1
|
Raskovic D, Alvarado G, Hines KM, Xu L, Gatto C, Wilkinson BJ, Pokorny A. Growth of Staphylococcus aureus in the presence of oleic acid shifts the glycolipid fatty acid profile and increases resistance to antimicrobial peptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1867:184395. [PMID: 39500386 DOI: 10.1016/j.bbamem.2024.184395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/27/2024] [Accepted: 10/23/2024] [Indexed: 11/10/2024]
Abstract
Staphylococcus aureus readily adapts to various environments and quickly develops antibiotic resistance, which has led to an increase in multidrug-resistant infections. Hence, S. aureus presents a significant global health issue and its adaptations to the host environment are crucial for understanding pathogenesis and antibiotic susceptibility. When S. aureus is grown conventionally, its membrane lipids contain a mix of branched-chain and straight-chain saturated fatty acids. However, when unsaturated fatty acids are present in the growth medium, they become a major part of the total fatty acid composition. This study explores the biophysical effects of incorporating straight-chain unsaturated fatty acids into S. aureus membrane lipids. Membrane preparations from cultures supplemented with oleic acid showed more complex differential scanning calorimetry scans than those grown in tryptic soy broth alone. When grown in the presence of oleic acid, the cultures exhibited a transition significantly above the growth temperature, attributed to the presence of glycolipids with long-chain fatty acids causing acyl chain packing frustration within the bilayer. Functional aspects of the membrane were assessed by studying the kinetics of dye release from unilamellar vesicles induced by the antimicrobial peptide mastoparan X. Dye release was slower from liposomes prepared from cells grown in oleic acid-supplemented cultures, suggesting that changes in membrane lipid composition and biophysics protect the cell membrane against peptide-induced lysis. These findings underscore the intricate relationship between the growth environment, membrane lipid composition, and the physical properties of the bacterial membrane, which should be considered when developing new strategies against S. aureus infections.
Collapse
Affiliation(s)
- Djuro Raskovic
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States of America
| | - Gloria Alvarado
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, United States of America; School of Biological Sciences, Illinois State University, Normal, IL, United States of America
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, United States of America
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, United States of America
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, IL, United States of America
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, IL, United States of America
| | - Antje Pokorny
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, NC, United States of America.
| |
Collapse
|
2
|
Raskovic D, Alvarado G, Hines KM, Xu L, Gatto C, Wilkinson BJ, Pokorny A. Growth of Staphylococcus aureus in the presence of oleic acid shifts the glycolipid fatty acid profile and increases resistance to antimicrobial peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592415. [PMID: 38746422 PMCID: PMC11092785 DOI: 10.1101/2024.05.03.592415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Staphylococcus aureus readily adapts to various environments and quickly develops antibiotic resistance, which has led to an increase in multidrug-resistant infections. Hence, S. aureus presents a significant global health issue and its adaptations to the host environment are crucial for understanding pathogenesis and antibiotic susceptibility. When S. aureus is grown conventionally, its membrane lipids contain a mix of branched-chain and straight-chain saturated fatty acids. However, when unsaturated fatty acids are present in the growth medium, they become a major part of the total fatty acid composition. This study explores the biophysical effects of incorporating straight-chain unsaturated fatty acids into S. aureus membrane lipids. Membrane preparations from cultures supplemented with oleic acid showed more complex differential scanning calorimetry scans than those grown in tryptic soy broth alone. When grown in the presence of oleic acid, the cultures exhibited a transition significantly above the growth temperature, attributed to the presence of glycolipids with long-chain fatty acids causing acyl chain packing frustration within the bilayer. Functional aspects of the membrane were assessed by studying the kinetics of dye release from unilamellar vesicles induced by the antimicrobial peptide mastoparan X. Dye release was slower from liposomes prepared from cells grown in oleic acid-supplemented cultures, suggesting that changes in membrane lipid composition and biophysics protect the cell membrane against peptide-induced lysis. These findings underscore the intricate relationship between the growth environment, membrane lipid composition, and the physical properties of the bacterial membrane, which should be considered when developing new strategies against S. aureus infections.
