1
|
Martin Del Campo JS, Rigsbee J, Bueno Batista M, Mus F, Rubio LM, Einsle O, Peters JW, Dixon R, Dean DR, Dos Santos PC. Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in Azotobacter vinelandii. Crit Rev Biochem Mol Biol 2023; 57:492-538. [PMID: 36877487 DOI: 10.1080/10409238.2023.2181309] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.
Collapse
Affiliation(s)
| | - Jack Rigsbee
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Oliver Einsle
- Department of Biochemistry, University of Freiburg, Freiburg, Germany
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
2
|
Hickey DP, Cai R, Yang ZY, Grunau K, Einsle O, Seefeldt LC, Minteer SD. Establishing a Thermodynamic Landscape for the Active Site of Mo-Dependent Nitrogenase. J Am Chem Soc 2019; 141:17150-17157. [DOI: 10.1021/jacs.9b06546] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- David P. Hickey
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Rong Cai
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Katharina Grunau
- Institut für Biochemie and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
3
|
Jimenez-Vicente E, Yang ZY, Martin Del Campo JS, Cash VL, Seefeldt LC, Dean DR. The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters. J Biol Chem 2019; 294:6204-6213. [PMID: 30846561 PMCID: PMC6484116 DOI: 10.1074/jbc.ra119.007905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Indexed: 11/28/2022] Open
Abstract
The Mo-dependent nitrogenase comprises two interacting components called the Fe protein and the MoFe protein. The MoFe protein is an α2β2 heterotetramer that harbors two types of complex metalloclusters, both of which are necessary for N2 reduction. One type is a 7Fe-9S-Mo-C-homocitrate species designated FeMo-cofactor, which provides the N2-binding catalytic site, and the other is an 8Fe-7S species designated the P-cluster, involved in mediating intercomponent electron transfer to FeMo-cofactor. The MoFe protein's catalytic partner, Fe protein, is also required for both FeMo-cofactor formation and the conversion of an immature form of P-clusters to the mature species. This latter process involves several assembly factors, NafH, NifW, and NifZ, and precedes FeMo-cofactor insertion. Here, using various protein affinity–based purification methods as well as in vivo, EPR spectroscopy, and MALDI measurements, we show that several MoFe protein species accumulate in a NifZ-deficient background of the nitrogen-fixing microbe Azotobacter vinelandii. These included fully active MoFe protein replete with FeMo-cofactor and mature P-cluster, inactive MoFe protein having no FeMo-cofactor and only immature P-cluster, and partially active MoFe protein having one αβ-unit with a FeMo-cofactor and mature P-cluster and the other αβ-unit with no FeMo-cofactor and immature P-cluster. Also, NifW could associate with MoFe protein having immature P-clusters and became dissociated upon P-cluster maturation. Furthermore, both P-clusters could mature in vitro without NifZ. These findings indicate that NifZ has an equivalent, although not essential, function in the maturation of both P-clusters contained within the MoFe protein.
