor cells in a process termed surface exclusions; DNA nicking and transfer during conjugation; and the regulation of expression of these functions. This review is a compendium of the products and other features found in the F transfer region as well as a discussion of their role in conjugation. While the genetics of F transfer have been described extensively, the mechanism of conjugation has proved elusive, in large part because of the low levels of expression of the pilus and the numerous envelope components essential for F plasmid transfer. The advent of molecular genetic techniques has, however, resulted in considerable recent progress. This summary of the known properties of the F transfer region is provided in the hope that it will form a useful basis for future comparison with other conjugation systems.
Collapse
Affiliation(s)
- L S Frost
- Department of Microbiology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
8
|
Lee SH, Frost LS, Paranchych W. FinOP repression of the F plasmid involves extension of the half-life of FinP antisense RNA by FinO. MOLECULAR & GENERAL GENETICS : MGG 1992; 235:131-9. [PMID: 1435724 DOI: 10.1007/bf00286190] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The transfer operon of the F plasmid is positively regulated by the traJ gene product, expression of which, in turn, is regulated by both an antisense RNA, FinP, and the FinO protein (the FinOP system). A finP- F plasmid, pSFL20, was constructed by site-directed mutagenesis and was found to produce wild-type levels of pili encoded by the transfer operon. Transcription of the traJ gene was decreased by a factor of 3-5 fold in the presence of FinOP with no accumulation of a stable RNA duplex between the FinP RNA and the portion of the traJ mRNA which is complementary to finP. Stabilization of FinP RNA by FinO occurs in the absence of traJ transcripts, suggesting that FinO may interact directly with FinP to prevent its degradation.
Collapse
Affiliation(s)
- S H Lee
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
9
|
Salazar L, Lopéz J, Andrés I, Ortiz JM, Rodríguez JC. Characterization and nucleotide sequence of the oriT-traM-finP region of the IncFVII plasmid pSU233. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:442-8. [PMID: 1406590 DOI: 10.1007/bf00538704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By hybridizing the IncFVII haemolytic plasmid pSU233 with a probe containing the origin of transfer of the IncFII plasmid R1, we isolated a 1.9 kb BglII fragment containing at least the origin of transfer (oriT), and the genes traM and finP. Functional complementation analysis of deletion derivatives was used to map the origin of transfer. We also determined the nucleotide sequence of traM and finP. Comparison with similar regions of several plasmids, also belonging to the Rep-FIIA family, revelaed that pSU233 resembles the F plasmid by very close. The homology is not evenly distributed along this region, but clustered into homologous regions (TraZb-oriT, TraMb-oriT and traM separated by non-homologous regions (TraYb-oriT, finP). This organization resembles that reported for the replication region and also suggests evolution by exchange of modules. In addition, the nucleotide sequence of finP is different from those previously described for other IncF plasmids and constitutes a new allele, which we have denominated allele VI.
Collapse
Affiliation(s)
- L Salazar
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | | | | | | | | |
Collapse
|
10
|
Abstract
The TraM protein of the resistance plasmid R1 was purified to homogeneity and used for DNA-binding studies. Both gel retardation- and footprint experiments showed that TraM specifically binds to DNA of plasmid R1 comprising the region between the origin of transfer and the traM gene. Several TraM molecules bind and, according to the footprint experiments, two distinct sites of specific binding exist. The two sites are separated from each other by 12 nucleotides and each contains an inverted repeat. DNase I protection assays showed that the initial TraM binding occurs at these palindromic sequences. At higher protein concentrations the lengths of the DNA segments protected by TraM were increased towards the traM gene. In one region this extension leads to binding of TraM protein at its own promoters.
