1
|
Martien JI, Trujillo EA, Jacobson TB, Tatli M, Hebert AS, Stevenson DM, Coon JJ, Amador-Noguez D. Metabolic Remodeling during Nitrogen Fixation in Zymomonas mobilis. mSystems 2021; 6:e0098721. [PMID: 34783580 PMCID: PMC8594446 DOI: 10.1128/msystems.00987-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Zymomonas mobilis is an ethanologenic bacterium currently being developed for production of advanced biofuels. Recent studies have shown that Z. mobilis can fix dinitrogen gas (N2) as a sole nitrogen source. During N2 fixation, Z. mobilis exhibits increased biomass-specific rates of ethanol production. In order to better understand the physiology of Z. mobilis during N2 fixation and during changes in ammonium (NH4+) availability, we performed liquid chromatography-mass spectrometry (LC-MS)-based targeted metabolomics and shotgun proteomics under three regimes of nitrogen availability: continuous N2 fixation, gradual NH4+ depletion, and acute NH4+ addition to N2-fixing cells. We report dynamic changes in abundance of proteins and metabolites related to nitrogen fixation, motility, ammonium assimilation, amino acid biosynthesis, nucleotide biosynthesis, isoprenoid biosynthesis, and Entner-Doudoroff (ED) glycolysis, providing insight into the regulatory mechanisms that control these processes in Z. mobilis. Our analysis identified potential physiological mechanisms that may contribute to increased specific ethanol production during N2 fixation, including decreased activity of biosynthetic pathways, increased protein abundance of alcohol dehydrogenase (ADHI), and increased thermodynamic favorability of the ED pathway. Of particular relevance to advanced biofuel production, we found that intermediates in the methylerythritol phosphate (MEP) pathway for isoprenoid biosynthesis were depleted during N2 fixation, coinciding with decreased protein abundance of deoxyxylulose 5-phosphate synthase (DXS), the first enzyme in the pathway. This implies that DXS protein abundance serves as a native control point in regulating MEP pathway activity in Z. mobilis. The results of this study will inform metabolic engineering to further develop Z. mobilis as a platform organism for biofuel production. IMPORTANCE Biofuels and bioproducts have the potential to serve as environmentally sustainable replacements for petroleum-derived fuels and commodity molecules. Advanced fuels such as higher alcohols and isoprenoids are more suitable gasoline replacements than bioethanol. Developing microbial systems to generate advanced biofuels requires metabolic engineering to reroute carbon away from ethanol and other native products and toward desired pathways, such as the MEP pathway for isoprenoid biosynthesis. However, rational engineering of microbial metabolism relies on understanding metabolic control points, in terms of both enzyme activity and thermodynamic favorability. In Z. mobilis, the factors that control glycolytic rates, ethanol production, and isoprenoid production are still not fully understood. In this study, we performed metabolomic, proteomic, and thermodynamic analysis of Z. mobilis during N2 fixation. This analysis identified key changes in metabolite levels, enzyme abundance, and glycolytic thermodynamic favorability that occurred during changes in NH4+ availability, helping to inform future efforts in metabolic engineering.
Collapse
Affiliation(s)
- Julia I. Martien
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Edna A. Trujillo
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Tyler B. Jacobson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Mehmet Tatli
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Akentieva N. Posttranslational modification of dinitrogenase reductase in Rhodospirillum rubrum treated with fluoroacetate. World J Microbiol Biotechnol 2018; 34:184. [PMID: 30488133 DOI: 10.1007/s11274-018-2564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
Nitrogen fixation is one of the major biogeochemical contributions carried out by diazotrophic microorganisms. The goal of this research is study of posttranslational modification of dinitrogenase reductase (Fe protein), the involvement of malate and pyruvate in generation of reductant in Rhodospirillum rubrum. A procedure for the isolation of the Fe protein from cell extracts was developed and used to monitor the modification of the Fe protein in vivo. The subunit pattern of the isolated the Fe protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was assayed by Western blot analysis. Whole-cell nitrogenase activity was also monitored during the Fe protein modification by gas chromatograpy, using the acetylene reduction assay. It has been shown, that the addition of fluoroacetate, ammonia and darkness resulted in the loss of whole-cell nitrogenase activity and the in vivo modification of the Fe protein. For fluoroacetate, ammonia and darkness, the rate of loss of nitrogenase activity was similar to that for the Fe protein modification. The addition of NADH and reillumination of a culture incubated in the dark resulted in the rapid restoration of nitrogenase activity and the demodification of the Fe protein. Fluoroacetate inhibited the nitrogenase activity of R. rubrum and resulted in the modification of the Fe protein in cells, grown on pyruvate or malate as the endogeneous electron source. The nitrogenase activity in draTG mutant (lacking DRAT/DRAG system) decreased after the addition of fluoroacetate, but the Fe protein remained completely unmodified. The results showed that the reduced state of cell, posttranslational modifications of the Fe protein and the DRAT/DRAG system are important for nitrogenase activity and the regulation of nitrogen fixation.
Collapse
Affiliation(s)
- Natalia Akentieva
- Department of Kinetics of Chemical and Biological Processes, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Street Academician Semenov, 1., Chernogolovka, 142432, Moscow Region, Russia.
| |
Collapse
|
3
|
Understanding the physiological roles of polyhydroxybutyrate (PHB) in Rhodospirillum rubrum S1 under aerobic chemoheterotrophic conditions. Appl Microbiol Biotechnol 2016; 100:8901-12. [PMID: 27480532 DOI: 10.1007/s00253-016-7711-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
Abstract
Polyhydroxybutyrate (PHB) is an important biopolymer accumulated by bacteria and associated with cell survival and stress response. Here, we make two surprising findings in the PHB-accumulating species Rhodospirillum rubrum S1. We first show that the presence of PHB promotes the increased assimilation of acetate preferentially into biomass rather than PHB. When R. rubrum is supplied with (13)C-acetate as a PHB precursor, 83.5 % of the carbon in PHB comes from acetate. However, only 15 % of the acetate ends up in PHB with the remainder assimilated as bacterial biomass. The PHB-negative mutant of R. rubrum assimilates 2-fold less acetate into biomass compared to the wild-type strain. Acetate assimilation proceeds via the ethylmalonyl-CoA pathway with (R)-3-hydroxybutyrate as a common intermediate with the PHB pathway. Secondly, we show that R. rubrum cells accumulating PHB have reduced ribulose 1,5-bisphosphate carboxylase (RuBisCO) activity. RuBisCO activity reduces 5-fold over a 36-h period after the onset of PHB. In contrast, a PHB-negative mutant maintains the same level of RuBisCO activity over the growth period. Since RuBisCO controls the redox potential in R. rubrum, PHB likely replaces RuBisCO in this role. R. rubrum is the first bacterium found to express RuBisCO under aerobic chemoheterotrophic conditions.