Collapse
Affiliation(s)
- Emilio Jimenez-Vicente
- From the Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061 and
| | - Zhi-Yong Yang
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Julia S Martin Del Campo
- From the Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061 and
| | - Valerie L Cash
- From the Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061 and
| | - Lance C Seefeldt
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322
| | - Dennis R Dean
- From the Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061 and
| |
Collapse
|
4
|
|
5
|
Hu Y, Fay AW, Ribbe MW. Identification of a nitrogenase FeMo cofactor precursor on NifEN complex. Proc Natl Acad Sci U S A 2005; 102:3236-41. [PMID: 15728375 PMCID: PMC552928 DOI: 10.1073/pnas.0409201102] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 01/25/2005] [Indexed: 11/18/2022] Open
Abstract
The biosynthesis of the FeMo cofactor (FeMoco) of Azotobacter vinelandii nitrogenase presumably starts with the production of its Fe/S core by NifB (the nifB gene product). This core is subsequently processed on the alpha2beta2 tetrameric NifEN complex (formed by the nifE and nifN gene products). In this article, we identify a NifEN-bound FeMoco precursor form that can be converted to fully assembled FeMoco in a so-called FeMoco-maturation assay containing only purified components. We also establish that only molybdate, homocitrate, MgATP, and Fe protein are essential for FeMoco maturation. The FeMoco-maturation assay described here will further address the remaining questions related to the assembly mechanism of the ever-intriguing FeMoco.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | |
Collapse
|
6
|
Affiliation(s)
- Luis M Rubio
- Department of Plant and Microbial Biology, University of California-Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
7
|
Scott JD, Ludwig RA. Azorhizobium caulinodans electron-transferring flavoprotein N electrochemically couples pyruvate dehydrogenase complex activity to N2 fixation. MICROBIOLOGY-SGM 2004; 150:117-126. [PMID: 14702404 DOI: 10.1099/mic.0.26603-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Azorhizobium caulinodans thermolabile point mutants unable to fix N2 at 42 degrees C were isolated and mapped to three, unlinked loci; from complementation tests, several mutants were assigned to the fixABCX locus. Of these, two independent fixB mutants carried missense substitutions in the product electron-transferring flavoprotein N (ETFN) alpha-subunit. Both thermolabile missense variants Y238H and D229G mapped to the ETFNalpha interdomain linker. Unlinked thermostable suppressors of these two fixB missense mutants were identified and mapped to the lpdA gene, encoding dihydrolipoamide dehydrogenase (LpDH), immediately distal to the pdhABC genes, which collectively encode the pyruvate dehydrogenase (PDH) complex. These two suppressor alleles encoded LpDH NAD-binding domain missense mutants G187S and E210G. Crude cell extracts of these fixB lpdA double mutants showed 60-70% of the wild-type PDH activity; neither fixB lpdA double mutant strain exhibited any growth phenotype at the restrictive or the permissive temperature. The genetic interaction between two combinations of lpdA and fixB missense alleles implies a physical interaction of their respective products, LpDH and ETFN. Presumably, this interaction electrochemically couples LpDH as the electron donor to ETFN as the electron acceptor, allowing PDH complex activity (pyruvate oxidation) to drive soluble electron transport via ETFN to N2, which acts as the terminal electron acceptor. If so, then, the A. caulinodans PDH complex activity sustains N2 fixation both as the driving force for oxidative phosphorylation and as the metabolic electron donor.
Collapse
Affiliation(s)
- John D Scott
- Department of Molecular, Cellular and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | - Robert A Ludwig
- Department of Molecular, Cellular and Developmental Biology, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Rangaraj P, Ludden PW. Accumulation of 99Mo-containing iron-molybdenum cofactor precursors of nitrogenase on NifNE, NifH, and NifX of Azotobacter vinelandii. J Biol Chem 2002; 277:40106-11. [PMID: 12176981 DOI: 10.1074/jbc.m204581200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase was investigated using the purified in vitro FeMo-co synthesis system and 99Mo. The purified system involves the addition of all components that are known to be required for FeMo-co synthesis in their purified forms. Here, we report the accumulation of a 99Mo-containing FeMo-co precursor on NifNE. Apart from NifNE, NifH and NifX also accumulate 99Mo label. We present evidence that suggests NifH may serve as the entry point for molybdenum incorporation into the FeMo-co biosynthetic pathway. We also present evidence suggesting a role for NifX in specifying the organic acid moiety of FeMo-co.
Collapse
Affiliation(s)
- Priya Rangaraj
- Department of Biochemistry and the Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
9
|
Rangaraj P, Ruttimann-Johnson C, Shah VK, Ludden PW. Accumulation of 55Fe-labeled precursors of the iron-molybdenum cofactor of nitrogenase on NifH and NifX of Azotobacter vinelandii. J Biol Chem 2001; 276:15968-74. [PMID: 11279153 DOI: 10.1074/jbc.m100907200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Iron-molybdenum cofactor (FeMo-co) biosynthesis involves the participation of several proteins. We have used (55)Fe-labeled NifB-co, the specific iron and sulfur donor to FeMo-co, to investigate the accumulation of protein-bound precursors of FeMo-co. The (55)Fe label from radiolabeled NifB-co became associated with two major protein bands when the in vitro FeMo-co synthesis reaction was carried out with the extract of an Azotobacter vinelandii mutant lacking apodinitrogenase. One of the bands, termed (55)Fe-labeled upper band, was purified and shown to be NifH by immunoblot analysis. The (55)Fe-labeled lower band was identified as NifX by N-terminal sequencing. NifX purified from an A. vinelandii nifB strain showed a different electrophoretic mobility on anoxic native gels than did NifX with the FeMo-co precursor bound.