Collapse
Affiliation(s)
- M Schwab
- Institut für Mikrobiologie, Karl-Franzens-Universität,Graz, Austria
| | | | | |
Collapse
|
11
|
Graus-Göldner A, Graus H, Schlacher T, Högenauer G. The sequences of genes bordering oriT in the enterotoxin plasmid P307: comparison with the sequences of plasmids F and R1. Plasmid 1990; 24:119-31. [PMID: 2096398 DOI: 10.1016/0147-619x(90)90014-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nucleotide sequences of the enterotoxin plasmid P307 transfer genes traM, finP, traJ, traY, and gene 19 were determined. Gene 19 is highly conserved; its product is very similar to that coded by the F and R1 plasmids. The TraM protein is similar in P307 and in F; the R1 sequence shows differences in the 40 N-terminal amino acids. The traJ product is very different in P307, F, and R1. The traY gene from P307, which in F is almost twice as long, is similar in size to that from R1. The finP RNA shows a high degree of homology with that from R1 and F, except for the two loop regions where base changes were observed. The genes coding for proteins, except traY, could be expressed in minicell- and T7 promoter-driven expression systems, whereas traJ and gene 19 could be expressed only in the latter system.
Collapse
Affiliation(s)
- A Graus-Göldner
- Institut für Mikrobiologie, Karl-Franzens-Universität Graz, Austria
| | | | | | | |
Collapse
|
12
|
Yoshioka Y, Fujita Y, Ohtsubo E. Nucleotide sequence of the promoter-distal region of the tra operon of plasmid R100, including traI (DNA helicase I) and traD genes. J Mol Biol 1990; 214:39-53. [PMID: 2164585 DOI: 10.1016/0022-2836(90)90145-c] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The nucleotide sequence of the promoter-distal region of the tra operon of R100 was determined. There are five open reading frames in the region between traT and finO, and their protein products were identified. Nucleotide sequences of plasmid F corresponding to the junction regions among the open reading frames seen in R100 were also determined. Comparison of these nucleotide sequences revealed strong homology in the regions containing traD, traI and an open reading frame (named orfD). The TraD protein (83,899 Da) contains three hydrophobic regions, of which two are located near the amino-terminal region. This protein also contains a possible ATP-binding consensus sequence at the amino-terminal region and a characteristic repeated peptide sequence (Gln-Gln-Pro)10 at the carboxy-terminal region. The TraI protein (191,679 Da) contains the sequence motif conserved in an ATP-dependent DNA helicase superfamily in its carboxy-terminal region. The protein product of orfD, which is probably a new tra gene (named traX), contains 65% hydrophobic amino acids, especially rich in alanine and leucine. There exist non-homologous regions between R100 and F that could be represented as four I-D (insertion or deletion) loops in heteroduplex molecules. Assignment of each loop to the strand of R100 or F was , however, found to be the reverse from that previously assumed. The three I-D loops that were located between traT and traD, between traD and traI, and between traI and finO had no terminal inverted repeat sequences nor had they any homology with known insertion sequences, while the fourth was IS3, located within the finO gene of F. The sequences in the I-D loops, except IS3, may also code for proteins that are, however, likely to be nonessential for transfer of plasmids.
Collapse
Affiliation(s)
- Y Yoshioka
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | |
Collapse
|
13
|
Dempsey WB, Fee BE. Integration host factor affects expression of two genes at the conjugal transfer origin of plasmid R100. Mol Microbiol 1990; 4:1019-28. [PMID: 2215210 DOI: 10.1111/j.1365-2958.1990.tb00674.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integration host factor (IHF) binds to two sites near the origin of transfer of the conjugative antibiotic resistance plasmid, R100. DNase I footprinting shows that one site is immediately adjacent to oriT and the gene X promoter, and another is adjacent to the traM promoter. A third site, known only from retardation gels, is near the traJ promoter. The relative promoter activities of genes X, traJ and traM are reduced in himA mutants (IHF-), as measured by chloramphenicol-resistance assays. Transcript analyses by Northern blots showed a reduction in size of the principal gene X and traJ transcripts in the absence of IHF.