Collapse
|
4
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
5
|
Huergo LF, Pedrosa FO, Muller-Santos M, Chubatsu LS, Monteiro RA, Merrick M, Souza EM. PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. MICROBIOLOGY-SGM 2012; 158:176-190. [PMID: 22210804 DOI: 10.1099/mic.0.049783-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fixation of atmospheric nitrogen by the prokaryotic enzyme nitrogenase is an energy- expensive process and consequently it is tightly regulated at a variety of levels. In many diazotrophs this includes post-translational regulation of the enzyme's activity, which has been reported in both bacteria and archaea. The best understood response is the short-term inactivation of nitrogenase in response to a transient rise in ammonium levels in the environment. A number of proteobacteria species effect this regulation through reversible ADP-ribosylation of the enzyme, but other prokaryotes have evolved different mechanisms. Here we review current knowledge of post-translational control of nitrogenase and show that, for the response to ammonium, the P(II) signal transduction proteins act as key players.
Collapse
Affiliation(s)
- Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Marcelo Muller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Leda S Chubatsu
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Rose A Monteiro
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Mike Merrick
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, UK
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| |
Collapse
|
6
|
Nitrogenase switch-off and regulation of ammonium assimilation in response to light deprivation in Rhodospirillum rubrum are influenced by the nitrogen source used during growth. J Bacteriol 2009; 192:1463-6. [PMID: 20023013 DOI: 10.1128/jb.01456-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation and ammonium assimilation in Rhodospirillum rubrum are regulated in response to changes in light availability, and we show that the response in terms of glutamine synthetase activity and P(II) modification is dependent on the nitrogen source used for growth, N(2) or glutamate, although both lead to nitrogenase derepression.
Collapse
|
7
|
Jonsson A, Nordlund S, Teixeira PF. Reduced activity of glutamine synthetase in Rhodospirillum rubrum mutants lacking the adenylyltransferase GlnE. Res Microbiol 2009; 160:581-4. [DOI: 10.1016/j.resmic.2009.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/24/2009] [Accepted: 09/01/2009] [Indexed: 12/01/2022]
|
8
|
Gusso CL, de Souza EM, Rigo LU, de Oliveira Pedrosa F, Yates M, de M Rego FG, Klassen G. Effect of anntrCmutation on amino acid or urea utilization and on nitrogenase switch-off inHerbaspirillum seropedicae. Can J Microbiol 2008; 54:235-9. [DOI: 10.1139/w07-135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herbaspirillum seropedicae is a nitrogen-fixing bacterium that grows well with ammonium chloride or sodium nitrate as alternative single nitrogen sources but that grows more slowly with l-alanine, l-serine, l-proline, or urea. The ntrC mutant strain DCP286A was able to utilize only ammonium or urea of these nitrogen sources. The addition of 1 mmol·L–1ammonium chloride to the nitrogen-fixing wild-type strain inhibited nitrogenase activity rapidly and completely. Urea was a less effective inhibitor; approximately 20% of nitrogenase activity remained 40 min after the addition of 1 mmol·L–1urea. The effect of the ntrC mutation on nitrogenase inhibition (switch-off) was studied in strain DCP286A containing the constitutively expressed gene nifA of H. seropedicae. In this strain, nitrogenase inhibition by ammonium was completely abolished, but the addition of urea produced a reduction in nitrogenase activity similar to that of the wild-type strain. The results suggest that the NtrC protein is required for assimilation of nitrate and the tested amino acids by H. seropedicae. Furthermore, NtrC is also necessary for ammonium-induced switch-off of nitrogenase but is not involved in the mechanism of nitrogenase switch-off by urea.
Collapse
Affiliation(s)
- Claudio L. Gusso
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Emanuel M. de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Liu Un Rigo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Fábio de Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - M.G. Yates
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Fabiane G. de M Rego
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| | - Giseli Klassen
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
- Departamento de Patologia Básica, Universidade Federal do Paraná, C.P. 1903, CEP-81531-990, Curitiba, Paraná, Brasil
| |
Collapse
|
9
|
Jonsson A, Teixeira PF, Nordlund S. The activity of adenylyltransferase in Rhodospirillum rubrum is only affected by α-ketoglutarate and unmodified PII proteins, but not by glutamine, in vitro. FEBS J 2007; 274:2449-60. [PMID: 17419734 DOI: 10.1111/j.1742-4658.2007.05778.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Ammonium assimilation is tightly regulated in nitrogen-fixing bacteria; the target of regulation is primarily the activity of the key enzyme glutamine synthetase that is regulated by reversible covalent modification by AMP groups in reactions catalysed by the bifunctional adenylyltransferase (ATase). The properties and regulation of ATase from Escherichia coli have been studied in great detail. We have investigated the regulation of ATase from Rhodospirillum rubrum, a photosynthetic nitrogen-fixing bacterium. In this diazotroph, nitrogenase is regulated at the metabolic level in addition to the transcriptional regulation operating in all diazotrophic bacteria, which makes understanding the regulatory features of nitrogen assimilation even more interesting. We show that in R. rubrum, in contrast to the E. coli system, ATase is primarily regulated by alpha-ketoglutarate and that glutamine has no effect on neither the adenylylation nor the deadenylylation of glutamine synthetase. Furthermore, the role of the regulatory P(II) proteins is only to stimulate the adenylylation reaction, as there is no effect on the reverse reaction. We propose that in R. rubrum and possibly other diazotrophs alpha-ketoglutarate plays the central role in the regulation of ATase and thus glutamine synthetase activity.