Collapse
Affiliation(s)
- P Rangaraj
- Department of Biochemistry and Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
10
|
Shah VK, Rangaraj P, Chatterjee R, Allen RM, Roll JT, Roberts GP, Ludden PW. Requirement of NifX and other nif proteins for in vitro biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Bacteriol 1999; 181:2797-801. [PMID: 10217770 PMCID: PMC93721 DOI: 10.1128/jb.181.9.2797-2801.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The iron-molybdenum cofactor (FeMo-co) of nitrogenase contains molybdenum, iron, sulfur, and homocitrate in a ratio of 1:7:9:1. In vitro synthesis of FeMo-co has been established, and the reaction requires an ATP-regenerating system, dithionite, molybdate, homocitrate, and at least NifB-co (the metabolic product of NifB), NifNE, and dinitrogenase reductase (NifH). The typical in vitro FeMo-co synthesis reaction involves mixing extracts from two different mutant strains of Azotobacter vinelandii defective in the biosynthesis of cofactor or an extract of a mutant strain complemented with the purified missing component. Surprisingly, the in vitro synthesis of FeMo-co with only purified components failed to generate significant FeMo-co, suggesting the requirement for one or more other components. Complementation of these assays with extracts of various mutant strains demonstrated that NifX has a role in synthesis of FeMo-co. In vitro synthesis of FeMo-co with purified components is stimulated approximately threefold by purified NifX. Complementation of these assays with extracts of A. vinelandii DJ42. 48 (DeltanifENX DeltavnfE) results in a 12- to 15-fold stimulation of in vitro FeMo-co synthesis activity. These data also demonstrate that apart from the NifX some other component(s) is required for the cofactor synthesis. The in vitro synthesis of FeMo-co with purified components has allowed the detection, purification, and identification of an additional component(s) required for the synthesis of cofactor.
Collapse
Affiliation(s)
- V K Shah
- Departments of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Chatterjee R, Ludden PW, Shah VK. Characterization of VNFG, the delta subunit of the vnf-encoded apodinitrogenase from Azotobacter vinelandii. Implications for its role in the formation of functional dinitrogenase 2. J Biol Chem 1997; 272:3758-65. [PMID: 9013633 DOI: 10.1074/jbc.272.6.3758] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The vnf-encoded apodinitrogenase (apodinitrogenase 2) from Azotobacter vinelandii is an alpha2beta2delta2 hexamer. The delta subunit (the VNFG protein) has been characterized in order to further delineate its function in the nitrogenase 2 enzyme system. Two species of VNFG were observed in cell-free extracts resolved on anoxic native gels; one is composed of VNFG associated with the VNFDK polypeptides, and the other is a homodimer of the VNFG protein. Both species of VNFG are observed in extracts of A. vinelandii strains that accumulate dinitrogenase 2, whereas extracts of strains impaired in the biosynthetic pathway of the iron-vanadium cofactor (FeV-co) that accumulate apodinitrogenase 2 (a catalytically inactive form of dinitrogenase 2 that lacks FeV-co) exhibit only the VNFG dimer on native gels. FeV-co and nucleotide are required for the stable association of VNFG with the VNFDK polypeptides; this stable association can be correlated with the formation of active dinitrogenase 2. The iron-molybdenum cofactor was unable to replace FeV-co in promoting the stable association of VNFG with VNFDK. FeV-co specifically associates with the VNFG dimer in vitro to form a complex of unknown stoichiometry; combination of this VNFG-FeV-co species with apodinitrogenase 2 results in its reconstitution to dinitrogenase 2. The results presented here suggest that VNFG is required for processing apodinitrogenase 2 to functional dinitrogenase 2.