Collapse
Affiliation(s)
- Djuro Raskovic
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| | - Gloria Alvarado
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, Georgia, United States of America
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Craig Gatto
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Brian J Wilkinson
- School of Biological Sciences, Illinois State University, Normal, Illinois, United States of America
| | - Antje Pokorny
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, Wilmington, North Carolina, United States of America
| |
Collapse
|
3
|
|
4
|
Folmsbee M, Howard G, McAlister M. Nutritional effects of culture media on mycoplasma cell size and removal by filtration. Biologicals 2010; 38:214-7. [PMID: 20149685 DOI: 10.1016/j.biologicals.2009.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 10/05/2009] [Indexed: 11/20/2022] Open
Abstract
Careful media filtration prior to use is an important part of a mycoplasma contamination prevention program. This study was conducted to increase our knowledge of factors that influence efficient filtration of mycoplasma. The cell size of Acholeplasma laidlawii was measured after culture in various nutritional conditions using scanning electron microscopy. The maximum cell size changed, but the minimum cell size remained virtually unchanged and all tested nutritional conditions resulted in a population of cells smaller than 0.2 microm. Culture in Tryptic Soy Broth (TSB) resulted in an apparent increase in the percentage of very small cells which was not reflected in increased penetration of non-retentive 0.2 microm rated filters. A. laidlawii cultured in selected media formulations was used to challenge 0.2 microm rated filters using mycoplasma broth base as the carrier fluid. We used 0.2 microm rated filters as an analytical tool because A. laidlawii is known to penetrate 0.2 microm filters and the degrees of penetration can be compared. Culture of A. laidlawii in TSB resulted in cells that did not penetrate 0.2 microm rated filters to the same degree as cells cultured in other media such as mycoplasma broth or in TSB supplemented with 10% horse serum.
Collapse
Affiliation(s)
- Martha Folmsbee
- Pall Corporation, 25 Harbor Park Dr., Port Washington, NY 11050, USA.
| | | | | |
Collapse
|
5
|
Lindblom G, Orädd G, Rilfors L, Morein S. Regulation of lipid composition in Acholeplasma laidlawii and Escherichia coli membranes: NMR studies of lipid lateral diffusion at different growth temperatures. Biochemistry 2002; 41:11512-5. [PMID: 12234195 DOI: 10.1021/bi0263098] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lipid lateral diffusion coefficients have been directly determined by pulsed field gradient NMR spectroscopy on macroscopically aligned, fully hydrated lamellar phases containing dimyristoylphosphatidylcholine and total lipid extracts from Acholeplasma laidlawii and Escherichia coli. The temperature dependence of the diffusion coefficient was of the Arrhenius type in the temperature interval studied. The sharp increase in the diffusion coefficient at the growth temperature of E. coli obtained by FRAP measurements, using a fluorescent probe molecule (Jin, A. J., Edidin, M., Nossal, R., and Gershfeld, N. L. (1999) Biochemistry 38, 13275-13278), was not observed. Thus, we conclude that the lipid structural properties (i.e., those affecting the lipid phase behavior), rather than the lipid dynamics, are involved in the adjustment of the membrane lipid composition. Further support for this conclusion is given by the finding that lipid extracts from A. laidlawii grown at different temperatures have about the same diffusion coefficients. Finally, the lipid lateral diffusion in bilayers of phospholipids was found to be much faster than that in bilayers of mainly glucolipids, which can be understood in terms of a free volume theory for the diffusion process.
Collapse
Affiliation(s)
- Göran Lindblom
- Department of Biophysical Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
6
|
Rilfors L, Lindblom G. Regulation of lipid composition in biological membranes—biophysical studies of lipids and lipid synthesizing enzymes. Colloids Surf B Biointerfaces 2002. [DOI: 10.1016/s0927-7765(01)00310-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Vikström S, Li L, Karlsson OP, Wieslander A. Key role of the diglucosyldiacylglycerol synthase for the nonbilayer-bilayer lipid balance of Acholeplasma laidlawii membranes. Biochemistry 1999; 38:5511-20. [PMID: 10220338 DOI: 10.1021/bi982532m] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the single membrane of Acholeplasma laidlawii, a specific glucosyltransferase (DGlcDAG synthase) synthesizes the major, bilayer-forming lipid diglucosyldiacylglycerol (DGlcDAG) from the preceding major, nonbilayer-prone monoglucosyldiacylglycerol (MGlcDAG). This is crucial for the maintenance of phase equilibria close to a potential bilayer-nonbilayer transition and a nearly constant spontaneous curvature for the membrane bilayer lipid mixture. The glucolipid pathway is also balanced against the phosphatidylglycerol (PG) pathway to maintain a certain lipid surface charge density. The DGlcDAG synthase was purified approximately 5000-fold by three chromatographic techniques and identified as a minor 40 kDa membrane protein. In CHAPS mixed micelles, a cooperative dependence on anionic lipid activators was confirmed, with PG as the best. The dependence of the enzyme on the soluble UDP-glucose substrate followed Michaelis-Menten kinetics, while the kinetics for the other (lipid) substrate MGlcDAG exhibited cooperativity, with Hill coefficients in the range of 3-5. Vmax and the Hill coefficient, but not Km, for the MGlcDAG substrate were increased by increased PG concentrations, but above 3 mol % MGlcDAG, the rate of synthesis was constant. Hence, the DGlcDAG synthase is more affected by the lipid activator than by the lipid substrate at physiological lipid concentrations. The enzyme was shown to be sensitive to curvature "stress" changes, i.e., was stimulated by various nonbilayer lipids but inhibited by certain others. Certain phosphates were also stimulatory. With the two purified MGlcDAG and DGlcDAG synthases reconstituted together in the presence of a potent nonbilayer lipid, the strong responses in the amounts of MGlcDAG and DGlcDAG synthesized mimicked the responses in vivo. This supports the important regulatory functions of these enzymes.