Collapse
Affiliation(s)
- Anders Jonsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
10
|
Jonsson A, Nordlund S. In vitro studies of the uridylylation of the three PII protein paralogs from Rhodospirillum rubrum: the transferase activity of R. rubrum GlnD is regulated by alpha-ketoglutarate and divalent cations but not by glutamine. J Bacteriol 2007; 189:3471-8. [PMID: 17337583 PMCID: PMC1855872 DOI: 10.1128/jb.01704-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
P(II) proteins have been shown to be key players in the regulation of nitrogen fixation and ammonia assimilation in bacteria. The mode by which these proteins act as signals is by being in either a form modified by UMP or the unmodified form. The modification, as well as demodification, is catalyzed by a bifunctional enzyme encoded by the glnD gene. The regulation of this enzyme is thus of central importance. In Rhodospirillum rubrum, three P(II) paralogs have been identified. In this study, we have used purified GlnD and P(II) proteins from R. rubrum, and we show that for the uridylylation activity of R. rubrum GlnD, alpha-ketoglutarate is the main signal, whereas glutamine has no effect. This is in contrast to, e.g., the Escherichia coli system. Furthermore, we show that all three P(II) proteins are uridylylated, although the efficiency is dependent on the cation present. This difference may be of importance in understanding the effects of the P(II) proteins on the different target enzymes. Furthermore, we show that the deuridylylation reaction is greatly stimulated by glutamine and that Mn(2+) is required.
Collapse
Affiliation(s)
- Anders Jonsson
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
11
|
Zhang Y, Wolfe DM, Pohlmann EL, Conrad MC, Roberts GP. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. MICROBIOLOGY-SGM 2006; 152:2075-2089. [PMID: 16804182 DOI: 10.1099/mic.0.28903-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The AmtB protein transports uncharged NH(3) into the cell, but it also interacts with the nitrogen regulatory protein P(II), which in turn regulates a variety of proteins involved in nitrogen fixation and utilization. Three P(II) homologues, GlnB, GlnK and GlnJ, have been identified in the photosynthetic bacterium Rhodospirillum rubrum, and they have roles in at least four overlapping and distinct functions, one of which is the post-translational regulation of nitrogenase activity. In R. rubrum, nitrogenase activity is tightly regulated in response to addition or energy depletion (shift to darkness), and this regulation is catalysed by the post-translational regulatory system encoded by draTG. Two amtB homologues, amtB(1) and amtB(2), have been identified in R. rubrum, and they are linked with glnJ and glnK, respectively. Mutants lacking AmtB(1) are defective in their response to both addition and darkness, while mutants lacking AmtB(2) show little effect on the regulation of nitrogenase activity. These responses to darkness and appear to involve different signal transduction pathways, and the poor response to darkness does not seem to be an indirect result of perturbation of internal pools of nitrogen. It is also shown that AmtB(1) is necessary to sequester detectable amounts GlnJ to the cell membrane. These results suggest that some element of the AmtB(1)-P(II) regulatory system senses energy deprivation and a consistent model for the integration of nitrogen, carbon and energy signals by P(II) is proposed. Other results demonstrate a degree of specificity in interaction of AmtB(1) with the different P(II) homologues in R. rubrum. Such interaction specificity might be important in explaining the way in which P(II) proteins regulate processes involved in nitrogen acquisition and utilization.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M Wolfe
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward L Pohlmann
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary C Conrad
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gary P Roberts
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
12
|
Abstract
Biological nitrogen fixation, a process found only in some prokaryotes, is catalyzed by the nitrogenase enzyme complex. Bacteria containing nitrogenase occupy an indispensable ecological niche, supplying fixed nitrogen to the global nitrogen cycle. Due to this inceptive role in the nitrogen cycle, diazotrophs are present in virtually all ecosystems, with representatives in environments as varied as aerobic soils (e.g., Azotobacter species), the ocean surface layer (Trichodesmium) and specialized nodules in legume roots (Rhizobium). In any ecosystem, diazotrophs must respond to varied environmental conditions to regulate the tremendously taxing nitrogen fixation process. All characterized diazotrophs regulate nitrogenase at the transcriptional level. A smaller set also possesses a fast-acting post-translational regulation system. Although there is little apparent variation in the sequences and structures of nitrogenases, there appear to be almost as many nitrogenase-regulating schemes as there are nitrogen-fixing species. Herein are described the paradigms of nitrogenase function, transcriptional control and post-translational regulation, as well as the variations on these schemes, described in various nitrogen-fixing bacteria. Regulation is described on a molecular basis, focusing on the functional and structural characteristics of the proteins responsible for control of nitrogen fixation.
Collapse
Affiliation(s)
- C M Halbleib
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
13
|
Zhang Y, Pohlmann EL, Ludden PW, Roberts GP. Mutagenesis and functional characterization of the glnB, glnA, and nifA genes from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 2000; 182:983-92. [PMID: 10648524 PMCID: PMC94374 DOI: 10.1128/jb.182.4.983-992.2000] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogen fixation is tightly regulated in Rhodospirillum rubrum at two different levels: transcriptional regulation of nif expression and posttranslational regulation of dinitrogenase reductase by reversible ADP-ribosylation catalyzed by the DRAT-DRAG (dinitrogenase reductase ADP-ribosyltransferase-dinitrogenase reductase-activating glycohydrolase) system. We report here the characterization of glnB, glnA, and nifA mutants and studies of their relationship to the regulation of nitrogen fixation. Two mutants which affect glnB (structural gene for P(II)) were constructed. While P(II)-Y51F showed a lower nitrogenase activity than that of wild type, a P(II) deletion mutant showed very little nif expression. This effect of P(II) on nif expression is apparently the result of a requirement of P(II) for NifA activation, whose activity is regulated by NH(4)(+) in R. rubrum. The modification of glutamine synthetase (GS) in these glnB mutants appears to be similar to that seen in wild type, suggesting that a paralog of P(II) might exist in R. rubrum and regulate the modification of GS. P(II) also appears to be involved in the regulation of DRAT activity, since an altered response to NH(4)(+) was found in a mutant expressing P(II)-Y51F. The adenylylation of GS plays no significant role in nif expression or the ADP-ribosylation of dinitrogenase reductase, since a mutant expressing GS-Y398F showed normal nitrogenase activity and normal modification of dinitrogenase reductase in response to NH(4)(+) and darkness treatments.
