1
|
Azizi-Dargahlou S, Pouresmaeil M. Agrobacterium tumefaciens-Mediated Plant Transformation: A Review. Mol Biotechnol 2024; 66:1563-1580. [PMID: 37340198 DOI: 10.1007/s12033-023-00788-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Agrobacterium tumefaciens-mediated plant transformation is the most dominant technique for the transformation of plants. It is used to transform monocotyledonous and dicotyledonous plants. A. tumefaciens apply for stable and transient transformation, random and targeted integration of foreign genes, as well as genome editing of plants. The Advantages of this method include cheapness, uncomplicated operation, high reproducibility, a low copy number of integrated transgenes, and the possibility of transferring larger DNA fragments. Engineered endonucleases such as CRISPR/Cas9 systems, TALENs, and ZFNs can be delivered with this method. Nowadays, Agrobacterium-mediated transformation is used for the Knock in, Knock down, and Knock out of genes. The transformation effectiveness of this method is not always desirable. Researchers applied various strategies to improve the effectiveness of this method. Here, a general overview of the characteristics and mechanism of gene transfer with Agrobacterium is presented. Advantages, updated data on the factors involved in optimizing this method, and other useful materials that lead to maximum exploitation as well as overcoming obstacles of this method are discussed. Moreover, the application of this method in the generation of genetically edited plants is stated. This review can help researchers to establish a rapid and highly effective Agrobacterium-mediated transformation protocol for any plant species.
Collapse
Affiliation(s)
| | - Mahin Pouresmaeil
- Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
2
|
Weisberg AJ, Wu Y, Chang JH, Lai EM, Kuo CH. Virulence and Ecology of Agrobacteria in the Context of Evolutionary Genomics. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:1-23. [PMID: 37164023 DOI: 10.1146/annurev-phyto-021622-125009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Among plant-associated bacteria, agrobacteria occupy a special place. These bacteria are feared in the field as agricultural pathogens. They cause abnormal growth deformations and significant economic damage to a broad range of plant species. However, these bacteria are revered in the laboratory as models and tools. They are studied to discover and understand basic biological phenomena and used in fundamental plant research and biotechnology. Agrobacterial pathogenicity and capability for transformation are one and the same and rely on functions encoded largely on their oncogenic plasmids. Here, we synthesize a substantial body of elegant work that elucidated agrobacterial virulence mechanisms and described their ecology. We review findings in the context of the natural diversity that has been recently unveiled for agrobacteria and emphasize their genomics and plasmids. We also identify areas of research that can capitalize on recent findings to further transform our understanding of agrobacterial virulence and ecology.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Yu Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan;
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Toh WK, Teo YL, Tor XY, Loh PC, Wong HL. Development of constitutive and IPTG-inducible integron promoter-based expression systems for Escherichia coli and Agrobacterium tumefaciens. 3 Biotech 2023; 13:91. [PMID: 36825259 PMCID: PMC9941393 DOI: 10.1007/s13205-023-03507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Broad host range (BHR) expression vector is a vital tool in molecular biology research and application. Currently, most of the plasmid vectors used in Agrobacterium spp. are binary vectors that are designed for plant transformation, and very few are designed for expressing transgenes in Agrobacterium spp. Class 1 integrons are common genetic elements that allow for the efficient capture and expression of antibiotic resistance genes, especially in Gram-negative bacteria. One of its compound promoters, PcS + P2, was used in this study and has been reported to be the strongest class 1 integron constitutive promoter; it is referred to as "integron promoter" (P int) henceforth. Herein, we created two versions of isopropyl-d-thiogalactopyranoside (IPTG)-inducible promoters by substituting and/or inserting lacO sequence(s) into P int. These inducible promoters, which possess different degrees of stringency and inducibility, were used to construct two broad host range expression vectors (pWK102 and pWK103) based on the versatile pGREEN system. This allows them to be stably maintained and replicated in both Escherichia coli and Agrobacterium tumefaciens. Functional validation of these vectors was performed by the expression of the reporter gene, superfolder green fluorescent protein (sfGFP), which was cloned downstream of these promoters. Due to the strong induction and tunable expression of a transgene located downstream to the inducible integron promoter, these vectors may be useful for heterologous gene expression in both E. coli and A. tumefaciens, thus facilitating recombinant protein production and genetic studies in Gram-negative bacteria. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03507-0.