Collapse
Affiliation(s)
- R Chatterjee
- Department of Biochemistry and Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
12
|
Chatterjee R, Allen RM, Ludden PW, Shah VK. Purification and characterization of the vnf-encoded apodinitrogenase from Azotobacter vinelandii. J Biol Chem 1996; 271:6819-26. [PMID: 8636105 DOI: 10.1074/jbc.271.12.6819] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The vnf-encoded apodinitrogenase (apodinitrogenase 2) has been purified from Azotobacter vinelandii strain CA117.30 (DeltanifKDB), and is an alpha2beta2delta2 hexamer. Apodinitrogenase 2 can be activated in vitro by the addition of the iron-vanadium cofactor (FeV-co) to form holodinitrogenase 2, which functions in C2H2, H+, and N2 reduction. Under certain conditions, the alpha2beta2delta2 hexamer dissociates to yield the free delta subunit (the VNFG protein) and a form of apodinitrogenase 2 that exhibits no C2H2, H+, or N2 reduction activities in the in vitro FeV-co activation assay; however, these activities can be restored upon addition of VNFG to the FeV-co activation assay system. No other vnf-, nif-, or non-nif-encoded proteins were able to replace the function of VNFG in the in vitro processing of alpha2beta2 apodinitrogenase 2 (in the presence of FeV-co) to a form capable of substrate reduction. Apodinitrogenase 2 is also activable in vitro by the iron-molybdenum cofactor to form a hybrid enzyme with unique properties, most notably the inability to reduce N2 and insensitivity to CO inhibition of C2H2 reduction.
Collapse
Affiliation(s)
- R Chatterjee
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
13
|
Allen RM, Chatterjee R, Ludden PW, Shah VK. Incorporation of iron and sulfur from NifB cofactor into the iron-molybdenum cofactor of dinitrogenase. J Biol Chem 1995; 270:26890-6. [PMID: 7592933 DOI: 10.1074/jbc.270.45.26890] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
NifB-co is an iron- and sulfur-containing precursor to the iron-molybdenum cofactor (FeMo-co) of dinitrogenase. The synthesis of NifB-co requires at least the product of the nifB gene. Incorporation of 55Fe and 35S from NifB-co into FeMo-co was observed only when all components of the in vitro FeMo-co synthesis system were present. Incorporation of iron and sulfur from NifB-co into dinitrogenase was not observed in control experiments in which the apodinitrogenase (lacking FeMo-co) was initially activated with purified, unlabeled FeMo-co or in assays where NifB-co was oxygen-inactivated prior to addition to the synthesis system. These data clearly demonstrate that iron and sulfur from active NifB-co are specifically incorporated into FeMo-co of dinitrogenase and provide direct biochemical identification of an iron-sulfur precursor of FeMo-co. Under different in vitro FeMo-co synthesis conditions, iron and sulfur from NifB-co were associated with at least two other proteins (NIFNE and gamma) that are involved in the formation of active dinitrogenase. The results presented here suggest that multiple FeMo-co processing steps might occur on NIFNE and that FeMo-co synthesis is most likely completed prior to the association of FeMo-co with gamma.