Collapse
Affiliation(s)
- Y Zhang
- Departments of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
14
|
Yakunin AF, Laurinavichene TV, Tsygankov AA, Hallenbeck PC. The presence of ADP-ribosylated Fe protein of nitrogenase in Rhodobacter capsulatus is correlated with cellular nitrogen status. J Bacteriol 1999; 181:1994-2000. [PMID: 10094674 PMCID: PMC93609 DOI: 10.1128/jb.181.7.1994-2000.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The photosynthetic bacterium Rhodobacter capsulatus has been shown to regulate its nitrogenase by covalent modification via the reversible ADP-ribosylation of Fe protein in response to darkness or the addition of external NH4+. Here we demonstrate the presence of ADP-ribosylated Fe protein under a variety of steady-state growth conditions. We examined the modification of Fe protein and nitrogenase activity under three different growth conditions that establish different levels of cellular nitrogen: batch growth with limiting NH4+, where the nitrogen status is externally controlled; batch growth on relatively poor nitrogen sources, where the nitrogen status is internally controlled by assimilatory processes; and continuous culture. When cultures were grown to stationary phase with different limiting concentrations of NH4+, the ADP-ribosylation state of Fe protein was found to correlate with cellular nitrogen status. Additionally, actively growing cultures (grown with N2 or glutamate), which had an intermediate cellular nitrogen status, contained a portion of their Fe protein in the modified state. The correlation between cellular nitrogen status and ADP-ribosylation state was corroborated with continuous cultures grown under various degrees of nitrogen limitation. These results show that in R. capsulatus the modification system that ADP-ribosylates nitrogenase in the short term in response to abrupt changes in the environment is also capable of modifying nitrogenase in accordance with long-term cellular conditions.
Collapse
Affiliation(s)
- A F Yakunin
- Département de Microbiologie et Immunologie, Université de Montréal, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
15
|
Zhang Y, Burris RH, Ludden PW, Roberts GP. Regulation of nitrogen fixation in Azospirillum brasilense. FEMS Microbiol Lett 1997; 152:195-204. [PMID: 9231412 DOI: 10.1111/j.1574-6968.1997.tb10428.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regulation of nitrogen fixation in Azospirillum brasilense is very complicated, and it responds to exogenous fixed nitrogen or a change of oxygen concentration. This regulation occurs at both transcriptional and posttranslational levels. Unlike regulation seen in Klebsiella pneumoniae, transcription of nifA does not require NTRB/NTRC in A. brasilense and the expression of nifHDK is controlled by posttranslational regulation of NIFA activity. Addition of NH4+ or a shift from microaerobic to anaerobic conditions also causes a rapid loss of nitrogenase activity in A. brasilense. This posttranslational regulation of nitrogenase activity involves the DRAT/DRAG regulatory system, which is similar to that of Rhodospirillum rubrum. Both DRAT and DRAG activities are regulated in vivo, but the mechanisms for their regulation are unknown.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
16
|
Norén A, Soliman A, Nordlund S. The role of NAD+ as a signal during nitrogenase switch-off in Rhodospirillum rubrum. Biochem J 1997; 322 ( Pt 3):829-32. [PMID: 9148756 PMCID: PMC1218262 DOI: 10.1042/bj3220829] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The role of NAD+ in the metabolic regulation of nitrogenase, the 'switch-off' effect, in Rhodospirillum rubrum has been studied. We now show that the decrease in nitrogenase activity upon addition of NAD+ to R. rubrum is due to modification of dinitrogenase reductase. There was no effect when NAD+ was added to a mutant of R. rubrum devoid of dinitrogenase reductase ADP-ribosyltransferase, indicating that NAD+ 'switch-off' is an effect of the same regulatory system as ammonium 'switch-off'. We also show that oxaloacetate and alpha-ketoglutarate function as 'switch-off' effectors. On the other hand beta-hydroxybutyrate has the opposite effect by shortening the 'switch-off' period. Furthermore, by using an inhibitor of glutamate synthase the role of this enzyme in 'switch-off' was investigated. The results are discussed in relation to our proposal that changes in the concentration of NAD+ are involved in initiating 'switch-off'.
