1
|
Sun J, Wu J, Yuan Y, Fan L, Chua WLP, Ling YHS, Balamkundu S, priya D, Suen HCS, de Crécy-Lagard V, Dziergowska A, Dedon PC. tRNA modification profiling reveals epitranscriptome regulatory networks in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601603. [PMID: 39005467 PMCID: PMC11245014 DOI: 10.1101/2024.07.01.601603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transfer RNA (tRNA) modifications have emerged as critical posttranscriptional regulators of gene expression affecting diverse biological and disease processes. While there is extensive knowledge about the enzymes installing the dozens of post-transcriptional tRNA modifications - the tRNA epitranscriptome - very little is known about how metabolic, signaling, and other networks integrate to regulate tRNA modification levels. Here we took a comprehensive first step at understanding epitranscriptome regulatory networks by developing a high-throughput tRNA isolation and mass spectrometry-based modification profiling platform and applying it to a Pseudomonas aeruginosa transposon insertion mutant library comprising 5,746 strains. Analysis of >200,000 tRNA modification data points validated the annotations of predicted tRNA modification genes, uncovered novel tRNA-modifying enzymes, and revealed tRNA modification regulatory networks in P. aeruginosa. Platform adaptation for RNA-seq library preparation would complement epitranscriptome studies, while application to human cell and mouse tissue demonstrates its utility for biomarker and drug discovery and development.
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Junzhou Wu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yifeng Yuan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
| | - Leon Fan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Wei Lin Patrina Chua
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Yan Han Sharon Ling
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | | | - Dwija priya
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| | - Hazel Chay Suen Suen
- Department of Food, Chemical & Biotechnology, Singapore of Institute of Technology, 138683 Singapore
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611 USA
- Genetic Institute, University of Florida, Gainesville, FL 32611 USA
| | | | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 138602 Singapore
| |
Collapse
|
2
|
Jia J, Deng Y, Yi M, Zhu Y. 4mCPred-GSIMP: Predicting DNA N4-methylcytosine sites in the mouse genome with multi-Scale adaptive features extraction and fusion. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:253-271. [PMID: 38303422 DOI: 10.3934/mbe.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The epigenetic modification of DNA N4-methylcytosine (4mC) is vital for controlling DNA replication and expression. It is crucial to pinpoint 4mC's location to comprehend its role in physiological and pathological processes. However, accurate 4mC detection is difficult to achieve due to technical constraints. In this paper, we propose a deep learning-based approach 4mCPred-GSIMP for predicting 4mC sites in the mouse genome. The approach encodes DNA sequences using four feature encoding methods and combines multi-scale convolution and improved selective kernel convolution to adaptively extract and fuse features from different scales, thereby improving feature representation and optimization effect. In addition, we also use convolutional residual connections, global response normalization and pointwise convolution techniques to optimize the model. On the independent test dataset, 4mCPred-GSIMP shows high sensitivity, specificity, accuracy, Matthews correlation coefficient and area under the curve, which are 0.7812, 0.9312, 0.8562, 0.7207 and 0.9233, respectively. Various experiments demonstrate that 4mCPred-GSIMP outperforms existing prediction tools.
Collapse
Affiliation(s)
- Jianhua Jia
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Yu Deng
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Mengyue Yi
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| | - Yuhui Zhu
- School of Information Engineering, Jingdezhen Ceramic University, Jingdezhen 333403, China
| |
Collapse
|
3
|
Nguyen-Vo TH, Trinh QH, Nguyen L, Nguyen-Hoang PU, Rahardja S, Nguyen BP. i4mC-GRU: Identifying DNA N 4-Methylcytosine sites in mouse genomes using bidirectional gated recurrent unit and sequence-embedded features. Comput Struct Biotechnol J 2023; 21:3045-3053. [PMID: 37273848 PMCID: PMC10238585 DOI: 10.1016/j.csbj.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/06/2023] Open
Abstract
N4-methylcytosine (4mC) is one of the most common DNA methylation modifications found in both prokaryotic and eukaryotic genomes. Since the 4mC has various essential biological roles, determining its location helps reveal unexplored physiological and pathological pathways. In this study, we propose an effective computational method called i4mC-GRU using a gated recurrent unit and duplet sequence-embedded features to predict potential 4mC sites in mouse (Mus musculus) genomes. To fairly assess the performance of the model, we compared our method with several state-of-the-art methods using two different benchmark datasets. Our results showed that i4mC-GRU achieved area under the receiver operating characteristic curve values of 0.97 and 0.89 and area under the precision-recall curve values of 0.98 and 0.90 on the first and second benchmark datasets, respectively. Briefly, our method outperformed existing methods in predicting 4mC sites in mouse genomes. Also, we deployed i4mC-GRU as an online web server, supporting users in genomics studies.
Collapse
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
- School of Innovation, Design and Technology, Wellington Institute of Technology, Wellington 5012, New Zealand
| | - Quang H. Trinh
- School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi 100000, Vietnam
| | - Loc Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Phuong-Uyen Nguyen-Hoang
- Computational Biology Center, International University - VNU HCMC, Ho Chi Minh City 700000, Vietnam
| | - Susanto Rahardja
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Infocomm Technology Cluster, Singapore Institute of Technology, Singapore 138683, Singapore
| | - Binh P. Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
4
|
PSP-PJMI: An innovative feature representation algorithm for identifying DNA N4-methylcytosine sites. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.05.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Varma SJ, Calvani E, Grüning NM, Messner CB, Grayson N, Capuano F, Mülleder M, Ralser M. Global analysis of cytosine and adenine DNA modifications across the tree of life. eLife 2022; 11:81002. [PMID: 35900202 PMCID: PMC9333990 DOI: 10.7554/elife.81002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/12/2022] Open
Abstract
Interpreting the function and metabolism of enzymatic DNA modifications requires both position-specific and global quantities. Sequencing-based techniques that deliver the former have become broadly accessible, but analytical methods for the global quantification of DNA modifications have thus far been applied mostly to individual problems. We established a mass spectrometric method for the sensitive and accurate quantification of multiple enzymatic DNA modifications. Then, we isolated DNA from 124 archean, bacterial, fungal, plant, and mammalian species, and several tissues and created a resource of global DNA modification quantities. Our dataset provides insights into the general nature of enzymatic DNA modifications, reveals unique biological cases, and provides complementary quantitative information to normalize and assess the accuracy of sequencing-based detection of DNA modifications. We report that only three of the studied DNA modifications, methylcytosine (5mdC), methyladenine (N6mdA) and hydroxymethylcytosine (5hmdC), were detected above a picomolar detection limit across species, and dominated in higher eukaryotes (5mdC), in bacteria (N6mdA), or the vertebrate central nervous systems (5hmdC). All three modifications were detected simultaneously in only one of the tested species, Raphanus sativus. In contrast, these modifications were either absent or detected only at trace quantities, across all yeasts and insect genomes studied. Further, we reveal interesting biological cases. For instance, in Allium cepa, Helianthus annuus, or Andropogon gerardi, more than 35% of cytosines were methylated. Additionally, next to the mammlian CNS, 5hmdC was also detected in plants like Lepidium sativum and was found on 8% of cytosines in the Garra barreimiae brain samples. Thus, identifying unexpected levels of DNA modifications in several wild species, our resource underscores the need to address biological diversity for studying DNA modifications.
Collapse
Affiliation(s)
| | - Enrica Calvani
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| | - Nana-Maria Grüning
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany
| | - Christoph B Messner
- The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Grayson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Floriana Capuano
- Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| | - Michael Mülleder
- Core Facility-High Throughput Mass Spectrometry, Charité Universitätsmedizin, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité Universitätsmedizin, Berlin, Germany.,The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Biochemistry and Cambridge Systems Biology Center, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Yu B, Zhang Y, Wang X, Gao H, Sun J, Gao X. Identification of DNA modification sites based on elastic net and bidirectional gated recurrent unit with convolutional neural network. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Liu D, Shu X, Xiang S, Li T, Huang C, Cheng M, Cao J, Hua Y, Liu J. N4 -allyldeoxycytidine: A New DNA Tag with Chemical Sequencing Power for Pinpointing Labelling Sites, Mapping Epigenetic Mark, and in situ Imaging. Chembiochem 2022; 23:e202200143. [PMID: 35438823 DOI: 10.1002/cbic.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Indexed: 11/08/2022]
Abstract
DNA tagging with base analogs has found numerous applications. To precisely record the DNA labelling information, it will be highly beneficial to develop chemical sequencing tags that can be encoded into DNA as regular bases and decoded as mutant bases upon a mild, efficient and bioorthognal chemical treatment. Here we reported such a DNA tag, N4-allyldeoxycytidine (a4dC), to label and identify DNA by in vitro assays. The iodination of a4dC led to fast and complete formation of 3, N4-cyclized deoxycytidine, which induced base misincorporation during DNA replication and thus could be located at single base resolution. We explored the applications of a4dC in pinpointing DNA labelling sites at single base resolution, mapping epigenetic mark N4-methyldeoxycytidine, and imaging nucleic acids in situ. In addition, mammalian cellular DNA could be metabolically labelled with a4dC. Together,our study sheds light on the design of next generation DNA tags with chemical sequencing power.