Collapse
Affiliation(s)
- Wai Keat Toh
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| | - Yuh Leng Teo
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| | - Xin Yen Tor
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| | - Pek Chin Loh
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| | - Hann Ling Wong
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak Malaysia
| |
Collapse
|
4
|
Raja I, Kumar V, Sabapathy H, Kumariah M, Rajendran K, Tennyson J. Prediction and identification of novel sRNAs involved in Agrobacterium strains by integrated genome-wide and transcriptome-based methods. FEMS Microbiol Lett 2018; 365:5127044. [PMID: 30307512 DOI: 10.1093/femsle/fny247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/10/2018] [Indexed: 01/23/2023] Open
Abstract
Small RNAs (sRNAs) are a class of gene regulators in bacteria, playing a central role in their response to environmental changes. Bioinformatic prediction facilitates the identification of sRNAs expressed under different conditions. We propose a novel method of prediction of sRNAs from the genome of Agrobacterium based on a positional weight matrix of conditional sigma factors. sRNAs predicted from the genome are integrated with the virulence-specific transcriptome data to identify putative sRNAs that are overexpressed during Agrobacterial virulence induction. A total of 384 sRNAs are predicted from transcriptome data analysis of Agrobacterium fabrum and 100-500 sRNAs from the genome of different Agrobacterial strains. In order to refine our study, a final set of 10 novel sRNAs with best features across different replicons targeting virulence genes were experimentally identified using semi-quantitative polymerase chain reaction. Since Ti plasmid plays a major role in virulence, out of 10 sRNAs across the replicons, 4 novel sRNAs differentially expressed under virulence induced and non-induced conditions are predicted to be present in the Ti plasmid T-DNA region flanking virulence-related genes like agrocinopine synthase, indole 3-lactate synthase, mannopine synthase and tryptophan monooxygenase. Further validation of the function of these sRNAs in conferring virulence would be relevant to explore their role in Agrobacterium-mediated plant transformation.
Collapse
Affiliation(s)
- Ilamathi Raja
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| | - Vikram Kumar
- Department of Biotechnology, National Centre for Cell Science, Pune-411007, Maharashtra, India
| | - Hariharan Sabapathy
- DBT-IPLS Program, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| | - Manoharan Kumariah
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| | - Kasthuri Rajendran
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| | - Jebasingh Tennyson
- Department of Plant Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, Tamil Nadu, India
| |
Collapse
|
5
|
Abstract
Agrobacterium exopolysaccharides play a major role in the life of the cell. Exopolysaccharides are required for bacterial growth as a biofilm and they protect the bacteria against environmental stresses. Five of the exopolysaccharides made by A. tumefaciens have been characterized extensively with respect to their structure, synthesis, regulation, and role in the life of the bacteria. These are cyclic-β-(1, 2)-glucan, cellulose, curdlan, succinoglycan, and the unipolar polysaccharide (UPP). This chapter describes the structure, synthesis, regulation, and function of these five exopolysaccharides.
Collapse
|
6
|
Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Curr Top Microbiol Immunol 2018; 418:55-86. [PMID: 29556826 DOI: 10.1007/82_2018_83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium 's lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation.
Collapse
|
7
|
Hwang HH, Yu M, Lai EM. Agrobacterium-mediated plant transformation: biology and applications. THE ARABIDOPSIS BOOK 2017; 15:e0186. [PMID: 31068763 PMCID: PMC6501860 DOI: 10.1199/tab.0186] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant genetic transformation heavily relies on the bacterial pathogen Agrobacterium tumefaciens as a powerful tool to deliver genes of interest into a host plant. Inside the plant nucleus, the transferred DNA is capable of integrating into the plant genome for inheritance to the next generation (i.e. stable transformation). Alternatively, the foreign DNA can transiently remain in the nucleus without integrating into the genome but still be transcribed to produce desirable gene products (i.e. transient transformation). From the discovery of A. tumefaciens to its wide application in plant biotechnology, numerous aspects of the interaction between A. tumefaciens and plants have been elucidated. This article aims to provide a comprehensive review of the biology and the applications of Agrobacterium-mediated plant transformation, which may be useful for both microbiologists and plant biologists who desire a better understanding of plant transformation, protein expression in plants, and plant-microbe interaction.