Collapse
Affiliation(s)
- A Norén
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Grunwald SK, Zhang Y, Halbleib C, Roberts GP, Ludden PW. A Proposed Role for Protein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997. [DOI: 10.1007/978-1-4419-8632-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Zhang Y, Cummings AD, Burris RH, Ludden PW, Roberts GP. Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. J Bacteriol 1995; 177:5322-6. [PMID: 7665521 PMCID: PMC177326 DOI: 10.1128/jb.177.18.5322-5326.1995] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Homologs of ntrB and ntrC genes from Rhodospirillum rubrum were cloned and sequenced. A mutant lacking ntrBC was constructed, and this mutant has normal nitrogenase activity under nif-derepressing conditions, indicating that ntrBC are not necessary for the expression of the nif genes in R. rubrum. However, the post-translational regulation of nitrogenase activity by ADP-ribosylation in response to NH4+ was partially abolished in this mutant. More surprisingly, the regulation of nitrogenase activity in response to darkness was also affected, suggesting a physiological link between the ntr system and energy signal transduction in R. rubrum. The expression of glutamine synthetase, as well as its posttranslational regulation, was also altered in this ntrBC mutant.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | | | | | | | |
Collapse
|
19
|
Zhang Y, Burris RH, Ludden PW, Roberts GP. Comparison studies of dinitrogenase reductase ADP-ribosyl transferase/dinitrogenase reductase activating glycohydrolase regulatory systems in Rhodospirillum rubrum and Azospirillum brasilense. J Bacteriol 1995; 177:2354-9. [PMID: 7730264 PMCID: PMC176891 DOI: 10.1128/jb.177.9.2354-2359.1995] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Reversible ADP ribosylation of dinitrogenase reductase, catalyzed by the dinitrogenase reductase ADP-ribosyl transferase (DRAT)/dinitrogenase reductase activating glycohydrolase (DRAG) regulatory system, has been characterized in both Rhodospirillum rubrum and Azospirillum brasilense. Although the general functions of DRAT and DRAG are very similar in these two organisms, there are a number of interesting differences, e.g., in the timing and extent of the regulatory response to different stimuli. In this work, the basis of these differences has been studied by the heterologous expression of either draTG or nifH from A. brasilense in R. rubrum mutants that lack these genes, as well as the expression of draTG from R. rubrum in an A. brasilense draTG mutant. In general, these hybrid strains respond to stimuli in a manner similar to that of the wild-type parent of the recipient strain rather than the wild-type source of the introduced genes. These results suggest that the differences seen in the regulatory response in these organisms are not primarily a result of different properties of DRAT, DRAG, or dinitrogenase reductase. Instead, the differences are likely the result of different signal pathways that regulate DRAG and DRAT activities in these two organisms. Our results also suggest that draT and draG are cotranscribed in A. brasilense.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, University of Wisconsin-Madison 53706, USA
| | | | | | | |
Collapse
|
20
|
Grunwald SK, Lies DP, Roberts GP, Ludden PW. Posttranslational regulation of nitrogenase in Rhodospirillum rubrum strains overexpressing the regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase activating glycohydrolase. J Bacteriol 1995; 177:628-35. [PMID: 7836296 PMCID: PMC176637 DOI: 10.1128/jb.177.3.628-635.1995] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Rhodospirillum rubrum strains that overexpress the enzymes involved in posttranslational nitrogenase regulation, dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG), were constructed, and the effect of this overexpression on in vivo DRAT and DRAG regulation was investigated. Broad-host-range plasmid constructs containing a fusion of the R. rubrum nifH promoter and translation initiation sequences to the second codon of draT, the first gene of the dra operon, were constructed. Overexpression plasmid constructs which overexpressed (i) only functional DRAT, (ii) only functional DRAG and presumably the putative downstream open reading frame (ORF)-encoded protein, or (iii) all three proteins were generated and introduced into wild-type R. rubrum. Overexpression of DRAT still allowed proper regulation of nitrogenase activity, with ADP-ribosylation of dinitrogenase reductase by DRAT occurring only upon dark or ammonium stimuli, suggesting that DRAT is still regulated upon overexpression. However, overexpression of DRAG and the downstream ORF altered nitrogenase regulation such that dinitrogenase reductase did not accumulate in the ADP-ribosylated form under inactivation conditions, suggesting that DRAG was constitutively active and that therefore DRAG regulation is altered upon overexpression. Proper DRAG regulation was observed in a strain overexpressing DRAT, DRAG, and the downstream ORF, suggesting that a proper balance of DRAT and DRAG levels is required for proper DRAG regulation.
Collapse
Affiliation(s)
- S K Grunwald
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
21
|
Zhang Y, Burris RH, Ludden PW, Roberts GP. Posttranslational regulation of nitrogenase activity in Azospirillum brasilense ntrBC mutants: ammonium and anaerobic switch-off occurs through independent signal transduction pathways. J Bacteriol 1994; 176:5780-7. [PMID: 7916012 PMCID: PMC196782 DOI: 10.1128/jb.176.18.5780-5787.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nitrogenase activity is regulated by reversible ADP-ribosylation in response to NH4+ and anaerobic conditions in Azospirillum brasilense. The effect of mutations in ntrBC on this regulation was examined. While NH4+ addition to ntrBC mutants caused a partial loss of nitrogenase activity, the effect was substantially smaller than that seen in ntr+ strains. In contrast, nitrogenase activity in these mutants was normally regulated in response to anaerobic conditions. The analysis of mutants lacking both the ntrBC gene products and dinitrogenase reductase activating glycohydrolase (DRAG) suggested that the primary effect of the ntrBC mutations was to alter the regulation of DRAG activity. Although nif expression in the ntr mutants appeared normal, as judged by activity, glutamine synthetase activity was significantly lower in ntrBC mutants than in the wild type. We hypothesize that this lower glutamine synthetase activity may delay the transduction of the NH4+ signal necessary for the inactivation of DRAG, resulting in a reduced response of nitrogenase activity to NH4+. Finally, data presented here suggest that different environmental stimuli use independent signal pathways to affect this reversible ADP-ribosylation system.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|
22
|
Ludden PW. Reversible ADP-ribosylation as a mechanism of enzyme regulation in procaryotes. Mol Cell Biochem 1994; 138:123-9. [PMID: 7898454 DOI: 10.1007/bf00928453] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several cases of ADP-ribosylation of endogenous proteins in procaryotes have been discovered and investigated. The most thoroughly studied example is the reversible ADP-ribosylation of the dinitrogenase reductase from the photosynthetic bacterium Rhodospirillum rubrum and related bacteria. A dinitrogenase reductase ADP-ribosyltransferase (DRAT) and a dinitrogenase reductase ADP-ribose glycohydrolase (DRAG) from R. rubrum have been isolated and characterized. The genes for these proteins have been isolated and sequences and show little similarity to the ADP-ribosylating toxins. Other targets for endogenous ADP-ribosylation by procaryotes include glutamine synthetase in R. rubrum and Rhizobium meliloti and undefined proteins in Streptomyces griseus and Pseudomonas maltophila.