Collapse
Affiliation(s)
- Donghong Liu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Xiao Shu
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Siying Xiang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Tengwei Li
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Chenyang Huang
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Mohan Cheng
- Zhejiang University, Department of polymer science and engineering, CHINA
| | - Jie Cao
- Zhejiang University, Life Sciences Institute; Department of Polymer Science and Engineering, CHINA
| | - Yuejin Hua
- Zhejiang University, he MOE Key Laboratory of Biosystems Homeostasis & Protection; Department of Infectious Diseases, Sir Run Run Shaw Hospital, College of Medicine, CHINA
| | - Jianzhao Liu
- Zhejiang University, Department of Polymer Science and Engineering, Zheda road 38, 310007, hangzhou, CHINA
| |
Collapse
|
8
|
Boulias K, Greer EL. Means, mechanisms and consequences of adenine methylation in DNA. Nat Rev Genet 2022; 23:411-428. [PMID: 35256817 PMCID: PMC9354840 DOI: 10.1038/s41576-022-00456-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
Abstract
N6-methyl-2'-deoxyadenosine (6mA or m6dA) has been reported in the DNA of prokaryotes and eukaryotes ranging from unicellular protozoa and algae to multicellular plants and mammals. It has been proposed to modulate DNA structure and transcription, transmit information across generations and have a role in disease, among other functions. However, its existence in more recently evolved eukaryotes remains a topic of debate. Recent technological advancements have facilitated the identification and quantification of 6mA even when the modification is exceptionally rare, but each approach has limitations. Critical assessment of existing data, rigorous design of future studies and further development of methods will be required to confirm the presence and biological functions of 6mA in multicellular eukaryotes.
Collapse
|
9
|
Transcription factor specificity limits the number of DNA-binding motifs. PLoS One 2022; 17:e0263307. [PMID: 35089985 PMCID: PMC8797260 DOI: 10.1371/journal.pone.0263307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/15/2022] [Indexed: 11/19/2022] Open
Abstract
We study the limits imposed by transcription factor specificity on the maximum number of binding motifs that can coexist in a gene regulatory network, using the SwissRegulon Fantom5 collection of 684 human transcription factor binding sites as a model. We describe transcription factor specificity using regular expressions and find that most human transcription factor binding site motifs are separated in sequence space by one to three motif-discriminating positions. We apply theorems based on the pigeonhole principle to calculate the maximum number of transcription factors that can coexist given this degree of specificity, which is in the order of ten thousand and would fully utilize the space of DNA subsequences. Taking into account an expanded DNA alphabet with modified bases can further raise this limit by several orders of magnitude, at a lower level of sequence space usage. Our results may guide the design of transcription factors at both the molecular and system scale.
Collapse
|
10
|
O’Brown ZK, Greer EL. N6-methyladenine: A Rare and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:177-210. [DOI: 10.1007/978-3-031-11454-0_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Dai Y, Yuan BF, Feng YQ. Quantification and mapping of DNA modifications. RSC Chem Biol 2021; 2:1096-1114. [PMID: 34458826 PMCID: PMC8341653 DOI: 10.1039/d1cb00022e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Apart from the four canonical nucleobases, DNA molecules carry a number of natural modifications. Substantial evidence shows that DNA modifications can regulate diverse biological processes. Dynamic and reversible modifications of DNA are critical for cell differentiation and development. Dysregulation of DNA modifications is closely related to many human diseases. The research of DNA modifications is a rapidly expanding area and has been significantly stimulated by the innovations of analytical methods. With the recent advances in methods and techniques, a series of new DNA modifications have been discovered in the genomes of prokaryotes and eukaryotes. Deciphering the biological roles of DNA modifications depends on the sensitive detection, accurate quantification, and genome-wide mapping of modifications in genomic DNA. This review provides an overview of the recent advances in analytical methods and techniques for both the quantification and genome-wide mapping of natural DNA modifications. We discuss the principles, advantages, and limitations of these developed methods. It is anticipated that new methods and techniques will resolve the current challenges in this burgeoning research field and expedite the elucidation of the functions of DNA modifications.
Collapse
Affiliation(s)
- Yi Dai
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
| | - Bi-Feng Yuan
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| | - Yu-Qi Feng
- Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University Wuhan 430072 P. R. China +86-27-68755595 +86-27-68755595
- School of Health Sciences, Wuhan University Wuhan 430071 China
| |
Collapse
|
12
|
Tesfahun AN, Alexeeva M, Tomkuvienė M, Arshad A, Guragain P, Klungland A, Klimašauskas S, Ruoff P, Bjelland S. Alleviation of C⋅C Mismatches in DNA by the Escherichia coli Fpg Protein. Front Microbiol 2021; 12:608839. [PMID: 34276575 PMCID: PMC8278400 DOI: 10.3389/fmicb.2021.608839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/20/2021] [Indexed: 11/18/2022] Open
Abstract
DNA polymerase III mis-insertion may, where not corrected by its 3′→ 5′ exonuclease or the mismatch repair (MMR) function, result in all possible non-cognate base pairs in DNA generating base substitutions. The most thermodynamically unstable base pair, the cytosine (C)⋅C mismatch, destabilizes adjacent base pairs, is resistant to correction by MMR in Escherichia coli, and its repair mechanism remains elusive. We present here in vitro evidence that C⋅C mismatch can be processed by base excision repair initiated by the E. coli formamidopyrimidine-DNA glycosylase (Fpg) protein. The kcat for C⋅C is, however, 2.5 to 10 times lower than for its primary substrate 8-oxoguanine (oxo8G)⋅C, but approaches those for 5,6-dihydrothymine (dHT)⋅C and thymine glycol (Tg)⋅C. The KM values are all in the same range, which indicates efficient recognition of C⋅C mismatches in DNA. Fpg activity was also exhibited for the thymine (T)⋅T mismatch and for N4- and/or 5-methylated C opposite C or T, Fpg activity being enabled on a broad spectrum of DNA lesions and mismatches by the flexibility of the active site loop. We hypothesize that Fpg plays a role in resolving C⋅C in particular, but also other pyrimidine⋅pyrimidine mismatches, which increases survival at the cost of some mutagenesis.
Collapse
Affiliation(s)
- Almaz Nigatu Tesfahun
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Miglė Tomkuvienė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Aysha Arshad
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Prashanna Guragain
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Life Sciences Center, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Peter Ruoff
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway.,Department of Clinical Molecular Biology, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
13
|
Xu H, Li S, Liu YS. Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Front Cell Dev Biol 2021; 9:699374. [PMID: 34262910 PMCID: PMC8273304 DOI: 10.3389/fcell.2021.699374] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
14
|
Khanal J, Tayara H, Zou Q, Chong KT. Identifying DNA N4-methylcytosine sites in the rosaceae genome with a deep learning model relying on distributed feature representation. Comput Struct Biotechnol J 2021; 19:1612-1619. [PMID: 33868598 PMCID: PMC8042287 DOI: 10.1016/j.csbj.2021.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
DNA N4-methylcytosine (4mC), an epigenetic modification found in prokaryotic and eukaryotic species, is involved in numerous biological functions, including host defense, transcription regulation, gene expression, and DNA replication. To identify 4mC sites, previous computational studies mostly focused on finding hand-crafted features. This area of research, therefore, would benefit from the development of a computational approach that relies on automatic feature selection to identify relevant sites. We here report 4mC-w2vec, a computational method that learned automatic feature discrimination in the Rosaceae genomes, especially in Rosa chinensis (R. chinensis) and Fragaria vesca (F. vesca), based on distributed feature representation and through the word embedding technique ‘word2vec’. While a few bioinformatics tools are currently employed to identify 4mC sites in these genomes, their prediction performance is inadequate. Our system processed 4mC and non-4mC sites through a word embedding process, including sub-word information of its biological words through k-mer, which then served as features that were fed into a double layer of convolutional neural network (CNN) to classify whether the sample sequences contained 4mCs or non-4mCs sites. Our tool demonstrated performance superior to current tools that use the same genomic datasets. Additionally, 4mC-w2vec is effective for balanced and imbalanced class datasets alike, and the online web-server is currently available at: http://nsclbio.jbnu.ac.kr/tools/4mC-w2vec/.