Collapse
Affiliation(s)
- Hau-Hsuan Hwang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan, 402
| | - Manda Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, 115
| |
Collapse
|
8
|
|
9
|
Agrobacterium-mediated plant transformation: Factors, applications and recent advances. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2014. [DOI: 10.1016/j.bcab.2013.10.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Chumakov MI. Protein apparatus for horizontal transfer of agrobacterial T-DNA to eukaryotic cells. BIOCHEMISTRY (MOSCOW) 2013; 78:1321-32. [DOI: 10.1134/s000629791312002x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Ghedira R, De Buck S, Nolf J, Depicker A. The efficiency of Arabidopsis thaliana floral dip transformation is determined not only by the Agrobacterium strain used but also by the physiology and the ecotype of the dipped plant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:823-32. [PMID: 23581821 DOI: 10.1094/mpmi-11-12-0267-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To evaluate the chromosomal background of different Agrobacterium strains on floral dip transformation frequency, eight wild-type Agrobacterium strains, provided by Laboratorium voor Microbiologie Gent (LMG) and classified in different genomic groups, were compared with the commonly used Agrobacterium strains C58C1 Rif(r) (pMP90) and LBA4404 in Arabidopsis thaliana Columbia (Col-0) and C24 ecotypes. The C58C1 Rif(r) chromosomal background in combination with the pMP90 virulence plasmid showed high Col-0 floral dip transformation frequencies (0.76 to 1.57%). LMG201, which is genetically close to the Agrobacterium C58 strain, with the same virulence plasmid showed comparable or even higher transformation frequencies (1.22 to 2.28%), whereas the LBA4404 strain displayed reproducibly lower transformation frequencies (<0.2%). All other tested LMG Agrobacterium chromosomal backgrounds had transformation frequencies between those of the C58C1 Rif(r) (pMP90) and LBA4404 reference strains. None of the strains could transform the C24 ecotype with a frequency higher than 0.1%. Strikingly, all Arabidopsis Col-0 floral dip transformation experiments showed a high transformation variability from plant to plant (even more than 50-fold) within and across the performed biological repeats for all analyzed Agrobacterium strains. Therefore, the physiology of the plant and, probably, the availability of competent flowers to be transformed determine, to a large extent, floral dip transformation frequencies.
Collapse
Affiliation(s)
- Rim Ghedira
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
12
|
Mehrotra S, Goyal V. Agrobacterium-mediated gene transfer in plants and biosafety considerations. Appl Biochem Biotechnol 2012; 168:1953-75. [PMID: 23090683 DOI: 10.1007/s12010-012-9910-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/03/2012] [Indexed: 12/21/2022]
Abstract
Agrobacterium, the natures' genetic engineer, has been used as a vector to create transgenic plants. Agrobacterium-mediated gene transfer in plants is a highly efficient transformation process which is governed by various factors including genotype of the host plant, explant, vector, plasmid, bacterial strain, composition of culture medium, tissue damage, and temperature of co-cultivation. Agrobacterium has been successfully used to transform various economically and horticulturally important monocot and dicot species by standard tissue culture and in planta transformation techniques like floral or seedling infilteration, apical meristem transformation, and the pistil drip methods. Monocots have been comparatively difficult to transform by Agrobacterium. However, successful transformations have been reported in the last few years based on the adjustment of the parameters that govern the responses of monocots to Agrobacterium. A novel Agrobacterium transferred DNA-derived nanocomplex method has been developed which will be highly valuable for plant biology and biotechnology. Agrobacterium-mediated genetic transformation is known to be the preferred method of creating transgenic plants from a commercial and biosafety perspective. Agrobacterium-mediated gene transfer predominantly results in the integration of foreign genes at a single locus in the host plant, without associated vector backbone and is also known to produce marker free plants, which are the prerequisites for commercialization of transgenic crops. Research in Agrobacterium-mediated transformation can provide new and novel insights into the understanding of the regulatory process controlling molecular, cellular, biochemical, physiological, and developmental processes occurring during Agrobacterium-mediated transformation and also into a wide range of aspects on biological safety of transgenic crops to improve crop production to meet the demands of ever-growing world's population.