Collapse
Affiliation(s)
- P W Ludden
- Department of Biochemistry, University of Wisconsin, Madison 53706
| |
Collapse
|
23
|
Zhang Y, Burris RH, Ludden PW, Roberts GP. Posttranslational regulation of nitrogenase activity by anaerobiosis and ammonium in Azospirillum brasilense. J Bacteriol 1993; 175:6781-8. [PMID: 8226619 PMCID: PMC206801 DOI: 10.1128/jb.175.21.6781-6788.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In the microaerophilic diazotroph Azospirillum brasilense, the addition of fixed nitrogen or a shift to anaerobic conditions leads to a rapid loss of nitrogenase activity due to ADP-ribosylation of dinitrogenase reductase. The product of draT (DRAT) is shown to be necessary for this modification, and the product of draG (DRAG) is shown to be necessary for the removal of the modification upon removal of the stimulus. DRAG and DRAT are themselves subject to posttranslational regulation, and this report identifies features of that regulation. We demonstrate that the activation of DRAT in response to an anaerobic shift is transient but that the duration of DRAT activation in response to added NH4+ varies with the NH4+ concentration. In contrast, DRAG appears to be continuously active under conditions favoring nitrogen fixation. Thus, the activities of DRAG and DRAT are not always coordinately regulated. Finally, our experiments suggest the existence of a temporary period of futile cycling during which DRAT and DRAG are simultaneously adding and removing ADP-ribose from dinitrogenase reductase, immediately following the addition of a negative stimulus.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | | | | | |
Collapse
|
24
|
Pierrard J, Ludden PW, Roberts GP. Posttranslational regulation of nitrogenase in Rhodobacter capsulatus: existence of two independent regulatory effects of ammonium. J Bacteriol 1993; 175:1358-66. [PMID: 8444798 PMCID: PMC193222 DOI: 10.1128/jb.175.5.1358-1366.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase activity is regulated by ADP-ribosylation of component II in response to the addition of ammonium to cultures or to the removal of light. The ammonium stimulus results in a fast and almost complete inhibition of the in vivo acetylene reduction activity, termed switch-off, which is reversed after the ammonium is exhausted. In the present study of the response of cells to ammonium, ADP-ribosylation of component II occurred but could not account for the extent and timing of the inhibition of activity. The presence of an additional response was confirmed with strains expressing mutant component II proteins; although these proteins are not a substrate for ADP-ribosylation, the strains continued to exhibit a switch-off response to ammonium. This second regulatory response of nitrogenase to ammonium was found to be synchronous with ADP-ribosylation and was responsible for the bulk of the observed effects on nitrogenase activity. In comparison, ADP-ribosylation in R. capsulatus was found to be relatively slow and incomplete but responded independently to both known stimuli, darkness and ammonium. Based on the in vitro nitrogenase activity of both the wild type and strains whose component II proteins cannot be ADP-ribosylated, it seems likely that the second response blocks either the ATP or the electron supply to nitrogenase.
Collapse
Affiliation(s)
- J Pierrard
- Department of Bacteriology, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
25
|
Willison JC. Biochemical genetics revisited: the use of mutants to study carbon and nitrogen metabolism in the photosynthetic bacteria. FEMS Microbiol Rev 1993; 10:1-38. [PMID: 8431308 DOI: 10.1111/j.1574-6968.1993.tb05862.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The biochemical genetics approach is defined as the use of mutants, in comparative studies with the wild-type, to obtain information about biochemical and physiological processes in complex metabolic systems. This approach has been used extensively, for example in studies on the bioenergetics of the photosynthetic bacteria, but has been applied less frequently to studies of intermediary carbon and nitrogen metabolism in phototrophic organisms. Several important processes in photosynthetic bacteria--the regulation of nitrogenase synthesis and activity, the control of intracellular redox balance during photoheterotrophic growth, and chemotaxis--have been shown to involve metabolism. However, current understanding of carbon and nitrogen metabolism in these organisms is insufficient to allow a complete understanding of these phenomena. The purpose of the present review is to give an overview of carbon and nitrogen metabolism in the photosynthetic bacteria, with particular emphasis on work carried out with mutants, and to indicate areas in which the biochemical genetics approach could be applied successfully. In particular, it will be argued that, in the case of Rhodobacter capsulatus and Rb. sphaeroides, two species which are fast-growing, possess a versatile metabolism, and have been extensively studied genetically, it should be possible to obtain a complete, integrated description of carbon and nitrogen metabolism, and to undertake a qualitative and quantitative analysis of the flow of carbon and reducing equivalents during photoheterotrophic growth. This would require a systematic biochemical genetic study employing techniques such as HPLC, NMR, and mass spectrometry, which are briefly discussed. The review is concerned mainly with Rb. capsulatus and Rb. sphaeroides, since most studies with mutants have been carried out with these organisms. However, where possible, a comparison is made with other species of purple non-sulphur bacteria and with purple and green sulphur bacteria, and recent literature relevant to these organisms has been cited.
Collapse
Affiliation(s)
- J C Willison
- Département de Biologie Moléculaire et Structurale, Centre d'Etudes Nucléaires de Grenoble, France
| |
Collapse
|
26
|
Soliman A, Nordlund S. Studies on the effect of NAD(H) on nitrogenase activity in Rhodospirillum rubrum. Arch Microbiol 1992; 157:431-5. [PMID: 1510568 DOI: 10.1007/bf00249100] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of NAD(P) and analogs of this nucleotide on nitrogenase activity in Rhodospirillum rubrum has been studied. Addition of NAD+ to nitrogen fixing Rsp. rubrum leads to inhibition of nitrogenase. NADP+ has the same effect but NADH or analogs modified in the nicotinamide portion do not cause inhibition. In contrast to ammonium ions, addition of NAD+ leads to inhibition of nitrogenase in cells that have been N-starved under argon. The inhibitory effect of NAD+ is more pronounced at lower light intensities. Addition of NAD+ also leads to inhibition of glutamine synthetase, a phenomenon also occurring when "switch-off" is produced by the addition of effectors such as ammonium ions or glutamine. It is also shown that NAD+ is taken up by Rsp. rubrum cells.