Collapse
Affiliation(s)
- Jhabindra Khanal
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Hilal Tayara
- School of international Engineering and Science, Jeonbuk National University, Jeonju 54896, South Korea
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, South Korea.,Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
15
|
Methylation of 45S Ribosomal DNA (rDNA) Is Associated with Cancer and Aging in Humans. Int J Genomics 2021; 2021:8818007. [PMID: 33575316 PMCID: PMC7861956 DOI: 10.1155/2021/8818007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Cancer and aging, two distinct processes of cell development, are two major problems threatening our human health and life in current days. Epigenetic studies, especially DNA methylation, have been intensively investigated on them over the years, though a lot of unanswered issues remain. In the human genome, rDNA is a highly conserved tandem repeat family playing critical roles in protein synthesis, genome stability and integrity, etc. More importantly, rDNA is the significant target of DNA methylation, and a potential association between rDNA methylation and cancer and aging has emerged recently. However, whether there is a general trend that rDNA methylation is associated with cancer and aging remains an open issue. In this study, the involvement of rDNA methylation in a series of records of cancer and aging was investigated and summarized, upon which perspectives about rDNA methylation in cancer and aging were proposed. The results showed that rDNA methylation in most cancer cases displayed a consistent pattern with hypermethylation in the coding region but with hypomethylation in the promoter region, which likely facilitates the proliferation and metastasis of cancerous cells. Distinctively, both the coding and promoter regions of rDNA become increasingly methylated during the process of aging, indicating the decline of rDNA activity. The finding of rDNA methylation also implies its potential application as an epigenetic biomarker in the diagnosis of cancer and aging. This work will shed light on our understanding of the pathogenesis, diagnosis, and treatment of cancer and aging from the perspective of rDNA methylation.
Collapse
|
16
|
Semyonov DA, Eltsov IV, Nechipurenko YD. A New Bias Site for Epigenetic Modifications: How Non-Canonical GC Base Pairs Favor Mechanochemical Cleavage of DNA. Bioessays 2020; 42:e2000051. [PMID: 32830350 DOI: 10.1002/bies.202000051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/23/2020] [Indexed: 11/11/2022]
Abstract
Properties of non-canonical GC base pairs and their relations with mechanochemical cleavage of DNA are analyzed. A hypothesis of the involvement of the transient GC wobble base pairs both in the mechanisms of the mechanochemical cleavage of DNA and epigenetic mechanisms involving of 5-methylcytosine, is proposed. The hypothesis explains the increase in the frequency of the breaks of the sugar-phosphate backbone of DNA after cytosines, the asymmetric character of these breaks, and an increase in break frequency in CpG after cytosine methylation. As an alternative hypothesis, probable implication of GC+ Hoogsteen base pairs is considered, which now exemplify the best-studied non-canonical GC base pairs in the DNA double helix. Also see the video abstract here https://youtu.be/EUunVWL0ptw.
Collapse
Affiliation(s)
- Denis A Semyonov
- Institute of Biophysics, Institute of Biophysics, Siberian Branch of Russian Academy of Science., Akademgorodok 50, Krasnoyarsk, 660036, Russia
| | | | - Yury D Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Liu Q, Chen J, Wang Y, Li S, Jia C, Song J, Li F. DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites. Brief Bioinform 2020; 22:5865572. [PMID: 32608476 DOI: 10.1093/bib/bbaa124] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/05/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
DNA N4-methylcytosine (4mC) is an important epigenetic modification that plays a vital role in regulating DNA replication and expression. However, it is challenging to detect 4mC sites through experimental methods, which are time-consuming and costly. Thus, computational tools that can identify 4mC sites would be very useful for understanding the mechanism of this important type of DNA modification. Several machine learning-based 4mC predictors have been proposed in the past 3 years, although their performance is unsatisfactory. Deep learning is a promising technique for the development of more accurate 4mC site predictions. In this work, we propose a deep learning-based approach, called DeepTorrent, for improved prediction of 4mC sites from DNA sequences. It combines four different feature encoding schemes to encode raw DNA sequences and employs multi-layer convolutional neural networks with an inception module integrated with bidirectional long short-term memory to effectively learn the higher-order feature representations. Dimension reduction and concatenated feature maps from the filters of different sizes are then applied to the inception module. In addition, an attention mechanism and transfer learning techniques are also employed to train the robust predictor. Extensive benchmarking experiments demonstrate that DeepTorrent significantly improves the performance of 4mC site prediction compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Quanzhong Liu
- College of Information Engineering, Northwest A&F University
| | - Jinxiang Chen
- College of Information Engineering, Northwest A&F University
| | - Yanze Wang
- College of Information Engineering, Northwest A&F University
| | - Shuqin Li
- College of Information Engineering, Northwest A&F University
| | - Cangzhi Jia
- School of Science, Dalian Maritime University
| | - Jiangning Song
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | | |
Collapse
|
18
|
Xu H, Jia P, Zhao Z. Deep4mC: systematic assessment and computational prediction for DNA N4-methylcytosine sites by deep learning. Brief Bioinform 2020; 22:5856341. [PMID: 32578842 DOI: 10.1093/bib/bbaa099] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
DNA N4-methylcytosine (4mC) modification represents a novel epigenetic regulation. It involves in various cellular processes, including DNA replication, cell cycle and gene expression, among others. In addition to experimental identification of 4mC sites, in silico prediction of 4mC sites in the genome has emerged as an alternative and promising approach. In this study, we first reviewed the current progress in the computational prediction of 4mC sites and systematically evaluated the predictive capacity of eight conventional machine learning algorithms as well as 12 feature types commonly used in previous studies in six species. Using a representative benchmark dataset, we investigated the contribution of feature selection and stacking approach to the model construction, and found that feature optimization and proper reinforcement learning could improve the performance. We next recollected newly added 4mC sites in the six species' genomes and developed a novel deep learning-based 4mC site predictor, namely Deep4mC. Deep4mC applies convolutional neural networks with four representative features. For species with small numbers of samples, we extended our deep learning framework with a bootstrapping method. Our evaluation indicated that Deep4mC could obtain high accuracy and robust performance with the average area under curve (AUC) values greater than 0.9 in all species (range: 0.9005-0.9722). In comparison, Deep4mC achieved an AUC value improvement from 10.14 to 46.21% when compared to previous tools in these six species. A user-friendly web server (https://bioinfo.uth.edu/Deep4mC) was built for predicting putative 4mC sites in a genome.
Collapse
Affiliation(s)
- Haodong Xu
- Center for Precision Health, School of Biomedical Informatics
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics
| |
Collapse
|
19
|
Wei L, Luan S, Nagai LAE, Su R, Zou Q. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species. Bioinformatics 2020; 35:1326-1333. [PMID: 30239627 DOI: 10.1093/bioinformatics/bty824] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
MOTIVATION As one of important epigenetic modifications, DNA N4-methylcytosine (4mC) is recently shown to play crucial roles in restriction-modification systems. For better understanding of their functional mechanisms, it is fundamentally important to identify 4mC modification. Machine learning methods have recently emerged as an effective and efficient approach for the high-throughput identification of 4mC sites, although high predictive error rates are still challenging for existing methods. Therefore, it is highly desirable to develop a computational method to more accurately identify m4C sites. RESULTS In this study, we propose a machine learning based predictor, namely 4mcPred-SVM, for the genome-wide detection of DNA 4mC sites. In this predictor, we present a new feature representation algorithm that sufficiently exploits sequence-based information. To improve the feature representation ability, we use a two-step feature optimization strategy, thereby obtaining the most representative features. Using the resulting features and Support Vector Machine (SVM), we adaptively train the optimal models for different species. Comparative results on benchmark datasets from six species indicate that our predictor is able to achieve generally better performance in predicting 4mC sites as compared to the state-of-the-art predictors. Importantly, the sequence-based features can reliably and robust predict 4mC sites, facilitating the discovery of potentially important sequence characteristics for the prediction of 4mC sites. AVAILABILITY AND IMPLEMENTATION The user-friendly webserver that implements the proposed 4mcPred-SVM is well established, and is freely accessible at http://server.malab.cn/4mcPred-SVM. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Leyi Wei
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Shasha Luan
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Luis Augusto Eijy Nagai
- Lab of Functional Analysis In Silico, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ran Su
- School of Computer Software, College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Quan Zou
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China.,Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
20
|
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry and Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
21
|
O'Brown ZK, Boulias K, Wang J, Wang SY, O'Brown NM, Hao Z, Shibuya H, Fady PE, Shi Y, He C, Megason SG, Liu T, Greer EL. Sources of artifact in measurements of 6mA and 4mC abundance in eukaryotic genomic DNA. BMC Genomics 2019; 20:445. [PMID: 31159718 PMCID: PMC6547475 DOI: 10.1186/s12864-019-5754-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/30/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Directed DNA methylation on N6-adenine (6mA), N4-cytosine (4mC), and C5-cytosine (5mC) can potentially increase DNA coding capacity and regulate a variety of biological functions. These modifications are relatively abundant in bacteria, occurring in about a percent of all bases of most bacteria. Until recently, 5mC and its oxidized derivatives were thought to be the only directed DNA methylation events in metazoa. New and more sensitive detection techniques (ultra-high performance liquid chromatography coupled with mass spectrometry (UHPLC-ms/ms) and single molecule real-time sequencing (SMRTseq)) have suggested that 6mA and 4mC modifications could be present in a variety of metazoa. RESULTS Here, we find that both of these techniques are prone to inaccuracies, which overestimate DNA methylation concentrations in metazoan genomic DNA. Artifacts can arise from methylated bacterial DNA contamination of enzyme preparations used to digest DNA and contaminating bacterial DNA in eukaryotic DNA preparations. Moreover, DNA sonication introduces a novel modified base from 5mC that has a retention time near 4mC that can be confused with 4mC. Our analyses also suggest that SMRTseq systematically overestimates 4mC in prokaryotic and eukaryotic DNA and 6mA in DNA samples in which it is rare. Using UHPLC-ms/ms designed to minimize and subtract artifacts, we find low to undetectable levels of 4mC and 6mA in genomes of representative worms, insects, amphibians, birds, rodents and primates under normal growth conditions. We also find that mammalian cells incorporate exogenous methylated nucleosides into their genome, suggesting that a portion of 6mA modifications could derive from incorporation of nucleosides from bacteria in food or microbiota. However, gDNA samples from gnotobiotic mouse tissues found rare (0.9-3.7 ppm) 6mA modifications above background. CONCLUSIONS Altogether these data demonstrate that 6mA and 4mC are rarer in metazoa than previously reported, and highlight the importance of careful sample preparation and measurement, and need for more accurate sequencing techniques.