Collapse
Affiliation(s)
- Shweta Mehrotra
- National Research Centre on Plant Biotechnology, Lal Bahadur Shastri Building, Pusa Campus, New Delhi 110012, India.
| | | |
Collapse
|
13
|
Rosen R, Matthysse AG, Becher D, Biran D, Yura T, Hecker M, Ron EZ. Proteome analysis of plant-induced proteins of Agrobacterium tumefaciens. FEMS Microbiol Ecol 2012; 44:355-60. [PMID: 19719616 DOI: 10.1016/s0168-6496(03)00077-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Abstract A proteome study of Agrobacterium tumefaciens exposed to plant roots demonstrated the existence of a plant-dependent stimulon. This stimulon was induced by exposure to cut roots and consists of at least 30 soluble proteins (pI 4-7), including several proteins whose involvement in agrobacteria-host interactions has not been previously reported. Exposure of the bacteria to tomato roots also resulted in modification of the proteins: Ribosomal Protein L19, GroEL, AttM, and ChvE, indicating the significance of protein modifications in the interactions of agrobacteria with plants.
Collapse
Affiliation(s)
- Ran Rosen
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Shirron N, Yaron S. Active suppression of early immune response in tobacco by the human pathogen Salmonella Typhimurium. PLoS One 2011; 6:e18855. [PMID: 21541320 PMCID: PMC3082535 DOI: 10.1371/journal.pone.0018855] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2010] [Accepted: 03/22/2011] [Indexed: 11/18/2022] Open
Abstract
The persistence of enteric pathogens on plants has been studied extensively, mainly due to the potential hazard of human pathogens such as Salmonella enterica being able to invade and survive in/on plants. Factors involved in the interactions between enteric bacteria and plants have been identified and consequently it was hypothesized that plants may be vectors or alternative hosts for enteric pathogens. To survive, endophytic bacteria have to escape the plant immune systems, which function at different levels through the plant-bacteria interactions. To understand how S. enterica survives endophyticaly we conducted a detailed analysis on its ability to elicit or evade the plant immune response. The models of this study were Nicotiana tabacum plants and cells suspension exposed to S. enterica serovar Typhimurium. The plant immune response was analyzed by looking at tissue damage and by testing oxidative burst and pH changes. It was found that S. Typhimurium did not promote disease symptoms in the contaminated plants. Live S. Typhimurium did not trigger the production of an oxidative burst and pH changes by the plant cells, while heat killed or chloramphenicol treated S. Typhimurium and purified LPS of Salmonella were significant elicitors, indicating that S. Typhimurium actively suppress the plant response. By looking at the plant response to mutants defective in virulence factors we showed that the suppression depends on secreted factors. Deletion of invA reduced the ability of S. Typhimurium to suppress oxidative burst and pH changes, indicating that a functional SPI1 TTSS is required for the suppression. This study demonstrates that plant colonization by S. Typhimurium is indeed an active process. S. Typhimurium utilizes adaptive strategies of altering innate plant perception systems to improve its fitness in the plant habitat. All together these results suggest a complex mechanism for perception of S. Typhimurium by plants.