Collapse
Affiliation(s)
- A Soliman
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, University of Stockholm, Sweden
| | | |
Collapse
|
27
|
Zhang Y, Burris RH, Roberts GP. Cloning, sequencing, mutagenesis, and functional characterization of draT and draG genes from Azospirillum brasilense. J Bacteriol 1992; 174:3364-9. [PMID: 1577701 PMCID: PMC206006 DOI: 10.1128/jb.174.10.3364-3369.1992] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Azospirillum brasilense draT gene, encoding dinitrogenase reductase ATP-ribosyltransferase, and draG gene, encoding dinitrogenase reductase activating glycohydrolase, were cloned and sequenced. Two genes were contiguous on the A. brasilense chromosome and showed extensive similarity to the same genes from Rhodospirillum rubrum. Analysis of mutations introduced into the dra region on the A. brasilense chromosome showed that mutants affected in draT were incapable of regulating nitrogenase activity in response to ammonium. In contrast, a mutant with an insertion in draG was still capable of ADP-ribosylating dinitrogenase reductase in response to ammonium but was no longer able to recover activity after ammonium depletion. Plasmid-borne draTG genes from A. brasilense were introduced into dra mutants of R. rubrum and restored these mutants to an apparently wild-type phenotype. It is particularly interesting that dra mutants of R. rubrum containing draTG of A. brasilense can respond to darkness and light, since A. brasilense is a nonphotosynthetic bacterium and its dra system does not normally possess that regulatory response. The nifH gene of A. brasilense, encoding dinitrogenase reductase (the substrate of dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase), is located 1.9 kb from the start of draT and is divergently transcribed. Two insertion mutations in the region between draT and nifH showed no significant effect on nitrogenase activity or its regulation.
Collapse
Affiliation(s)
- Y Zhang
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
28
|
Warthmann R, Cypionka H, Pfennig N. Photoproduction of H2 from acetate by syntrophic cocultures of green sulfur bacteria and sulfur-reducing bacteria. Arch Microbiol 1992. [DOI: 10.1007/bf00248679] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Liang JH, Nielsen GM, Lies DP, Burris RH, Roberts GP, Ludden PW. Mutations in the draT and draG genes of Rhodospirillum rubrum result in loss of regulation of nitrogenase by reversible ADP-ribosylation. J Bacteriol 1991; 173:6903-9. [PMID: 1938894 PMCID: PMC209044 DOI: 10.1128/jb.173.21.6903-6909.1991] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Reversible ADP-ribosylation of dinitrogenase reductase forms the basis of posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum. This report describes the physiological effects of mutations in the genes encoding the enzymes that add and remove the ADP-ribosyl moiety. Mutants lacking a functional draT gene had no dinitrogenase reductase ADP-ribosyltransferase (DRAT, the draT gene product) activity in vitro and were incapable of modifying dinitrogenase reductase with ADP-ribose in vivo. Mutants lacking a functional draG gene had no dinitrogenase reductase-activating glycohydrolase (DRAG, the draG gene product) activity in vitro and were unable to remove ADP-ribose from the modified dinitrogenase reductase in vivo. Strains containing polar mutations in draT had no detectable DRAG activity in vitro, suggesting likely cotranscription of draT and draG. In strains containing draT and lacking a functional draG, dinitrogenase reductase accumulated in the active form under derepressing conditions but was rapidly ADP-ribosylated in response to conditions that cause inactivation. Detection of DRAT in these cells in vitro demonstrated that DRAT is itself subject to posttranslational regulation in vivo. Mutants affected in an open reading frame immediately downstream of draTG showed regulation of dinitrogenase reductase by ADP-ribosylation, although differences in the rates of ADP-ribosylation were apparent.
Collapse
Affiliation(s)
- J H Liang
- Department of Biochemistry, University of Wisconsin-Madison 53706
| | | | | | | | | | | |
Collapse
|
30
|
Carlberg I, Nordlund S. Purification and partial characterization of glutamate synthase from Rhodospirillum rubrum grown under nitrogen-fixing conditions. Biochem J 1991; 279 ( Pt 1):151-4. [PMID: 1930133 PMCID: PMC1151560 DOI: 10.1042/bj2790151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glutamate synthase, a key enzyme in ammonia assimilation, has been purified from the photosynthetic bacterium Rhodospirillum rubrum. The purification procedure involves ion-exchange chromatography, affinity chromatography and gel filtration. The recovery in the procedure is high (62%) and the specific activity is 21 mumol of NADPH oxidized/min per mg. The enzyme is specific for its substrates, and no activity was demonstrated with NADH or NH4+ ions substituting for NADPH and glutamine respectively. The enzyme is composed of two dissimilar subunits with molecular masses of 53 and 152 kDa, and it is shown that Cl- ions have an effect on the aggregation of the enzyme. Km values for the substrates are: NADPH, 16 microM; 2-oxoglutarate, 10 microM; and glutamine, 65 microM. The enzyme is inhibited by amidotransferase inhibitors at micromolar concentrations. The role of the enzyme in the metabolic regulation of nitrogenase is discussed.
Collapse
Affiliation(s)
- I Carlberg
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | |
Collapse
|
31
|
Steinborn B, Jürgens UJ, Oelze J. Control of nitrogenase in chemostat cultures of Rhodobacter capsulatus grown on ammonium at different illuminations. Arch Microbiol 1991. [DOI: 10.1007/bf00290986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Abstract
Starvation of Mouse hepatoma cells for essential amino acids or glucose results in the mono-ADP-ribosylation of the 78 kDa glucose-regulated protein, GRP78. Here we show that the ADP-ribosylated and non-ADP-ribosylated forms of GRP78 are interconvertible during tryptophan starvation and refeeding. In addition, the ADP-ribosylation of GRP78 was shown to be reversible even during nutritional stress. The overexpressed pool of non-ADP-ribosylated GRP78 synthesized during tunicamycin treatment was available for ADP-ribosylation during subsequent amino acid starvation, especially in the absence of tunicamycin. The reversible ADP-ribosylation of GRP78 could be part of a metabolic control mechanism in operation during nutritional stress.