Collapse
Affiliation(s)
- Zach K O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Konstantinos Boulias
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Wang
- Department of Biochemistry and Biostatistics, University at Buffalo Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Simon Yuan Wang
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Natasha M O'Brown
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Ziyang Hao
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Hiroki Shibuya
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Present address: Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Paul-Enguerrand Fady
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Chuan He
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Tao Liu
- Department of Biochemistry and Biostatistics, University at Buffalo Center of Excellence in Bioinformatics & Life Sciences, Buffalo, NY, 14203, USA
| | - Eric L Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Asymmetric Inheritance of Cell Fate Determinants: Focus on RNA. Noncoding RNA 2019; 5:ncrna5020038. [PMID: 31075989 PMCID: PMC6630313 DOI: 10.3390/ncrna5020038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/20/2022] Open
Abstract
During the last decade, and mainly primed by major developments in high-throughput sequencing technologies, the catalogue of RNA molecules harbouring regulatory functions has increased at a steady pace. Current evidence indicates that hundreds of mammalian RNAs have regulatory roles at several levels, including transcription, translation/post-translation, chromatin structure, and nuclear architecture, thus suggesting that RNA molecules are indeed mighty controllers in the flow of biological information. Therefore, it is logical to suggest that there must exist a series of molecular systems that safeguard the faithful inheritance of RNA content throughout cell division and that those mechanisms must be tightly controlled to ensure the successful segregation of key molecules to the progeny. Interestingly, whilst a handful of integral components of mammalian cells seem to follow a general pattern of asymmetric inheritance throughout division, the fate of RNA molecules largely remains a mystery. Herein, we will discuss current concepts of asymmetric inheritance in a wide range of systems, including prions, proteins, and finally RNA molecules, to assess overall the biological impact of RNA inheritance in cellular plasticity and evolutionary fitness.
Collapse
|
23
|
Beaulaurier J, Schadt EE, Fang G. Deciphering bacterial epigenomes using modern sequencing technologies. Nat Rev Genet 2019; 20:157-172. [PMID: 30546107 PMCID: PMC6555402 DOI: 10.1038/s41576-018-0081-3] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.
Collapse
Affiliation(s)
- John Beaulaurier
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gang Fang
- Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Prasad Y, Kumar R, Chaudhary AK, Dhanaraju R, Majumdar S, Rao DN. Kinetic and catalytic properties of M.HpyAXVII, a phase-variable DNA methyltransferase from Helicobacter pylori. J Biol Chem 2018; 294:1019-1034. [PMID: 30478171 DOI: 10.1074/jbc.ra118.003769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/10/2018] [Indexed: 01/26/2023] Open
Abstract
The bacterium Helicobacter pylori is one of the most common infectious agents found in the human stomach. H. pylori has an unusually large number of DNA methyltransferases (MTases), prompting speculation that they may be involved in the cancerization of epithelial cells. The mod-4a/4b locus, consisting of the hp1369 and hp1370 ORFs, encodes for a truncated and inactive MTase in H. pylori strain 26695. However, slipped-strand synthesis within the phase-variable polyguanine tract in hp1369 results in expression of an active HP1369-1370 fusion N 6-adenine methyltransferase, designated M.HpyAXVII. Sequence analysis of the mod-4a/4b locus across 74 H. pylori strain genomes has provided insights into the regulation of M.HpyAXVII expression. To better understand the role of M.HpyAXVII in the H. pylori biology, here we cloned and overexpressed the hp1369-70 fusion construct in Escherichia coli BL21(DE3) cells. Results from size-exclusion chromatography and multi-angle light scattering (MALS) analyses suggested that M.HpyAXVII exists as a dimer in solution. Kinetic studies, including product and substrate inhibition analyses, initial velocity dependence between substrates, and isotope partitioning, suggested that M.HpyAXVII catalyzes DNA methylation in an ordered Bi Bi mechanism in which the AdoMet binding precedes DNA binding and AdoMet's methyl group is then transferred to an adenine within the DNA recognition sequence. Altering the highly conserved catalytic motif (DPP(Y/F)) as well as the AdoMet-binding motif (FXGXG) by site-directed mutagenesis abolished the catalytic activity of M.HpyAXVII. These results provide insights into the enzyme kinetic mechanism of M.HpyAXVII. We propose that AdoMet binding conformationally "primes" the enzyme for DNA binding.
Collapse
Affiliation(s)
- Yedu Prasad
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Ritesh Kumar
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Awanish Kumar Chaudhary
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Rajkumar Dhanaraju
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| | - Soneya Majumdar
- Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur-208016, Uttar Pradesh, India
| | - Desirazu N Rao
- From the Department of Biochemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India and
| |
Collapse
|
25
|
He W, Jia C, Zou Q. 4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction. Bioinformatics 2018; 35:593-601. [DOI: 10.1093/bioinformatics/bty668] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/07/2018] [Accepted: 07/24/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenying He
- School of Computer Science and Technology, Tianjin University, Tianjin, China
| | - Cangzhi Jia
- Department of Mathematics, Dalian Maritime University, Dalian, China
| | - Quan Zou
- School of Computer Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Alexeeva M, Guragain P, Tesfahun AN, Tomkuvienė M, Arshad A, Gerasimaitė R, Rukšėnaitė A, Urbanavičiūtė G, Bjørås M, Laerdahl JK, Klungland A, Klimašauskas S, Bjelland S. Excision of the doubly methylated base N4,5-dimethylcytosine from DNA by Escherichia coli Nei and Fpg proteins. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170337. [PMID: 29685966 PMCID: PMC5915725 DOI: 10.1098/rstb.2017.0337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
Cytosine (C) in DNA is often modified to 5-methylcytosine (m5C) to execute important cellular functions. Despite the significance of m5C for epigenetic regulation in mammals, damage to m5C has received little attention. For instance, almost no studies exist on erroneous methylation of m5C by alkylating agents to doubly or triply methylated bases. Owing to chemical evidence, and because many prokaryotes express methyltransferases able to convert m5C into N4,5-dimethylcytosine (m N4,5C) in DNA, m N4,5C is probably present in vivo We screened a series of glycosylases from prokaryotic to human and found significant DNA incision activity of the Escherichia coli Nei and Fpg proteins at m N4,5C residues in vitro The activity of Nei was highest opposite cognate guanine followed by adenine, thymine (T) and C. Fpg-complemented Nei by exhibiting the highest activity opposite C followed by lower activity opposite T. To our knowledge, this is the first description of a repair enzyme activity at a further methylated m5C in DNA, as well as the first alkylated base allocated as a Nei or Fpg substrate. Based on our observed high sensitivity to nuclease S1 digestion, we suggest that m N4,5C occurs as a disturbing lesion in DNA and that Nei may serve as a major DNA glycosylase in E. coli to initiate its repair.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
Collapse
Affiliation(s)
- Marina Alexeeva
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, PO Box 8600 Forus, 4021 Stavanger, Norway
| | - Prashanna Guragain
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, PO Box 8600 Forus, 4021 Stavanger, Norway
| | - Almaz N Tesfahun
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, PO Box 8600 Forus, 4021 Stavanger, Norway
| | - Miglė Tomkuvienė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Aysha Arshad
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, PO Box 8600 Forus, 4021 Stavanger, Norway
| | - Rūta Gerasimaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Audronė Rukšėnaitė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Giedrė Urbanavičiūtė
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Magnar Bjørås
- Institute for Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Jon K Laerdahl
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | - Saulius Klimašauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, Vilnius 10257, Lithuania
| | - Svein Bjelland
- Department of Chemistry, Bioscience and Environmental Technology-Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, PO Box 8600 Forus, 4021 Stavanger, Norway
| |
Collapse
|
27
|
Ma B, Ma J, Liu D, Guo L, Chen H, Ding J, Liu W, Zhang H. Biochemical and structural characterization of a DNA N6-adenine methyltransferase from Helicobacter pylori. Oncotarget 2018; 7:40965-40977. [PMID: 27259995 PMCID: PMC5173035 DOI: 10.18632/oncotarget.9692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/17/2016] [Indexed: 11/25/2022] Open
Abstract
DNA N6-methyladenine modification plays an important role in regulating a variety of biological functions in bacteria. However, the mechanism of sequence-specific recognition in N6-methyladenine modification remains elusive. M1.HpyAVI, a DNA N6-adenine methyltransferase from Helicobacter pylori, shows more promiscuous substrate specificity than other enzymes. Here, we present the crystal structures of cofactor-free and AdoMet-bound structures of this enzyme, which were determined at resolutions of 3.0 Å and 3.1 Å, respectively. The core structure of M1.HpyAVI resembles the canonical AdoMet-dependent MTase fold, while the putative DNA binding regions considerably differ from those of the other MTases, which may account for the substrate promiscuity of this enzyme. Site-directed mutagenesis experiments identified residues D29 and E216 as crucial amino acids for cofactor binding and the methyl transfer activity of the enzyme, while P41, located in a highly flexible loop, playing a determinant role for substrate specificity. Taken together, our data revealed the structural basis underlying DNA N6-adenine methyltransferase substrate promiscuity.