Collapse
Affiliation(s)
- Natali Shirron
- Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Sima Yaron
- Faculty of Biotechnology and Food Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Gelvin SB. Plant proteins involved in Agrobacterium-mediated genetic transformation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2010; 48:45-68. [PMID: 20337518 DOI: 10.1146/annurev-phyto-080508-081852] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Agrobacterium species genetically transform plants by transferring a region of plasmid DNA, T-DNA, into host plant cells. The bacteria also transfer several virulence effector proteins. T-DNA and virulence proteins presumably form T-complexes within the plant cell. Super-T-complexes likely also form by interaction of plant-encoded proteins with T-complexes. These protein-nucleic acid complexes traffic through the plant cytoplasm, enter the nucleus, and eventually deliver T-DNA to plant chromatin. Integration of T-DNA into the plant genome establishes a permanent transformation event, permitting stable expression of T-DNA-encoded transgenes. The transformation process is complex and requires participation of numerous plant proteins. This review discusses our current knowledge of plant proteins that contribute to Agrobacterium-mediated transformation, the roles these proteins play in the transformation process, and the modern technologies that have been employed to elucidate the cell biology of transformation.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
16
|
Lee Y, Oh S, Park W. Inactivation of the Pseudomonas putida KT2440 dsbA gene promotes extracellular matrix production and biofilm formation. FEMS Microbiol Lett 2009; 297:38-48. [PMID: 19500143 DOI: 10.1111/j.1574-6968.2009.01650.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To identify genes essential to biofilm formation in Pseudomonas putida KT2440, 12 mutants defective in oxidative stress-related or metabolic pathway-related genes were evaluated. Of them, only the dsbA mutant lacking the disulfide bond isomerase exhibited significantly increased attachment to the polystyrene surface. Visual evaluation by extracellular matrix staining and scanning electron microscopy indicated that the KT2440-DeltadsbA strain displays enhanced extracellular matrix production, rugose colony morphology on agar plates and floating pellicles in static culture. Accordingly, we propose that deletion of the dsbA gene may stimulate production of the extracellular matrix, resulting in those phenotypes. In addition, the lack of detectable fluorescence in the KT2440-DeltadsbA under UV light as well as in both the wild type and the KT2440-DeltadsbA when grown on Luria-Bertani plates containing ferrous iron suggests that the fluorescent molecule may be a fluorescent siderophore with its synthesis/secretion controlled by DsbA in KT2440. These phenotypic defects observed in the dsbA mutant were complemented by the full-length KT2440 and Escherichia coli dsbA genes. In contrast to the role of DsbA in other bacteria, our results provide the first evidence that disruption of P. putida KT2440 dsbA gene overproduces the extracellular matrix and thus promotes biofilm formation.
Collapse
Affiliation(s)
- Yunho Lee
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, South Korea
| | | | | |
Collapse
|
17
|
Marin C, Hernandiz A, Lainez M. Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poult Sci 2009; 88:424-31. [DOI: 10.3382/ps.2008-00241] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
18
|
McCullen CA, Binns AN. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer. Annu Rev Cell Dev Biol 2006; 22:101-27. [PMID: 16709150 DOI: 10.1146/annurev.cellbio.22.011105.102022] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Host recognition and macromolecular transfer of virulence-mediating effectors represent critical steps in the successful transformation of plant cells by Agrobacterium tumefaciens. This review focuses on bacterial and plant-encoded components that interact to mediate these two processes. First, we examine the means by which Agrobacterium recognizes the host, via both diffusible plant-derived chemicals and cell-cell contact, with emphasis on the mechanisms by which multiple host signals are recognized and activate the virulence process. Second, we characterize the recognition and transfer of protein and protein-DNA complexes through the bacterial and plant cell membrane and wall barriers, emphasizing the central role of a type IV secretion system-the VirB complex-in this process.
Collapse
Affiliation(s)
- Colleen A McCullen
- Department of Biology and Plant Sciences Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | |
Collapse
|
19
|
Tzfira T, Citovsky V. The Agrobacterium-plant cell interaction. Taking biology lessons from a bug. PLANT PHYSIOLOGY 2003; 133:943-7. [PMID: 14612580 PMCID: PMC1540338 DOI: 10.1104/pp.103.032821] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
|
20
|
Nair GR, Liu Z, Binns AN. Reexamining the role of the accessory plasmid pAtC58 in the virulence of Agrobacterium tumefaciens strain C58. PLANT PHYSIOLOGY 2003; 133:989-99. [PMID: 14551325 PMCID: PMC281596 DOI: 10.1104/pp.103.030262] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 08/07/2003] [Accepted: 08/22/2003] [Indexed: 05/22/2023]
Abstract
Isogenic strains of Agrobacterium tumefaciens carrying pTiC58, pAtC58, or both were constructed and assayed semiquantitatively and quantitatively for virulence and vir gene expression to study the effect of the large 542-kb accessory plasmid, pAtC58, on virulence. Earlier studies indicate that the att (attachment) genes of A. tumefaciens are crucial in the ability of this soil phytopathogen to infect susceptible host plants. Mutations in many att genes, notably attR and attD, rendered the strain avirulent. These genes are located on pAtC58. Previous work also has shown that derivatives of the wild-type strain C58 cured of pAtC58 are virulent as determined by qualitative virulence assays and, hence, pAtC58 was described as nonessential for virulence. We show here that the absence of pAtC58 in pTiC58-containing strains results in reduced virulence but that disruption of the attR gene does not result in avirulence or a reduction in virulence. Our studies indicate that pAtC58 has a positive effect on vir gene induction as revealed by immunoblot analysis of Vir proteins and expression of a PvirB::lacZ fusion.