Collapse
Affiliation(s)
- G H Leno
- Molecular and Cellular Biology and Pathobiology Program, Medical University of South Carolina, Charleston 29425
| | | |
Collapse
|
33
|
Woehle D, Lueddecke B, Ludden P. ATP-dependent and NAD-dependent modification of glutamine synthetase from Rhodospirillum rubrum in vitro. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77412-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Ernst A, Reich S, Böger P. Modification of dinitrogenase reductase in the cyanobacterium Anabaena variabilis due to C starvation and ammonia. J Bacteriol 1990; 172:748-55. [PMID: 2105302 PMCID: PMC208502 DOI: 10.1128/jb.172.2.748-755.1990] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the heterocystous cyanobacterium Anabaena variabilis, a change in nitrogenase activity and concomitant modification of dinitrogenase reductase (the Fe protein of nitrogenase) was induced either by NH4Cl at pH 10 (S. Reich and P. Böger, FEMS Microbiol. Lett. 58:81-86, 1989) or by cessation of C supply resulting from darkness, CO2 limitation, or inhibition of photosystem II activity. Modification induced by both C limitation and NH4Cl was efficiently prevented by anaerobic conditions. Under air, endogenously stored glycogen and added fructose protected against modification triggered by C limitation but not by NH4Cl. With stored glycogen present, dark modification took place after inhibition of respiration by KCN. Reactivation of inactivated nitrogenase and concomitant demodification of dinitrogenase reductase occurred after restoration of diazotrophic growth conditions. In previously C-limited cultures, reactivation was also observed in the dark after addition of fructose (heterotrophic growth) and under anaerobiosis upon reillumination in the presence of a photosynthesis inhibitor. The results indicate that modification of dinitrogenase reductase develops as a result of decreased carbohydrate-supported reductant supply of the heterocysts caused by C limitation or by increased diversion of carbohydrates towards ammonia assimilation. Apparently, a product of N assimilation such as glutamine is not necessary for modification. The increase of oxygen concentration in the heterocysts is a plausible consequence of all treatments causing Fe protein modification.
Collapse
Affiliation(s)
- A Ernst
- Lehrstuhl für Physiologie und Biochemie der Pflanzen, Universität Konstanz, Federal Republic of Germany
| | | | | |
Collapse
|
35
|
Moreno-Vivián C, Caballero FJ, Cárdenas J, Castillo F. Effect of the C/N balance on the regulation of nitrogen fixation in Rhodobacter capsulatus E1F1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80083-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Fu HA, Hartmann A, Lowery RG, Fitzmaurice WP, Roberts GP, Burris RH. Posttranslational regulatory system for nitrogenase activity in Azospirillum spp. J Bacteriol 1989; 171:4679-85. [PMID: 2504694 PMCID: PMC210267 DOI: 10.1128/jb.171.9.4679-4685.1989] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The mechanism for "NH4+ switch-off/on" of nitrogenase activity in Azospirillum brasilense and A. lipoferum was investigated. A correlation was established between the in vivo regulation of nitrogenase activity by NH4Cl or glutamine and the reversible covalent modification of dinitrogenase reductase. Dinitrogenase reductase ADP-ribosyltransferase (DRAT) activity was detected in extracts of A. brasilense with NAD as the donor molecule. Dinitrogenase reductase-activating glycohydrolase (DRAG) activity was present in extracts of both A. brasilense and A. lipoferum. The DRAG activity in A. lipoferum was membrane associated, and it catalyzed the activation of inactive nitrogenase (by covalent modification of dinitrogenase reductase) from both A. lipoferum and Rhodospirillum rubrum. A region homologous to R. rubrum draT and draG was identified in the genomic DNA of A. brasilense as a 12-kilobase EcoRI fragment and in A. lipoferum as a 7-kilobase EcoRI fragment. It is concluded that a posttranslational regulatory system for nitrogenase activity is present in A. brasilense and A. lipoferum and that it operates via ADP-ribosylation of dinitrogenase reductase as it does in R. rubrum.
Collapse
Affiliation(s)
- H A Fu
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Recent reviews dealing with phototrophic bacteria are concerned with bioenergetics, nitrogen fixation and hydrogen metabolism, synthesis of the photosynthetic apparatus and phylogeny/taxonomy. The organic N-metabolism of these phylogenetically diverse bacteria has last been reviewed in 1978. However, amino acid utilization and biosynthesis, ammonia assimilation, purine and pyrimidine metabolism and biosynthesis of delta-aminolevulinic acid as precursor of bacteriochlorophylls and hemes are topics of vital importance. This review focuses on utilization of amino acids as N- and C/N-sources, the pathways of purine and pyrimidine degradation, novel aspects of amino acid biosynthesis (with emphasis on branched-chain amino acids and delta-aminolevulinic acid) and some aspects of ammonia assimilation and glutamate synthesis by purple bacteria, green sulfur bacteria and Chloroflexus aurantiacus.
Collapse
Affiliation(s)
- J H Klemme
- Institut für Mikrobiologie der Universität Bonn, FRG
| |
Collapse
|
38
|
Ludden PW, Roberts GP. Regulation of nitrogenase activity by reversible ADP ribosylation. CURRENT TOPICS IN CELLULAR REGULATION 1989; 30:23-56. [PMID: 2575970 DOI: 10.1016/b978-0-12-152830-0.50004-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- P W Ludden
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706
| | | |
Collapse
|
39
|
Murrel JC. The rapid switch-off of nitrogenase activity in obligate methane-oxidizing bacteria. Arch Microbiol 1988. [DOI: 10.1007/bf00422292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|