Collapse
Affiliation(s)
- R M Allen
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
14
|
Homer MJ, Dean DR, Roberts GP. Characterization of the gamma protein and its involvement in the metallocluster assembly and maturation of dinitrogenase from Azotobacter vinelandii. J Biol Chem 1995; 270:24745-52. [PMID: 7559591 DOI: 10.1074/jbc.270.42.24745] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dinitrogenase, the enzyme capable of catalyzing the reduction of N2, is a heterotetramer (alpha 2 beta 2) and contains the iron-molybdenum cofactor (FeMo-co) at the active site of the enzyme. Mutant strains unable to synthesize FeMo-co accumulate an apo form of dinitrogenase, which is enzymatically inactive but can be activated in vitro by the addition of purified FeMo-co. Apodinitrogenase from certain mutant strains of Azotobacter vinelandii has a subunit composition of alpha 2 beta 2 gamma 2. The gamma subunit has been implicated as necessary for the efficient activation of apodinitrogenase in vitro. Characterization of gamma protein in crude extracts and partially pure fractions has suggested that it is a chaperone-insertase required by apodinitrogenase for the insertion of FeMo-co. These are three major forms of gamma protein detectable by Western analysis of native gels. An apodinitrogenase-associated form is found in extracts of nifB or nifNE strains and dissociates from the apocomplex upon addition of purified FeMo-co. A second form of gamma protein is unassociated with other proteins and exists as a homodimer. Both of these forms of gamma protein can be converted to a third form by the addition of purified FeMo-co. This conversion requires the addition of active FeMo-co and correlates with the incorporation of iron into gamma protein. Crude extracts that contain this form of gamma protein are capable of donating FeMo-co to apodinitrogenase, thereby activating the apodinitrogenase. These data support a model in which gamma protein is able to interact with both FeMo-co and apodinitrogenase, facilitate FeMo-co insertion into apodinitrogenase, and then dissociate from the activated dinitrogenase complex.
Collapse
Affiliation(s)
- M J Homer
- Department of Bacteriology, University of Wisconsin, Madison 53706, USA
| | | | | |
Collapse
|
15
|
Allen RM, Chatterjee R, Madden MS, Ludden PW, Shah VK. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Crit Rev Biotechnol 1994; 14:225-49. [PMID: 7954845 DOI: 10.3109/07388554409079834] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The iron-molybdenum cofactor (FeMo-co) of nitrogenase is a unique molybdenum-containing prosthetic group that has been proposed to form an integral part of the active site of dinitrogenase. In Klebsiella pneumoniae, at least six nif (nitrogen fixation) gene products are required for the biosynthesis of FeMo-co, including NIFB, NIFNE, NIFH, NIFQ, and NIFV. An in vitro system for the synthesis of FeMo-co, which requires MgATP, molybdate, homocitrate, and at least the products of nifN, E, B, and H, has provided an enzymatic assay for the purification of many of the gene products required for FeMo-co biosynthesis. Although the structure of the cofactor has been solved recently, much about the biosynthetic pathway remains unknown. This article reviews what is known about the various components required for FeMo-co biosynthesis.
Collapse
Affiliation(s)
- R M Allen
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison
| | | | | | | | | |
Collapse
|
16
|
Aguilar OM, Taormino J, Thöny B, Ramseier T, Hennecke H, Szalay AA. The nifEN genes participating in FeMo cofactor biosynthesis and genes encoding dinitrogenase are part of the same operon in Bradyrhizobium species. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:413-20. [PMID: 2266945 DOI: 10.1007/bf00262436] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The nucleotide sequences of genes homologous to the Klebsiella pneumoniae nifEN genes have been determined in Bradyrhizobium japonicum 110. The coding regions for the nifE and nifN consist, respectively, of 1641 and 1407 nucleotides. The nifD gene (coding for the beta-subunit of dinitrogenase) and nifE are linked, and separated by 95 nucleotides. In the region of 12 nucleotides that separates nifE from nifN the stop codon for nifE overlaps the putative ribosome binding site for nifN. In contrast to Klebsiella and Azotobacter vinelandii, the B. japonicum nifEN genes are linked to the nifDK genes in the same operon. Comparison of dinitrogenase polypeptides (nifDK products) and the polypeptides of the nifE and nifN genes reveals considerable homology between nifD and nifE, and between nifK and nifN. Several protein domains, containing highly conserved cysteine residues, are conserved among the gene products of nifD, nifK, nifE and nifN. This result allows us to propose a probable evolutionary pathway for the common origin of these genes.
Collapse
Affiliation(s)
- O M Aguilar
- Plant Molecular Genetics and Biotechnology Center, University of Alberta, Edmonton, Canada
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- S M Hinton
- Exxon Corporate Research Company, Annandale, New Jersey
| | | |
Collapse
|