Collapse
Affiliation(s)
- Bo Ma
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Ji Ma
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Dong Liu
- Institute of Immunology, The Third Military Medical University, Chongqing, China
| | - Ling Guo
- Institute of Immunology, The Third Military Medical University, Chongqing, China
| | - Huiling Chen
- Institute of Immunology, The Third Military Medical University, Chongqing, China
| | - Jingjin Ding
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- Institute of Immunology, The Third Military Medical University, Chongqing, China
| | - Hongquan Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| |
Collapse
|
28
|
Hong T, Yuan Y, Wang T, Ma J, Yao Q, Hua X, Xia Y, Zhou X. Selective detection of N6-methyladenine in DNA via metal ion-mediated replication and rolling circle amplification. Chem Sci 2017; 8:200-205. [PMID: 28451166 PMCID: PMC5308289 DOI: 10.1039/c6sc02271e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/09/2016] [Indexed: 01/02/2023] Open
Abstract
N6-methyladenine (6mA) is reported as a potential epigenetic marker in eukaryotic genomes. However, accurate identification of the location of 6mA in DNA remains a challenging task. Here, we show that Ag+ can selectively stabilize the A-C mismatch and efficiently promote primer extension. In contrast, the complex of 6mA-Ag+-C is instable and therefore cannot be recognized by DNA polymerases, resulting in the termination of primer extension. Based on this finding, we successfully identified and quantified 6mA at the single-base level through the analysis of gel bands of extended primers and fluorescence measurements combined with rolling circle amplification. The high selectivity and sensitivity of this strategy may provide a new platform for the efficient analysis of 6mA in DNA in the future.
Collapse
Affiliation(s)
- Tingting Hong
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Yushu Yuan
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Tianlu Wang
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Jingwei Ma
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Qian Yao
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Xiaoluan Hua
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Yu Xia
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences , Key Laboratory of Biomedical Polymers of Ministry of Education , The Institute for Advanced Studies , Wuhan University , Wuhan , Hubei 430072 , P. R. China . ; ; Tel: +86-27-68756663
| |
Collapse
|
29
|
Chen K, Zhao BS, He C. Nucleic Acid Modifications in Regulation of Gene Expression. Cell Chem Biol 2016; 23:74-85. [PMID: 26933737 DOI: 10.1016/j.chembiol.2015.11.007] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/13/2015] [Accepted: 11/13/2015] [Indexed: 10/22/2022]
Abstract
Nucleic acids carry a wide range of different chemical modifications. In contrast to previous views that these modifications are static and only play fine-tuning functions, recent research advances paint a much more dynamic picture. Nucleic acids carry diverse modifications and employ these chemical marks to exert essential or critical influences in a variety of cellular processes in eukaryotic organisms. This review covers several nucleic acid modifications that play important regulatory roles in biological systems, especially in regulation of gene expression: 5-methylcytosine (5mC) and its oxidative derivatives, and N(6)-methyladenine (6mA) in DNA; N(6)-methyladenosine (m(6)A), pseudouridine (Ψ), and 5-methylcytidine (m(5)C) in mRNA and long non-coding RNA. Modifications in other non-coding RNAs, such as tRNA, miRNA, and snRNA, are also briefly summarized. We provide brief historical perspective of the field, and highlight recent progress in identifying diverse nucleic acid modifications and exploring their functions in different organisms. Overall, we believe that work in this field will yield additional layers of both chemical and biological complexity as we continue to uncover functional consequences of known nucleic acid modifications and discover new ones.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Boxuan Simen Zhao
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA; Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
30
|
Vander Zanden CM, Rowe RK, Broad AJ, Robertson AB, Ho PS. Effect of Hydroxymethylcytosine on the Structure and Stability of Holliday Junctions. Biochemistry 2016; 55:5781-5789. [PMID: 27653243 PMCID: PMC5258817 DOI: 10.1021/acs.biochem.6b00801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5-Hydroxymethylcytosine (5hmC) is an epigenetic marker that has recently been shown to promote homologous recombination (HR). In this study, we determine the effects of 5hmC on the structure, thermodynamics, and conformational dynamics of the Holliday junction (the four-stranded DNA intermediate associated with HR) in its native stacked-X form. The hydroxymethyl and the control methyl substituents are placed in the context of an amphimorphic GxCC trinucleotide core sequence (where xC is C, 5hmC, or the methylated 5mC), which is part of a sequence also recognized by endonuclease G to promote HR. The hydroxymethyl group of the 5hmC junction adopts two distinct rotational conformations, with an in-base-plane form being dominant over the competing out-of-plane rotamer that has typically been seen in duplex structures. The in-plane rotamer is seen to be stabilized by a more stable intramolecular hydrogen bond to the junction backbone. Stabilizing hydrogen bonds (H-bonds) formed by the hydroxyl substituent in 5hmC or from a bridging water in the 5mC structure provide approximately 1.5-2 kcal/mol per interaction of stability to the junction, which is mostly offset by entropy compensation, thereby leaving the overall stability of the G5hmCC and G5mCC constructs similar to that of the GCC core. Thus, both methyl and hydroxymethyl modifications are accommodated without disrupting the structure or stability of the Holliday junction. Both 5hmC and 5mC are shown to open the structure to make the junction core more accessible. The overall consequences of incorporating 5hmC into a DNA junction are thus discussed in the context of the specificity in protein recognition of the hydroxymethyl substituent through direct and indirect readout mechanisms.
Collapse
Affiliation(s)
- Crystal M. Vander Zanden
- Department of Biochemistry & Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1870
| | - Rhianon K. Rowe
- Department of Biochemistry & Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1870
| | - Amanda J. Broad
- Department of Biochemistry & Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1870
| | - Adam B. Robertson
- Department of Molecular Microbiology, Sognsvannsveien 20, NO-0027, Oslo University Hospital, Oslo, Norway
| | - P. Shing Ho
- Department of Biochemistry & Molecular Biology, 1870 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1870
| |
Collapse
|
31
|
Flores-Juárez CR, González-Jasso E, Antaramian A, Pless RC. PCR amplification of GC-rich DNA regions using the nucleotide analog N4-methyl-2'-deoxycytidine 5'-triphosphate. Biotechniques 2016; 61:175-182. [PMID: 27712580 DOI: 10.2144/000114457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/06/2016] [Indexed: 11/23/2022] Open
Abstract
GC-rich DNA regions were PCR-amplified with Taq DNA polymerase using either the canonical set of deoxynucleoside triphosphates or mixtures in which the dCTP had been partially or completely replaced by its N4-methylated analog, N4-methyl-2'-deoxycytidine 5'-triphosphate (N4me-dCTP). In the case of a particularly GC-rich region (78.9% GC), the PCR mixtures containing N4me-dCTP produced the expected amplicon in high yield, while mixtures containing the canonical set of nucleotides produced numerous alternative amplicons. For another GC-rich DNA region (80.6% GC), the target amplicon was only generated by re-amplifying a gel-purified sample of the original amplicon with N4me-dCTP-containing PCR mixtures. In a direct PCR comparison on a highly GC-rich template, mixtures containing N4me-dCTP clearly performed better than did solutions containing the canonical set of nucleotides mixed with various organic additives (DMSO, betaine, or ethylene glycol) that have been reported to resolve or alleviate problems caused by secondary structures in the DNA. This nucleotide analog was also tested in PCR amplification of DNA regions with intermediate GC content, producing the expected amplicon in each case with a melting temperature (Tm) clearly below the Tm of the same amplicon synthesized exclusively with the canonical bases.