Collapse
Affiliation(s)
- W B Dempsey
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas
| | | |
Collapse
|
14
|
Loh S, Cram D, Skurray R. Nucleotide sequence of the leading region adjacent to the origin of transfer on plasmid F and its conservation among conjugative plasmids. MOLECULAR & GENERAL GENETICS : MGG 1989; 219:177-86. [PMID: 2693941 DOI: 10.1007/bf00261174] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The leading region of the Escherichia coli K12 F plasmid is the first segment of DNA to be transferred into the recipient cell during conjugal transfer. We report the nucleotide sequence of the 64.20-66.77F portion of the leading region immediately adjacent to the origin of transfer, oriT. The 2582 bp region encodes three open reading frames, ORF95, ORF169 and ORF273; the product of ORF273, is equivalent in size and map location to the 35 kDa protein, 6d, previously described (Cram et al. 1984). S1 nuclease analyses of mRNA transcripts have identified a potential promoter for ORF95 and ORF273 and indicated that these ORFs are transcribed as a single transcript; in contrast, ORF169 appears to be transcribed from two overlapping promoters on the complementary DNA strand. The products of ORF95 and ORF273 are mainly hydrophilic and are probably located in the cytoplasm. ORF273 shares some homology with DNA-binding proteins. There is a signal peptide sequence at the NH2-terminus of ORF169 and the mature form of ORF169 probably resides in the periplasm due to its hydrophilic nature. Both ORF273 and ORF169 are well conserved among conjugative F-like and a few non-F-like plasmids. On the other hand, ORF95 sequences are only present on some of these plasmids. Several primosome and integration host factor recognition sites are present implicating this region in DNA metabolism and/or replication functions.
Collapse
Affiliation(s)
- S Loh
- Department of Microbiology, Monash University, Victoria, Australia
| | | | | |
Collapse
|
15
|
Dempsey WB. Derepression of conjugal transfer of the antibiotic resistance plasmid R100 by antisense RNA. J Bacteriol 1989; 171:2886-8. [PMID: 2468651 PMCID: PMC209981 DOI: 10.1128/jb.171.5.2886-2888.1989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Conjugal transfer of the normally repressed antibiotic resistance plasmid R100 was derepressed by fragments of R100 that carried the traJ promoter and the traJ leader but lacked the finP promoter.
Collapse
Affiliation(s)
- W B Dempsey
- General Medical Research, Veteran's Administration Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Dempsey WB. Sense and antisense transcripts of traM, a conjugal transfer gene of the antibiotic resistance plasmid R100. Mol Microbiol 1989; 3:561-70. [PMID: 2474740 DOI: 10.1111/j.1365-2958.1989.tb00202.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The region of the antibiotic resistance plasmid R100 that encodes the plasmid-specific transfer gene traM has two tandemly aligned promoters separated by 145 nucleotides. The principal transcripts are 705 and 562 nucleotides long. Minor transcripts are 1550 and 1700 nucleotides long. The 705-base transcript appears to encode an 11 kD traM protein. The 562-base transcript does not encode a detectable protein. When subcloned on short fragments, the promoter for the 562-base transcript initiates efficiently but that for the 705 site does not. The 3' ends of the 705 and 562 base transcripts end inside the traJ ORF. Thus they provide additional sense RNA to compete with traJ for finP, the antisense translational regulator of traJ. A model is proposed for the participation of these sense and antisense transcripts in the control of expression of the traJ gene.
Collapse
MESH Headings
- Bacterial Proteins/biosynthesis
- Bacterial Proteins/genetics
- Base Sequence
- Cloning, Molecular
- Conjugation, Genetic
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Gene Expression Regulation
- Genes, Bacterial
- Models, Genetic
- Molecular Sequence Data
- Plasmids
- Promoter Regions, Genetic
- R Factors/genetics
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Restriction Mapping
- Ribonucleases
- Transcription, Genetic
Collapse
Affiliation(s)
- W B Dempsey
- General Medical Research, VA Medical Centre, Dallas, Texas
| |
Collapse
|
17
|
Womble DD, Rownd RH. Genetic and physical map of plasmid NR1: comparison with other IncFII antibiotic resistance plasmids. Microbiol Rev 1988; 52:433-51. [PMID: 3070319 PMCID: PMC373158 DOI: 10.1128/mr.52.4.433-451.1988] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
18
|
Dutreix M, Bäckman A, Célérier J, Bagdasarian MM, Sommer S, Bailone A, Devoret R, Bagdasarian M. Identification of psiB genes of plasmids F and R6-5. Molecular basis for psiB enhanced expression in plasmid R6-5. Nucleic Acids Res 1988; 16:10669-79. [PMID: 3205720 PMCID: PMC338932 DOI: 10.1093/nar/16.22.10669] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
PsiB protein of plasmid R6-5 inhibits the induction of the SOS pathway. The F sex factor also carries a psiB gene homologous to that of R6-5. Yet, it fails to inhibit SOS induction. In order to solve this difference, we characterized the psiB genes of R6-5 and F. We found that (i) the sequences of the two psiB genes share extensive homology the predicted amino acid sequences of the two proteins differing by 5 residues, (ii) the expression of R6-5 psiB is 4 times higher than F psiB gene, (iii) in plasmid R6-5, a Tn10 transposon upstream from the psiB gene enhances psiB expression. Hence, the F sex factor may be unable to prevent SOS induction for two non-exclusive reasons: (i) F PsiB protein, being slightly different from R6-5, may be less active, (ii) the level of synthesis of F PsiB protein may be insufficient to prevent SOS induction.