Collapse
Affiliation(s)
- Gauri R Nair
- Plant Science Institute, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | |
Collapse
|
21
|
Gelvin SB. Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 2003; 67:16-37, table of contents. [PMID: 12626681 PMCID: PMC150518 DOI: 10.1128/mmbr.67.1.16-37.2003] [Citation(s) in RCA: 651] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens and related Agrobacterium species have been known as plant pathogens since the beginning of the 20th century. However, only in the past two decades has the ability of Agrobacterium to transfer DNA to plant cells been harnessed for the purposes of plant genetic engineering. Since the initial reports in the early 1980s using Agrobacterium to generate transgenic plants, scientists have attempted to improve this "natural genetic engineer" for biotechnology purposes. Some of these modifications have resulted in extending the host range of the bacterium to economically important crop species. However, in most instances, major improvements involved alterations in plant tissue culture transformation and regeneration conditions rather than manipulation of bacterial or host genes. Agrobacterium-mediated plant transformation is a highly complex and evolved process involving genetic determinants of both the bacterium and the host plant cell. In this article, I review some of the basic biology concerned with Agrobacterium-mediated genetic transformation. Knowledge of fundamental biological principles embracing both the host and the pathogen have been and will continue to be key to extending the utility of Agrobacterium for genetic engineering purposes.
Collapse
Affiliation(s)
- Stanton B Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| |
Collapse
|
22
|
Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 2002; 43:793-808. [PMID: 11929533 DOI: 10.1046/j.1365-2958.2002.02802.x] [Citation(s) in RCA: 383] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here a new screening method based on the fluorescence of colonies on calcofluor agar plates to identify transposon insertion mutants of Salmonella enteritidis that are defective in biofilm development. The results not only confirmed the requirement of genes already described for the modulation of multicellular behaviour in Salmonella typhimurium and other species, but also revealed new aspects of the biofilm formation process, such as two new genetic elements, named as bcsABZC and bcsEFG operons, required for the synthesis of an exopolysaccharide, digestible with cellulase. Non-polar mutations of bcsC and bcsE genes and complementation experiments demonstrated that both operons are responsible for cellulose biosynthesis in both S. enteritidis and S. typhimurium. Using two different growth media, ATM and LB, we showed that the biofilm produced by S. enteritidis is made of different constituents, suggesting that biofilm composition and regulation depends on environmental conditions. Bacterial adherence and invasion assays of eukaryotic cells and in vivo virulence studies of cellulose-deficient mutants indicated that, at least under our experimental conditions, the production of cellulose is not involved in the virulence of S. enteritidis. However, cellulose-deficient mutants were more sensitive to chlorine treatments, suggesting that cellulose production and biofilm formation may be an important factor for the survival of S. enteritidis on surface environments.
Collapse
Affiliation(s)
- Cristina Solano
- Instituto de Agrobiotecnología y Recursos Naturales and Departamento de Producción Agraria, Universidad Pública de Navarra-Consejo Superior de Investigaciones Científicas, 31006 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Matthysse AG, McMahan S. The effect of the Agrobacterium tumefaciens attR mutation on attachment and root colonization differs between legumes and other dicots. Appl Environ Microbiol 2001; 67:1070-5. [PMID: 11229893 PMCID: PMC92696 DOI: 10.1128/aem.67.3.1070-1075.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections of wound sites on dicot plants by Agrobacterium tumefaciens result in the formation of crown gall tumors. An early step in tumor formation is bacterial attachment to the plant cells. AttR mutants failed to attach to wound sites of both legumes and nonlegumes and were avirulent on both groups of plants. AttR mutants also failed to attach to the root epidermis and root hairs of nonlegumes and had a markedly reduced ability to colonize the roots of these plants. However, AttR mutants were able to attach to the root epidermis and root hairs of alfalfa, garden bean, and pea. The mutant showed little reduction in its ability to colonize these roots. Thus, A. tumefaciens appears to possess two systems for binding to plant cells. One system is AttR dependent and is required for virulence on all of the plants tested and for colonization of the roots of all of the plants tested except legumes. Attachment to root hairs through this system can be blocked by the acetylated capsular polysaccharide. The second system is AttR independent, is not inhibited by the acetylated capsular polysaccharide, and allows the bacteria to bind to the roots of legumes.