Collapse
Affiliation(s)
| | - Eva González-Jasso
- CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro, 76090, Mexico
| | - Anaid Antaramian
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, 76230, Mexico
| | - Reynaldo C Pless
- CICATA, Instituto Politécnico Nacional, Querétaro, Querétaro, 76090, Mexico
| |
Collapse
|
32
|
Weigele P, Raleigh EA. Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chem Rev 2016; 116:12655-12687. [PMID: 27319741 DOI: 10.1021/acs.chemrev.6b00114] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Naturally occurring modification of the canonical A, G, C, and T bases can be found in the DNA of cellular organisms and viruses from all domains of life. Bacterial viruses (bacteriophages) are a particularly rich but still underexploited source of such modified variant nucleotides. The modifications conserve the coding and base-pairing functions of DNA, but add regulatory and protective functions. In prokaryotes, modified bases appear primarily to be part of an arms race between bacteriophages (and other genomic parasites) and their hosts, although, as in eukaryotes, some modifications have been adapted to convey epigenetic information. The first half of this review catalogs the identification and diversity of DNA modifications found in bacteria and bacteriophages. What is known about the biogenesis, context, and function of these modifications are also described. The second part of the review places these DNA modifications in the context of the arms race between bacteria and bacteriophages. It focuses particularly on the defense and counter-defense strategies that turn on direct recognition of the presence of a modified base. Where modification has been shown to affect other DNA transactions, such as expression and chromosome segregation, that is summarized, with reference to recent reviews.
Collapse
Affiliation(s)
- Peter Weigele
- Chemical Biology, New England Biolabs , Ipswich, Massachusetts 01938, United States
| | | |
Collapse
|
33
|
Adaptive engineering of a hyperthermophilic archaeon on CO and discovering the underlying mechanism by multi-omics analysis. Sci Rep 2016; 6:22896. [PMID: 26975345 PMCID: PMC4791640 DOI: 10.1038/srep22896] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/23/2016] [Indexed: 01/03/2023] Open
Abstract
The hyperthermophilic archaeon Thermococcus onnurineus NA1 can grow and produce H2 on carbon monoxide (CO) and its H2 production rates have been improved through metabolic engineering. In this study, we applied adaptive evolution to enhance H2 productivity. After over 150 serial transfers onto CO medium, cell density, CO consumption rate and H2 production rate increased. The underlying mechanism for those physiological changes could be explained by using multi-omics approaches including genomic, transcriptomic and epigenomic analyses. A putative transcriptional regulator was newly identified to regulate the expression levels of genes related to CO oxidation. Transcriptome analysis revealed significant changes in the transcript levels of genes belonging to the categories of transcription, translation and energy metabolism. Our study presents the first genome-scale methylation pattern of hyperthermophilic archaea. Adaptive evolution led to highly enhanced H2 productivity at high CO flow rates using synthesis gas produced from coal gasification.
Collapse
|
34
|
O'Brown ZK, Greer EL. N6-Methyladenine: A Conserved and Dynamic DNA Mark. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:213-246. [PMID: 27826841 DOI: 10.1007/978-3-319-43624-1_10] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Chromatin, consisting of deoxyribonucleic acid (DNA) wrapped around histone proteins, facilitates DNA compaction and allows identical DNA codes to confer many different cellular phenotypes. This biological versatility is accomplished in large part by posttranslational modifications to histones and chemical modifications to DNA. These modifications direct the cellular machinery to expand or compact specific chromatin regions and mark regions of the DNA as important for cellular functions. While each of the four bases that make up DNA can be modified (Iyer et al. 2011), this chapter will focus on methylation of the sixth position on adenines (6mA), as this modification has been poorly characterized in recently evolved eukaryotes, but shows promise as a new conserved layer of epigenetic regulation. 6mA was previously thought to be restricted to unicellular organisms, but recent work has revealed its presence in metazoa. Here, we will briefly describe the history of 6mA, examine its evolutionary conservation, and evaluate the current methods for detecting 6mA. We will discuss the enzymes that bind and regulate this mark and finally examine known and potential functions of 6mA in eukaryotes.
Collapse
Affiliation(s)
- Zach Klapholz O'Brown
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric Lieberman Greer
- Division of Newborn Medicine, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
35
|
Sun Q, Huang S, Wang X, Zhu Y, Chen Z, Chen D. N6-methyladenine functions as a potential epigenetic mark in eukaryotes. Bioessays 2015; 37:1155-62. [PMID: 26293475 DOI: 10.1002/bies.201500076] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
N(6)-methyladenine (6mA) is one of the most abundant types of DNA methylation, and plays an important role in bacteria; however, its roles in higher eukaryotes, such as plants, insects, and mammals, have been considered less important. Recent studies highlight that 6mA does indeed occur, and that it plays an important role in eukaryotes, such as worm, fly, and green algae, and thus the regulation of 6mA has emerged as a novel epigenetic mechanism in higher eukaryotes. Despite this intriguing development, a number of important issues regarding its biological roles are yet to be addressed. In this review, we focus on the 5mC and 6mA modifications in terms of their production, distribution, and the erasure of 6mA in higher eukaryotes including mammals. We perform an analysis of the potential functions of 6mA, hence widening understanding of this new epigenetic mark in higher eukaryotes, and suggesting future studies in this field.
Collapse
Affiliation(s)
- Qinmiao Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shoujun Huang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Xiaona Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuanxiang Zhu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenping Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dahua Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Yu M, Ji L, Neumann DA, Chung DH, Groom J, Westpheling J, He C, Schmitz RJ. Base-resolution detection of N4-methylcytosine in genomic DNA using 4mC-Tet-assisted-bisulfite- sequencing. Nucleic Acids Res 2015; 43:e148. [PMID: 26184871 PMCID: PMC4666385 DOI: 10.1093/nar/gkv738] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 07/08/2015] [Indexed: 11/30/2022] Open
Abstract
Restriction-modification (R-M) systems pose a major barrier to DNA transformation and genetic engineering of bacterial species. Systematic identification of DNA methylation in R-M systems, including N6-methyladenine (6mA), 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will enable strategies to make these species genetically tractable. Although single-molecule, real time (SMRT) sequencing technology is capable of detecting 4mC directly for any bacterial species regardless of whether an assembled genome exists or not, it is not as scalable to profiling hundreds to thousands of samples compared with the commonly used next-generation sequencing technologies. Here, we present 4mC-Tet-assisted bisulfite-sequencing (4mC-TAB-seq), a next-generation sequencing method that rapidly and cost efficiently reveals the genome-wide locations of 4mC for bacterial species with an available assembled reference genome. In 4mC-TAB-seq, both cytosines and 5mCs are read out as thymines, whereas only 4mCs are read out as cytosines, revealing their specific positions throughout the genome. We applied 4mC-TAB-seq to study the methylation of a member of the hyperthermophilc genus, Caldicellulosiruptor, in which 4mC-related restriction is a major barrier to DNA transformation from other species. In combination with MethylC-seq, both 4mC- and 5mC-containing motifs are identified which can assist in rapid and efficient genetic engineering of these bacteria in the future.
Collapse
Affiliation(s)
- Miao Yu
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Lexiang Ji
- Institute of Bioinformatics, The University of Georgia, Athens, GA 30602, USA
| | - Drexel A Neumann
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Dae-Hwan Chung
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Joseph Groom
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Janet Westpheling
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA The BioEnergy Science Center, U.S. Department of Energy, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Chuan He
- Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Robert J Schmitz
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
37
|
Domingo O, Hellmuth I, Jäschke A, Kreutz C, Helm M. Intermolecular 'cross-torque': the N4-cytosine propargyl residue is rotated to the 'CH'-edge as a result of Watson-Crick interaction. Nucleic Acids Res 2015; 43:5275-83. [PMID: 25934805 PMCID: PMC4477647 DOI: 10.1093/nar/gkv285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Propargyl groups are attractive functional groups for labeling purposes, as they allow CuAAC-mediated bioconjugation. Their size minimally exceeds that of a methyl group, the latter being frequent in natural nucleotide modifications. To understand under which circumstances propargyl-containing oligodeoxynucleotides preserve base pairing, we focused on the exocyclic amine of cytidine. Residues attached to the exocyclic N4 may orient away from or toward the Watson-Crick face, ensuing dramatic alteration of base pairing properties. ROESY-NMR experiments suggest a uniform orientation toward the Watson-Crick face of N(4)-propargyl residues in derivatives of both deoxycytidine and 5-methyl-deoxycytidine. In oligodeoxynucleotides, however, UV-melting indicated that N(4)-propargyl-deoxycytidine undergoes standard base pairing. This implies a rotation of the propargyl moiety toward the 'CH'-edge as a result of base pairing on the Watson-Crick face. In oligonucleotides containing the corresponding 5-methyl-deoxycytidine derivative, dramatically reduced melting temperatures indicate impaired Watson-Crick base pairing. This was attributed to a steric clash of the propargyl moiety with the 5-methyl group, which prevents back rotation to the 'CH'-edge, consequently preventing Watson-Crick geometry. Our results emphasize the tendency of an opposing nucleic acid strand to mechanically rotate single N(4)-substituents to make way for Watson-Crick base pairing, providing no steric hindrance is present on the 'CH'-edge.