Collapse
Affiliation(s)
- S Vikström
- Department of Biochemistry, Umeå University, Sweden.
| | | | | | | |
Collapse
|
8
|
Chen Z, Rand RP. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J 1997; 73:267-76. [PMID: 9199791 PMCID: PMC1180928 DOI: 10.1016/s0006-3495(97)78067-6] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The behavior of dioleoylphosphatidylethanolamine (DOPE)/cholesterol/tetradecane and dioleoylphosphatidylcholine (DOPC)/cholesterol/tetradecane were examined using x-ray diffraction and the osmotic stress method. DOPE/tetradecane, with or without cholesterol, forms inverted hexagonal (HII) phases in excess water. DOPC/tetradecane forms lamellar phases without cholesterol at lower temperatures. With tetradecane, as little as 5 mol% cholesterol in DOPC induced the formation of HII phases of very large dimension. Increasing levels of cholesterol result in a systematic decrease in the HII lattice dimension for both DOPE and DOPC in excess water. Using osmotic pressure to control hydration, we applied a recent prescription to estimate the intrinsic curvature and bending modulus of the HII monolayers. The radii of the intrinsic curvature, RPO, at a pivotal plane of constant area within the monolayer were determined to be 29.4 A for DOPE/tetradecane at 22 degrees C, decreasing to 27 A at 30 mol% cholesterol. For DOPC/tetradecane at 32 degrees C, RPO decreased from 62.5 A to 40 A as its cholesterol content increased from 30 to 50 mol%. These data yielded an estimate of the intrinsic radius of curvature for pure DOPC of 87.3 A. The bending moduli kc of DOPE/tetradecane and DOPC/tetradecane, each with 30 mol% cholesterol, are 15 and 9 kT, respectively. Tetradecane itself was shown to have little effect on the bending modulus in the cases of DOPE and cholesterol/DOPE. Surprisingly, cholesterol effected only a modest increase in the kc of these monolayers, which is much smaller than estimated from its effect on the area compressibility modulus in bilayers. We discuss possible reasons for this difference.