Collapse
Affiliation(s)
- M Dutreix
- GEMC, Enzymologie, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Inamoto S, Yoshioka Y, Ohtsubo E. Identification and characterization of the products from the traJ and traY genes of plasmid R100. J Bacteriol 1988; 170:2749-57. [PMID: 2836369 PMCID: PMC211198 DOI: 10.1128/jb.170.6.2749-2757.1988] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The nucleotide sequence of part of the tra region of R100 including traJ and traY was determined, and the products of several tra genes were identified. The nucleotide sequence of traJ, encoding a protein of 223 amino acids, showed poor homology with the corresponding segments of other plasmids related to R100, but the deduced amino acid sequences showed low but significant homology. The first four amino acids at the N-terminal region of the TraJ protein were not essential for positive regulation of expression of traY, the first gene of the traYZ operon. The nucleotide sequence of traY shows that this gene may use TTG as the initiation codon and that it encodes a protein of 75 amino acids. Analysis of the traY gene product, which was obtained as the fusion protein with beta-galactosidase, showed that the N-terminal region of the product has an amino acid sequence identical to that deduced from the assigned frame but lacks formylmethionine. traY of plasmid F, which encodes a larger protein than the TraY protein of R100, is thought to use ATG as an initiation codon. However, a TTG initiation codon was found in the preceding region of the previously assigned traY coding frame of F. Interestingly, when translation of traY of F was initiated from TTG, the amino acid sequence homologous to the TraY protein of R100 appeared in tandem in the TraY protein of F. This may suggest that traY of F has undergone duplication of a gene like the traY gene of R100.
Collapse
Affiliation(s)
- S Inamoto
- Institute of Applied Microbiology, University of Tokyo, Japan
| | | | | |
Collapse
|
20
|
Fee BE, Dempsey WB. Nucleotide sequence of gene X of antibiotic resistance plasmid R100. Nucleic Acids Res 1988; 16:4726. [PMID: 2837741 PMCID: PMC336665 DOI: 10.1093/nar/16.10.4726] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- B E Fee
- Veterans Administration Medical Center, Dallas, TX 75216
| | | |
Collapse
|
21
|
Affiliation(s)
- W Paranchych
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
22
|
Dempsey WB. Transcript analysis of the plasmid R100 traJ and finP genes. MOLECULAR & GENERAL GENETICS : MGG 1987; 209:533-44. [PMID: 3323829 DOI: 10.1007/bf00331160] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Single-stranded RNA probes were used to study the regulation of plasmid transfer in the infectious antibiotic resistance plasmid R100. Transcription of the positive transfer control gene traJ of R100 appears to be initiated continuously. In the presence of finO, the traJ transcript is 235 bases long, and in the absence of finO it is 1050. These sizes are strain specific. finO increases four-to tenfold the amount of the transcript from the finP gene that is detectable in cells containing R100, R136, or the sex factor F. The size of the principal finP transcript from R100 as determined on Northern blots is 105 bases. A secondary transcript with a size of 180 bases was detected in small amounts in R100 extracts. The finP transcript size was also determined by nuclease protection experiments. In this case the size was 74 bases. The 5' ends of the finP and traJ transcripts were located by primer extension experiments. A new model of FinO/P control is proposed.