Collapse
Affiliation(s)
- Olwen Domingo
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Rhineland-Palatinate, Germany
| | - Isabell Hellmuth
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Rhineland-Palatinate, Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Baden-Wuerttemberg, Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Tyrol, Austria
| | - Mark Helm
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, 55128 Mainz, Rhineland-Palatinate, Germany
| |
Collapse
|
38
|
Douki T, Meador JA, Bérard I, Wack A. N4-methylation of cytosine drastically favors the formation of (6-4) photoproducts in a TCG context. Photochem Photobiol 2014; 91:102-8. [PMID: 25319211 DOI: 10.1111/php.12365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/13/2014] [Indexed: 11/27/2022]
Abstract
Methylation of cytosine is a common biological process both in prokaryotic and eukaryotic cells. In addition to 5-methylcytosine (5mC), some bacterial species contain in their genome N(4) -methylcytosine (N4mC). Methylation at C5 has been shown to enhance the formation of pyrimidine dimeric photoproducts but nothing is known of the effect of N4 methylation on UV-induced DNA damage. In the present work, we compared the yield and the nature of bipyrimidine photoproducts induced in a series of trinucleotides exhibiting a TXG sequence where X is either T, C, 5mC or N4mC. HPLC associated to tandem mass spectrometry was used to quantify cyclobutane pyrimidine dimers (CPD), (6-4) photoproducts (64PP) and their Dewar valence isomer. Methylation at position N4 was found to drastically increase the reactivity of C upon exposure to both UVC and UVB and to favor the formation of 64PP. In contrast methylation at C5 increased the yield of CPD at the expense of 64PP. In addition, enhancement of photoreactivity by C5 methylation was much higher in the UVB than in the UVC range. These results show the drastic effect of the methylation site on the photochemistry of cytosine.
Collapse
Affiliation(s)
- Thierry Douki
- University Grenoble Alpes, INAC-LCIB, LAN, Grenoble, France; CEA, INAC-SCIB, LAN, Grenoble, France
| | | | | | | |
Collapse
|
39
|
Yamamoto J, Oyama T, Kunishi T, Masutani C, Hanaoka F, Iwai S. A cyclobutane thymine-N4-methylcytosine dimer is resistant to hydrolysis but strongly blocks DNA synthesis. Nucleic Acids Res 2013; 42:2075-84. [PMID: 24185703 PMCID: PMC3919605 DOI: 10.1093/nar/gkt1039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Exposure of DNA to ultraviolet light produces harmful crosslinks between adjacent pyrimidine bases, to form cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6–4)pyrimidone photoproducts. The CPD is frequently formed, and its repair mechanisms have been exclusively studied by using a CPD formed at a TT site. On the other hand, biochemical analyses using CPDs formed within cytosine-containing sequence contexts are practically difficult, because saturated cytosine easily undergoes hydrolytic deamination. Here, we found that N-alkylation of the exocyclic amino group of 2′-deoxycytidine prevents hydrolysis in CPD formation, and an N-methylated cytosine-containing CPD was stable enough to be derivatized into its phosphoramidite building block and incorporated into oligonucleotides. Kinetic studies of the CPD-containing oligonucleotide indicated that its lifetime under physiological conditions is relatively long (∼7 days). In biochemical analyses using human DNA polymerase η, incorporation of TMP opposite the N-methylcytosine moiety of the CPD was clearly detected, in addition to dGMP incorporation, and the incorrect TMP incorporation blocked DNA synthesis. The thermodynamic parameters confirmed the formation of this unusual base pair.
Collapse
Affiliation(s)
- Junpei Yamamoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan and Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1. J Bacteriol 2013; 195:4966-74. [PMID: 23995632 DOI: 10.1128/jb.00935-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We performed whole-genome analyses of DNA methylation in Shewanella oneidensis MR-1 to examine its possible role in regulating gene expression and other cellular processes. Single-molecule real-time (SMRT) sequencing revealed extensive methylation of adenine (N6mA) throughout the genome. These methylated bases were located in five sequence motifs, including three novel targets for type I restriction/modification enzymes. The sequence motifs targeted by putative methyltranferases were determined via SMRT sequencing of gene knockout mutants. In addition, we found that S. oneidensis MR-1 cultures grown under various culture conditions displayed different DNA methylation patterns. However, the small number of differentially methylated sites could not be directly linked to the much larger number of differentially expressed genes under these conditions, suggesting that DNA methylation is not a major regulator of gene expression in S. oneidensis MR-1. The enrichment of methylated GATC motifs in the origin of replication indicates that DNA methylation may regulate genome replication in a manner similar to that seen in Escherichia coli. Furthermore, comparative analyses suggest that many Gammaproteobacteria, including all members of the Shewanellaceae family, may also utilize DNA methylation to regulate genome replication.
Collapse
|
41
|
Flores-Juárez CR, González-Jasso E, Antaramian A, Pless RC. Capacity of N4-methyl-2'-deoxycytidine 5'-triphosphate to sustain the polymerase chain reaction using various thermostable DNA polymerases. Anal Biochem 2013; 438:73-81. [PMID: 23548504 DOI: 10.1016/j.ab.2013.03.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
Abstract
The dCTP analog N4-methyl-2'-deoxycytidine 5'-triphosphate (N4medCTP) was evaluated for its performance in the polymerase chain reaction (PCR). Using the HotStart Taq DNA polymerase with a standard thermal protocol, test segments 85 or 200 bp long were amplified equally well using dCTP or N4medCTP:dCTP mixtures ranging in molar ratio from 3:1 to 10:1, while complete replacement of dCTP by N4medCTP gave clearly lower amplicon yields and higher Cq values. Comparable yields with N4medCTP or dCTP were achieved only by using a slowdown protocol. Post-PCR melting analyses showed decreasing Tm values for amplicons obtained with increasing N4medCTP:dCTP input ratios; for the 200-bp amplicon, complete replacement of dCTP by N4medCTP in the reaction reduced the Tm by 11 °C; for the 85-bp amplicon the Tm reduction was 7 °C. In experiments aiming at the 200-bp amplicon, Pfu exo(-) DNA polymerase did not sustain PCR when dCTP was fully replaced by N4medCTP, even with the slowdown protocol, except at elevated N4medCTP concentrations, and, compared to PCR conducted exclusively with dCTP, the use of N4medCTP:dCTP mixtures gave reduced yields and distinctly higher Cq values, regardless of the thermal program employed. PCR experiments with 9°N DNA polymerase using N4medCTP in the conventional thermal protocol failed to produce the 200-bp amplicon.
Collapse
|
42
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Struktur und Funktion nicht-kanonischer Nukleobasen. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201193] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Carell T, Brandmayr C, Hienzsch A, Müller M, Pearson D, Reiter V, Thoma I, Thumbs P, Wagner M. Structure and function of noncanonical nucleobases. Angew Chem Int Ed Engl 2012; 51:7110-31. [PMID: 22744788 DOI: 10.1002/anie.201201193] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/07/2012] [Indexed: 12/19/2022]
Abstract
DNA and RNA contain, next to the four canonical nucleobases, a number of modified nucleosides that extend their chemical information content. RNA is particularly rich in modifications, which is obviously an adaptation to their highly complex and variable functions. In fact, the modified nucleosides and their chemical structures establish a second layer of information which is of central importance to the function of the RNA molecules. Also the chemical diversity of DNA is greater than originally thought. Next to the four canonical bases, the DNA of higher organisms contains a total of four epigenetic bases: m(5) dC, hm(5) dC, f(5) dC und ca(5) dC. While all cells of an organism contain the same genetic material, their vastly different function and properties inside complex higher organisms require the controlled silencing and activation of cell-type specific genes. The regulation of the underlying silencing and activation process requires an additional layer of epigenetic information, which is clearly linked to increased chemical diversity. This diversity is provided by the modified non-canonical nucleosides in both DNA and RNA.
Collapse
Affiliation(s)
- Thomas Carell
- Center for Integrated Protein Science at the Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Malygin EG, Hattman S. DNA methyltransferases: mechanistic models derived from kinetic analysis. Crit Rev Biochem Mol Biol 2012; 47:97-193. [PMID: 22260147 DOI: 10.3109/10409238.2011.620942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sequence-specific transfer of methyl groups from donor S-adenosyl-L-methionine (AdoMet) to certain positions of DNA-adenine or -cytosine residues by DNA methyltransferases (MTases) is a major form of epigenetic modification. It is virtually ubiquitous, except for some notable exceptions. Site-specific methylation can be regarded as a means to increase DNA information capacity and is involved in a large spectrum of biological processes. The importance of these functions necessitates a deeper understanding of the enzymatic mechanism(s) of DNA methylation. DNA MTases fall into one of two general classes; viz. amino-MTases and [C5-cytosine]-MTases. Amino-MTases, common in prokaryotes and lower eukaryotes, catalyze methylation of the exocyclic amino group of adenine ([N6-adenine]-MTase) or cytosine ([N4-cytosine]-MTase). In contrast, [C5-cytosine]-MTases methylate the cyclic carbon-5 atom of cytosine. Characteristics of DNA MTases are highly variable, differing in their affinity to their substrates or reaction products, their kinetic parameters, or other characteristics (order of substrate binding, rate limiting step in the overall reaction). It is not possible to present a unifying account of the published kinetic analyses of DNA methylation because different authors have used different substrate DNAs and/or reaction conditions. Nevertheless, it would be useful to describe those kinetic data and the mechanistic models that have been derived from them. Thus, this review considers in turn studies carried out with the most consistently and extensively investigated [N6-adenine]-, [N4-cytosine]- and [C5-cytosine]-DNA MTases.