Collapse
Affiliation(s)
- A G Matthysse
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | |
Collapse
|
24
|
|
25
|
Zhang J, Boone L, Kocz R, Zhang C, Binns AN, Lynn DG. At the maize/Agrobacterium interface: natural factors limiting host transformation. CHEMISTRY & BIOLOGY 2000; 7:611-21. [PMID: 11048952 DOI: 10.1016/s1074-5521(00)00007-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Agrobacterium tumefaciens has been successfully harnessed as the only natural vector for the incorporation of foreign genes into higher plants, but its use in the grain crops is often limited. Low transformation efficiency has been partly attributed to a failure in the initial events in the transformation process, specifically in the capacity of the VirA/VirG two-component system to induce expression of the virulence genes. RESULTS Here we show that the root exudate of Zea mays seedlings specifically inhibits virulence gene expression, determine that 2-hydroxy-4,7-dimethoxybenzoxazin-3-one (MDIBOA), which constitutes > 98% of the organic exudate of the roots of these seedlings, is the most potent and specific inhibitor of signal perception in A. tumefaciens-mediated gene transfer yet discovered, and develop a model that is able to predict the MDIBOA concentration at any distance from the root surface. Finally, variants of A. tumefaciens resistant to MDIBOA-mediated inhibition of vir gene expression have been selected and partially characterized. CONCLUSIONS These results suggest a strategy in which a plant may resist pathogen invasion by specifically blocking virulence gene activation and yet ensure that the 'resistance factor' does not accumulate to levels sufficient to impose toxicity and selection pressure on the pathogen. The data further establish that naturally occurring inhibitors directed against signal perception by the VirA/VirG two-component regulatory system can play an important role in host defense. Finally, selected variants resistant to specific MDIBOA inhibition may now be used to extend the transformation efficiency of maize and possibly other cereals.
Collapse
Affiliation(s)
- J Zhang
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bechtold N, Jaudeau B, Jolivet S, Maba B, Vezon D, Voisin R, Pelletier G. The maternal chromosome set is the target of the T-DNA in the in planta transformation of Arabidopsis thaliana. Genetics 2000; 155:1875-87. [PMID: 10924482 PMCID: PMC1461210 DOI: 10.1093/genetics/155.4.1875] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In planta transformation methods are now commonly used to transform Arabidopsis thaliana by Agrobacterium tumefaciens. The origin of transformants obtained by these methods has been studied by inoculating different floral stages and examining gametophytic expression of an introduced beta-glucuronidase marker gene encoding GUS. We observed that transformation can still occur after treating flowers where embryo sacs have reached the stage of the third division. No GUS expression was observed in embryo sacs or pollen of plants infiltrated with an Agrobacterium strain bearing a GUS gene under the control of a gametophyte-specific promoter. To identify the genetic target we used an insertion mutant in which a gene essential for male gametophytic development has been disrupted by a T-DNA bearing a Basta resistance gene (B(R)). In this mutant the B(R) marker is transferred to the progeny only by the female gametes. This mutant was retransformed with a hygromycin resistance marker and doubly resistant plants were selected. The study of 193 progeny of these transformants revealed 25 plants in which the two resistance markers were linked in coupling and only one plant where they were linked in repulsion. These results point to the chromosome set of the female gametophyte as the main target for the T-DNA.
Collapse
Affiliation(s)
- N Bechtold
- Unité de Génétique et d'Amélioration des Plantes, INRA, 78026 Versailles Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The phytopathogenic bacterium Agrobacterium tumefaciens genetically transforms plants by transferring a portion of the resident Ti-plasmid, the T-DNA, to the plant. Accompanying the T-DNA into the plant cell is a number of virulence (Vir) proteins. These proteins may aid in T-DNA transfer, nuclear targeting, and integration into the plant genome. Other virulence proteins on the bacterial surface form a pilus through which the T-DNA and the transferred proteins may translocate. Although the roles of these virulence proteins within the bacterium are relatively well understood, less is known about their roles in the plant cell. In addition, the role of plant-encoded proteins in the transformation process is virtually unknown. In this article, I review what is currently known about the functions of virulence and plant proteins in several aspects of the Agrobacterium transformation process.