Collapse
Affiliation(s)
- Z Chen
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | |
Collapse
|
9
|
Wieslander Å, Karlsson OP. Chapter 14 Regulation of Lipid Syntheses in Acholeplasrna Laidlawii. CURRENT TOPICS IN MEMBRANES 1997. [DOI: 10.1016/s0070-2161(08)60218-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Wieslander A, Nordström S, Dahlqvist A, Rilfors L, Lindblom G. Membrane lipid composition and cell size of Acholeplasma laidlawii strain A are strongly influenced by lipid acyl chain length. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:734-44. [PMID: 7867633 DOI: 10.1111/j.1432-1033.1995.tb20196.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The small, cell-wall-less prokaryote Acholeplasma laidlawii strain A-EF22 could grow with membrane lipids having an average acyl chain length Cn varying over 14.5- almost 20 carbons by exogenous supplementation with selected fatty acids. For 16 < Cn < 18, the cells grew with lipids containing 100% (mol/100 mol) monounsaturated acyl chains, whereas for Cn < 16 and Cn > 18, cell growth only occurred with gradually lower fractions of unsaturated chains. Cn was actively increased and decreased by chain elongation or de novo fatty acid synthesis upon incorporation of short-chain and long-chain fatty acids, respectively. The membrane lipid composition was strongly affected by the acyl chain length and unsaturation, and the metabolic responses are readily explained as a regulation mechanism based on the established phase equilibria of the individual lipids in the A. laidlawii membrane. Monoglucosyldiacylglycerol (Glc-acyl2-Gro) was the dominating lipid with short chains but the fraction of this lipid decreased with increasing Cn, correlating with the decreasing lamellar to nonlamellar phase transition temperatures for this lipid. The fractions of diglucosyldiacylglycerol (Glc2-acyl2Gro) and phosphatidylglycerol (PtdGro), forming lamellar phases only, increased with increasing Cn over the entire chain-length interval. A weaker correlation was usually observed between the relative amount of a lipid and the extent of chain unsaturation; however, the fractions of Glc2-acyl2Gro and PtdGro increased clearly with an increasing degree of unsaturation. Moreover, the synthesis of the nonbilayer-forming lipids acyl2Gro and monoacyl-Glc-acyl2Gro was strongly stimulated by a high degree of chain saturation. Concomitantly, the phase equilibria of Glc-acyl2Gro are shifted towards lamellar phases at the growth temperature. The fraction of the three potentially nonbilayer-forming lipids varied over 10-80% (mol/100 mol) total lipids as a function of the acyl chain composition. The combined molar fractions of the three phospholipids increased strongly with chain unsaturation. However, the fraction of phosphate moieties in the different lipids was constant over the entire chain-length interval. It is concluded that the regulation of the membrane lipid composition aims at maintaining similar phase equilibria and surface charge densities of the lipid bilayer. The size of A. laidlawii cells was changed in a systematic manner and correlated qualitatively with the packing properties of the lipids. Cell diameters were increased by an increase in acyl chain length and saturation, and was affected by additives such an n-dodecane and acyl2Gro.
Collapse
Affiliation(s)
- A Wieslander
- Department of Biochemistry, Umeå University, Sweden
| | | | | | | | | |
Collapse
|
11
|
Activation of the membrane glucolipid synthesis in Acholeplasma laidlawii by phosphatidylglycerol and other anionic lipids. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31542-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Wieslander A, Rilfors L, Dahlqvist A, Jonsson J, Hellberg S, Rännar S, Sjöström M, Lindblom G. Similar regulatory mechanisms despite differences in membrane lipid composition in Acholeplasma laidlawii strains A-EF22 and B-PG9. A multivariate data analysis. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1191:331-42. [PMID: 8172919 DOI: 10.1016/0005-2736(94)90184-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mycoplasmas are small, cell wall-deficient bacteria. The metabolic regulation of the lipid composition in the membrane of the species Acholeplasma laidlawii, strains A-EF22 and B-JU, is governed mainly by the balance between the potential formation of lamellar and nonlamellar phase structures. However, the regulatory features have not been consistently observed in the B-PG9 strain. A comparison has been performed between the membrane lipid composition for strains A-EF22 and B-PG9, simultaneously changing eight experimental conditions known to affect the regulation and packing properties of the A-EF22 lipids. Multiple regression and partial least-square discriminant analyses of many variables showed: (i) quantitative differences in membrane lipid and protein composition, and in membrane protein molecular masses of the two strains; (ii) different molar fractions of the major polar lipids monoglucosyldiacylglycerol (nonlamellar) and diglucosyldiacylglycerol (lamellar), which were caused by differences in lipid acyl chain length and unsaturation inherent in the strains and by the type of growth medium used; and (iii) similar regulatory mechanisms for changes in the lipid composition under most conditions, responding to the experimentally varied bilayer and nonbilayer properties of the lipid matrix. These regulatory principles are probably valid in other bacteria as well.