Collapse
Affiliation(s)
- W B Dempsey
- Research Service, Veterans Administration Medical Center, TX
| |
Collapse
|
23
|
Dempsey WB. Integration host factor and conjugative transfer of the antibiotic resistance plasmid R100. J Bacteriol 1987; 169:4391-2. [PMID: 3305485 PMCID: PMC213759 DOI: 10.1128/jb.169.9.4391-4392.1987] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transfer of plasmid R100-1 was reduced 100-fold in the absence of integration host factor.
Collapse
|
24
|
Abstract
We present the nucleotide sequence of the oriT region from plasmid R100. Comparison to other IncF plasmids revealed homology around the proposed nick sites as well as conservation of inverted repeated sequences in the nonhomologous region. Three areas showed strong homology (eight of nine nucleotides) to the consensus sequence for binding of integration host factor, suggesting a role for this DNA-binding protein in nicking at oriT.
Collapse
|
25
|
Abstract
The DNA fragment carrying the oriT region from the enterotoxin plasmid P307 was isolated and its polynucleotide sequence was determined. Using Southern hybridization assays with a synthetic oligonucleotide probe, the oriT region was identified on a 7.9-kb EcoRI fragment from P307. By ligating the fragment with the cloning vector pUC119, plasmid pAG10 was obtained. The physical map of the insert was determined and oriT was located on a 540-bp BglII/SalI fragment. After this fragment was subcloned into sequencing phages, the polynucleotide sequence was established. Part of the sequence proved to be almost identical to segments of the oriT regions of the plasmids F and R1; another neighboring region was very different among all three sequences. The polynucleotide sequence proximal to traM is highly similar to that of F but different from that of R1.
Collapse
Affiliation(s)
- A Göldner
- Karl-Franzens-Universität Graz, Institut für Mikrobiologie, Austria
| | | | | |
Collapse
|
26
|
Abstract
The fin0 gene of R100 was isolated from the Fin0+ transducing phage VA lambda 57. The limits of the gene were determined by BAL31 digestions and by analysis of deletion mutations derived from an internal restriction site. The DNA sequence contained an open reading frame of 558 nucleotides that would encode a protein of 21,268 daltons. Synthesis of such a protein was observed only when the fragment was cloned in front of the TAC promoter. Deletions entering the large open reading frame from either end were Fin0-, while internal frame shift mutations retained high Fin0 activity. One such strain had a 13 bp internal deletion that would produce a protein of 63 amino acid residues of which 21 were basic. We were consequently unable to rigorously establish that the 558 base orf encoded a fin0 product. The strand opposite the large open reading frame contained several transcription termination signals, and it is possible that the active gene product is one or two small RNAs from this strand.
Collapse
|
27
|
Finlay BB, Frost LS, Paranchych W. Origin of transfer of IncF plasmids and nucleotide sequences of the type II oriT, traM, and traY alleles from ColB4-K98 and the type IV traY allele from R100-1. J Bacteriol 1986; 168:132-9. [PMID: 3531163 PMCID: PMC213429 DOI: 10.1128/jb.168.1.132-139.1986] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The complete nucleotide sequences of the ColB4-K98 (ColB4) plasmid transfer genes oriT, traM, and traY as well as the traY gene of R100-1 are presented and compared with the corresponding regions from the conjugative plasmids F, R1, and R100. The sequence encoding the oriT nick sites and surrounding inverted repeats identified in F was conserved in ColB4. The adenine-thymine-rich sequence following these nick sites was conserved in R1 and ColB4 but differed in F and R100, indicating that this region may serve as the recognition site for the traY protein. A series of direct repeats unique to the ColB4 plasmid was found in the region of dyad symmetry following this AT-rich region. This area also encodes 21-base-pair direct repeats which are homologous to those in F and R100. The traM gene product may bind in this region. Overlapping and following these repeats is the promoter(s) for the traM protein. The traM protein from ColB4 is similar to the equivalent products from F, R1, and R100. The traY protein from ColB4 is highly homologous to the R1 traY gene product, while the predicted R100-1 traY product differs at several positions. These differences presumably define the different alleles of traM and traY previously identified for IncF plasmids by genetic criteria. The translational start codons of the ColB4 and R100-1 traY genes are GUG and UUG, respectively, two examples of rare initiator codon usage.
Collapse
|