Collapse
Affiliation(s)
- Ernst G Malygin
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology Vector, Novosibirsk, Russia
| | | |
Collapse
|
45
|
Dohno C, Shibata T, Nakatani K. Interstrand Crosslink for Discrimination of Methylated Cytosines. CHEM LETT 2011. [DOI: 10.1246/cl.2011.852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Wood RJ, McKelvie JC, Maynard-Smith MD, Roach PL. A real-time assay for CpG-specific cytosine-C5 methyltransferase activity. Nucleic Acids Res 2010; 38:e107. [PMID: 20139415 PMCID: PMC2875032 DOI: 10.1093/nar/gkq047] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A real-time assay for CpG-specific cytosine-C5 methyltransferase activity has been developed. The assay applies a break light oligonucleotide in which the methylation of an unmethylated 5′-CG-3′ site is enzymatically coupled to the development of a fluorescent signal. This sensitive assay can measure rates of DNA methylation down to 0.34 ± 0.06 fmol/s. The assay is reproducible, with a coefficient of variation over six independent measurements of 4.5%. Product concentration was accurately measured from fluorescence signals using a linear calibration curve, which achieved a goodness of fit (R2) above 0.98. The oligonucleotide substrate contains three C5-methylated cytosine residues and one unmethylated 5′-CG-3′ site. Methylation yields an oligonucleotide containing the optimal substrate for the restriction enzyme GlaI. Cleavage of the fully methylated oligonucleotide leads to separation of fluorophore from quencher, giving a proportional increase in fluorescence. This method has been used to assay activity of DNMT1, the principle maintenance methyltransferase in human cells, and for the kinetic characterization of the bacterial cytosine-C5 methyltransferase M.SssI. The assay has been shown to be suitable for the real-time monitoring of DNMT1 activity in a high-throughput format, with low background signal and the ability to obtain linear rates of methylation over long periods, making this a promising method of high-throughput screening for inhibitors.
Collapse
Affiliation(s)
- Robert J Wood
- School of Chemistry, University of Southampton, Southampton, Hampshire, SO17 1BJ, UK
| | | | | | | |
Collapse
|
47
|
Morita R, Ishikawa H, Nakagawa N, Kuramitsu S, Masui R. Crystal structure of a putative DNA methylase TTHA0409 from Thermus thermophilus HB8. Proteins 2008; 73:259-64. [DOI: 10.1002/prot.22158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Chen CR, Lin CH, Lin JW, Chang CI, Tseng YH, Weng SF. Characterization of a novel T4-type Stenotrophomonas maltophilia virulent phage Smp14. Arch Microbiol 2007; 188:191-7. [PMID: 17440710 DOI: 10.1007/s00203-007-0238-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/19/2007] [Accepted: 03/24/2007] [Indexed: 10/23/2022]
Abstract
Stenotrophomonas maltophilia (Sm), with most of the isolates being resistant to multidrugs, is an opportunistic bacterium causing nosocomial infections. In this study, a novel virulent Sm phage, Smp14, was characterized. Electron microscopy showed that Smp14 resembled members of Myoviridae and adsorbed to poles of the host cells during infection. It lysed 37 of 87 clinical Sm isolates in spot test, displayed a latent period of ca. 20 min, and had a burst size of ca. 150. Its genome (estimated to be 160 kb by PFGE), containing m4C and two unknown modified bases other than m5C and m6A as identified by HPLC, resisted to digestion with many restriction endonucleases except MseI. These properties indicate that it is a novel Sm phage distinct from the previously reported phiSMA5 which has a genome of 250 kb digestible with various restriction enzymes. Sequencing of a 16 kb region revealed 12 ORFs encoding structural proteins sharing 15-45% identities with the homologues from T4-type phages. SDS-PAGE displayed 20 virion proteins, with the most abundant one being the 39 kDa major capsid protein (gp23), which had the N-terminal 52 amino acids removed. Phylogenetic analysis based on gp23 classified Smp14 into a novel single-membered T4-type subgroup.
Collapse
Affiliation(s)
- Chiy-Rong Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung, 402, Taiwan
| | | | | | | | | | | |
Collapse
|
49
|
Leiros I, Nabong MP, Grøsvik K, Ringvoll J, Haugland GT, Uldal L, Reite K, Olsbu IK, Knævelsrud I, Moe E, Andersen OA, Birkeland NK, Ruoff P, Klungland A, Bjelland S. Structural basis for enzymatic excision of N1-methyladenine and N3-methylcytosine from DNA. EMBO J 2007; 26:2206-17. [PMID: 17396151 PMCID: PMC1852788 DOI: 10.1038/sj.emboj.7601662] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 03/01/2007] [Indexed: 11/08/2022] Open
Abstract
N(1)-methyladenine (m(1)A) and N(3)-methylcytosine (m(3)C) are major toxic and mutagenic lesions induced by alkylation in single-stranded DNA. In bacteria and mammals, m(1)A and m(3)C were recently shown to be repaired by AlkB-mediated oxidative demethylation, a direct DNA damage reversal mechanism. No AlkB gene homologues have been identified in Archaea. We report that m(1)A and m(3)C are repaired by the AfAlkA base excision repair glycosylase of Archaeoglobus fulgidus, suggesting a different repair mechanism for these lesions in the third domain of life. In addition, AfAlkA was found to effect a robust excision of 1,N(6)-ethenoadenine. We present a high-resolution crystal structure of AfAlkA, which, together with the characterization of several site-directed mutants, forms a molecular rationalization for the newly discovered base excision activity.
Collapse
Affiliation(s)
- Ingar Leiros
- The Norwegian Structural Biology Centre, University of Tromsø, Tromsø, Norway
| | - Marivi P Nabong
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, University of Oslo, Rikshospitalelt-Radiumhospitalet HF, Oslo, Norway
- Faculty of Science and Technology, Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Kristin Grøsvik
- Faculty of Science and Technology, Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Jeanette Ringvoll
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, University of Oslo, Rikshospitalelt-Radiumhospitalet HF, Oslo, Norway
| | | | - Lene Uldal
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, University of Oslo, Rikshospitalelt-Radiumhospitalet HF, Oslo, Norway
| | - Karen Reite
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, University of Oslo, Rikshospitalelt-Radiumhospitalet HF, Oslo, Norway
| | - Inger K Olsbu
- Faculty of Science and Technology, Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Ingeborg Knævelsrud
- Faculty of Science and Technology, Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elin Moe
- The Norwegian Structural Biology Centre, University of Tromsø, Tromsø, Norway
| | - Ole A Andersen
- The Norwegian Structural Biology Centre, University of Tromsø, Tromsø, Norway
| | | | - Peter Ruoff
- Faculty of Science and Technology, Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
| | - Arne Klungland
- Centre for Molecular Biology and Neuroscience and Institute of Medical Microbiology, University of Oslo, Rikshospitalelt-Radiumhospitalet HF, Oslo, Norway
| | - Svein Bjelland
- Faculty of Science and Technology, Department of Mathematics and Natural Sciences, University of Stavanger, Stavanger, Norway
- Faculty of Science and Technology, Department of Mathematics and Natural Sciences, University of Stavanger, Kristine Bonnevies rd 30, N-4036 Stavanger, Norway. Tel.: +47 51831884; Fax: +47 51831750; E-mail:
| |
Collapse
|
50
|
Grogan DW. Cytosine methylation by the SuaI restriction-modification system: implications for genetic fidelity in a hyperthermophilic archaeon. J Bacteriol 2003; 185:4657-61. [PMID: 12867480 PMCID: PMC165766 DOI: 10.1128/jb.185.15.4657-4661.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
5-methylcytosine in chromosomal DNA represents a potential source of frequent spontaneous mutation for hyperthermophiles. To determine the relevance of this threat for the archaeon Sulfolobus acidocaldarius, the mode of GGCC methylation by its restriction-modification system, SuaI, was investigated. Distinct isoschizomers of the SuaI endonuclease were used to probe the methylation state of GGCC in native S. acidocaldarius DNA. In addition, the methylation sensitivity of the SuaI endonuclease was determined with synthetic oligonucleotide substrates and modified natural DNAs. The results show that the SuaI system uses N(4) methylation to block cleavage of its recognition site, thereby avoiding the creation of G. T mismatches by spontaneous deamination at extremely high temperature.
Collapse
Affiliation(s)
- Dennis W Grogan
- New England Biolabs, Inc., Beverly, Massachusetts 01915, USA.
| |
Collapse
|