Collapse
Affiliation(s)
- A Wieslander
- Department of Biochemistry, University of Umeå, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Monck MA, Bloom M, Lafleur M, Lewis RN, McElhaney RN, Cullis PR. Evidence for two pools of cholesterol in the Acholeplasma laidlawii strain B membrane: a deuterium NMR and DSC study. Biochemistry 1993; 32:3081-8. [PMID: 8457569 DOI: 10.1021/bi00063a020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent investigations have indicated that there exists a well-defined range of membrane hydrocarbon order compatible with good growth of the microorganism Acholeplasma laidlawii B [Monck, M., Bloom, M., Lafleur, M., Lewis, R. N. A. H., McElhaney, R. N., & Cullis, P. R. (1992) Biochemistry 31, 10037-10043]. Since cholesterol increases hydrocarbon order in membranes, it was of interest to examine the effect of cholesterol on the hydrocarbon order and growth characteristics of A. laidlawii B. Cholesterol is normally absent from A. laidlawii membranes since it is neither biosynthesized nor required for the growth or survival of the microorganism. However, cholesterol will be incorporated into the membrane if exogenously supplied to the A. laidlawii culture. For membranes prepared from cells grown in the presence of cholesterol, chemical determinations indicated cholesterol represented as much as 40 mol% of the total membrane lipid. However, 2H NMR order parameter measurements and DSC studies of the same membrane preparation suggested that cholesterol was present at significantly lower levels (approximately 10-15 mol%) in the membrane lipid bilayer. Further incorporation of cholesterol into the A. laidlawii lipid bilayer was found to occur with an increase in temperature or by lyophilization and rehydration at high temperatures, suggesting that sterol present in a separate pool in the membrane preparation could then gain access to the bilayer. 2H NMR spectra of A. laidlawii membrane preparations containing deuterium-labeled cholesterol indicate that the bulk of the cholesterol present in this separate pool is in a solid form.
Collapse
Affiliation(s)
- M A Monck
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
14
|
Affiliation(s)
- R Bittman
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing 11367
| |
Collapse
|
15
|
Rilfors L, Wieslander A, Lindblom G. Regulation and physicochemical properties of the polar lipids in Acholeplasma laidlawii. Subcell Biochem 1993; 20:109-66. [PMID: 8378987 DOI: 10.1007/978-1-4615-2924-8_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- L Rilfors
- Department of Physical Chemistry, University of Umeå, Sweden
| | | | | |
Collapse
|
16
|
Abstract
A brief review of membrane lipids forming cubic and reversed hexagonal phases is presented. An emphasis is made on anionic lipids and particular microbial lipids.
Collapse
Affiliation(s)
- G Lindblom
- Göran Lindblom, Department of Physical Chemistry, University of Umeå, Sweden
| | | |
Collapse
|
17
|
Dahlqvist A, Andersson S, Wieslander A. The enzymatic synthesis of membrane glucolipids in Acholeplasma laidlawii. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1105:131-40. [PMID: 1533160 DOI: 10.1016/0005-2736(92)90171-h] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In membranes of the prokaryote Acholeplasma laidlawii, the physiological regulation of the two major membrane lipids, monoglucosyldiacylglycerol (MGlcDAG) and diglucosyldiacylglycerol (DGlcDAG), is governed by factors affecting the equilibria between lamellar and non-lamellar phases of the membrane lipids. The synthesis of the glucolipids is considered to be a two-step glucosylation: (i) DAG+UDP-Glc----MGlcDAG+UDP; and (ii) MGlcDAG+UDP-Glc----DGlcDAG+UPD. This was corroborated by in vivo pulse labelling experiments showing turnover of MGlcDAG but not DGlcDAG. The enzymatic synthesis of MGlcDAG was localized to fresh or freeze-dried membranes in vitro. Synthesis of DGlcDAG was minor in such membranes but of substantial magnitude in intact cells. Synthesis of MGlcDAG was stimulated by small amounts of SDS but completely inhibited upon solubilization of the membranes by a variety of detergents. The inhibitory effect of several UDP-Glc analogs on glucolipid synthesis demonstrated the importance of UDP-Glc as the sugar donor. Synthesis of both glucolipids was lost in freeze-dried plus lipid-extracted cells but restored when lipids were transferred back to the extracted cell membrane. By selectively adding specific lipids, a strong dependence on the acceptor lipid DAG, as well as the need for general matrix lipids for enzyme activity, was established. In addition, the anionic phosphatidylglycerol (PG), but not the other phospholipids, had a strong stimulatory effect. The presence of different phosphorylating agents stimulated the synthesis of DGlcDAG and partially inhibited that of MGlcDAG. This, together with the lipid dependency, may constitute mechanisms for the regulation of the enzyme activities in vivo.
Collapse
Affiliation(s)
- A Dahlqvist
- Department of Biochemistry, University of Umeå, Sweden
| | | | | |
Collapse
|
18
|
Increased rates of lipid exchange between Mycoplasma capricolum membranes and vesicles in relation to the propensity of forming nonbilayer lipid structures. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
19
|
Seddon JM. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1031:1-69. [PMID: 2407291 DOI: 10.1016/0304-4157(90)90002-t] [Citation(s) in RCA: 775] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- J M Seddon
- Chemistry Department, The University, Southampton, U.K
| |
Collapse
|
20
|
Lindblom G, Rilfors L. Cubic phases and isotropic structures formed by membrane lipids — possible biological relevance. ACTA ACUST UNITED AC 1989. [DOI: 10.1016/0304-4157(89)90020-8] [Citation(s) in RCA: 448] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
McElhaney RN. The influence of membrane lipid composition and physical properties of membrane structure and function in Acholeplasma laidlawii. Crit Rev Microbiol 1989; 17:1-32. [PMID: 2669829 DOI: 10.3109/10408418909105720] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- R N McElhaney
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
22
|
Bhakoo M, McElhaney RN. The effect of variations in growth temperature, fatty acid composition and cholesterol content on the lipid polar head-group composition of Acholeplasma laidlawii B membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 945:307-14. [PMID: 3191126 DOI: 10.1016/0005-2736(88)90493-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We have systematically investigated the effect of variations in growth temperature, fatty acid composition and cholesterol content on the membrane lipid polar headgroup composition of Acholeplasma laidlawii B. Two important lipid compositional parameters have been determined from such an analysis. The first parameter studied was the ratio of the two major neutral glycolipids of this organism, monoglucosyldiacylglycerol (MGDG) and diglucosyldiacylglycerol (DGDG). As the former lipid prefers to exist in a reversed hexagonal phase at higher temperatures, with unsaturated fatty acyl chains or in the presence of cholesterol, the ratio of these two lipids reflects the phase state preference of the total A. laidlawii membrane lipids. Although we find that the MGDG/DGDG ratio is reduced in response to an increase in fatty acid unsaturation, increases in growth temperature or cholesterol content reduce this ratio only in cells enriched in a saturated but not an unsaturated fatty acid. The second parameter studied was the ratio of these neutral glycolipids to the only phosphatide in the A. laidlawii membrane, phosphatidylglycerol (PG); this parameter reflects the relative balance of uncharged and charged lipids in the membrane of this organism. We find that the MGDG + DGDG/PG ratio is lowest in cells enriched in the saturated fatty acid even though these cells already have the highest lipid bilayer surface charge density. Moreover, this ratio is not consistently related to growth temperature or changes in cholesterol levels, as expected. We therefore conclude that A. laidlawii strain B, apparently unlike strain A, does not possess coherent regulatory mechanisms for maintaining either the phase preference or the surface charge density of its membrane lipid constant in response to variations in growth temperature, fatty acid composition or cholesterol content.
Collapse
Affiliation(s)
- M Bhakoo
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
23
|
Wieslander Å, Selstam E. Acyl-chain-dependent incorporation of chlorophyll and cholesterol in membranes of Acholeplasma laidlawii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1987. [DOI: 10.1016/0005-2736(87)90121-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Clementz T, Christiansson A, Wieslander A. Membrane potential, lipid regulation and adenylate energy charge in acyl chain modified Acholeplasma laidlawii. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 898:299-307. [PMID: 3567184 DOI: 10.1016/0005-2736(87)90070-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In Acholeplasma laidlawii variations induced in the transmembrane electrical potential have been shown to affect the membrane lipid composition. Particularly the molar ratio between the predominant glucolipids, monoglucosyldiacylglycerol and diglucosyldiacylglycerol, decreases upon hyperpolarization and increases upon depolarization (Clementz et al. (1986) Biochemistry 25, 823-830). Upon variation of the degree of membrane fatty acyl chain unsaturation, known to affect the passive permeability for a number of small molecules, there was no significant correlation between acyl chain composition and the magnitude of the electrical potential. Hyperpolarization by valinomycin decreased the glucolipid ratio for all kinds of membranes, but the size of the decrease was not correlated to the acyl chain composition. However, a clear relationship, independent of acyl chain composition, was found between the extent of hyperpolarization and the size of the decrease in the glucolipid ratio. The adenylate energy charge value (Ec) of the cells was affected by the acyl chain composition, although not exclusively by the proportion of unsaturation. Furthermore, a larger hyperpolarization upon valinomycin addition was accompanied by a stronger reduction in Ec.
Collapse
|