Collapse
Affiliation(s)
- Stanton B. Gelvin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392; e-mail:
| |
Collapse
|
28
|
Matthysse AG, Yarnall H, Boles SB, McMahan S. A region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1490:208-12. [PMID: 10786639 DOI: 10.1016/s0167-4781(99)00250-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 29 kb region of the circular chromosome of Agrobacterium tumefaciens containing genes required for bacterial attachment to host cells and virulence has been sequenced. Transposon mutants in many of the genes have been obtained. The mutants can be divided into two groups: those which can be complemented by conditioned medium and those whose phenotype is unaffected by conditioned medium. The first group includes mutants in genes with homology to ABC transporters, one possible transcriptional regulator, and some closely linked genes immediately downstream. The second group includes mutants in two possible transcriptional regulators, one ATPase, and a number of biosynthetic genes including a transacetylase required for the formation of an acetylated capsular polysaccharide. There are also several genes with no homology to genes of identified function. The presence of such a large number of genes required for attachment to host cells suggests that the ability of A. tumefaciens to bind to plant cells may play an important role in the life of these bacteria.
Collapse
Affiliation(s)
- A G Matthysse
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA.
| | | | | | | |
Collapse
|
29
|
Mysore KS, Kumar CT, Gelvin SB. Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 21:9-16. [PMID: 10652146 DOI: 10.1046/j.1365-313x.2000.00646.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Germ-line transformation (vacuum infiltration) is frequently used to transform Arabidopsis thaliana using Agrobacterium tumefaciens. We have recently identified several Arabidopsis ecotypes and T-DNA-tagged mutants that are recalcitrant to Agrobacterium-mediated transformation of cut root segments. Some of these ecotypes and mutants are deficient in their ability to bind bacteria. Some are deficient in T-DNA integration. We report here that using a germ-line transformation protocol we transformed these ecotypes and mutants, including attachment- and integration-defective Arabidopsis plants, with a frequency similar to that of highly susceptible wild-type plants. However, we could not transform otherwise highly susceptible Arabidopsis plants by germ-line or root transformation using several vir and attachment-deficient Agrobacterium mutants. These results indicate that certain plant factors important for transformation may exist in germ-line tissue but may be lacking in some somatic cells.
Collapse
Affiliation(s)
- K S Mysore
- Purdue Genetics Program, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | |
Collapse
|
30
|
Goodner BW, Markelz BP, Flanagan MC, Crowell CB, Racette JL, Schilling BA, Halfon LM, Mellors JS, Grabowski G. Combined genetic and physical map of the complex genome of Agrobacterium tumefaciens. J Bacteriol 1999; 181:5160-6. [PMID: 10464183 PMCID: PMC94018 DOI: 10.1128/jb.181.17.5160-5166.1999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A combined genetic and physical map of the Agrobacterium tumefaciens A348 (derivative of C58) genome was constructed to address the discrepancy between initial single-chromosome genetic maps and more recent physical mapping data supporting the presence of two nonhomologous chromosomes. The combined map confirms the two-chromosome genomic structure and the correspondence of the initial genetic maps to the circular chromosome. The linear chromosome is almost devoid of auxotrophic markers, which probably explains why it was missed by genetic mapping studies.
Collapse
Affiliation(s)
- B W Goodner
- Department of Biology, University of Richmond, Richmond, Virginia 23173, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- G Hansen
- Novartis Agribusiness Biotechnology Research, Inc., Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
32
|
Vizcaíno N, Cloeckaert A, Zygmunt MS, Fernández-Lago L. Molecular characterization of a Brucella species large DNA fragment deleted in Brucella abortus strains: evidence for a locus involved in the synthesis of a polysaccharide. Infect Immun 1999; 67:2700-12. [PMID: 10338472 PMCID: PMC96573 DOI: 10.1128/iai.67.6.2700-2712.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Brucella melitensis 16M DNA fragment of 17,119 bp, which contains a large region deleted in B. abortus strains and DNA flanking one side of the deletion, has been characterized. In addition to the previously identified omp31 gene, 14 hypothetical genes have been identified in the B. melitensis fragment, most of them showing homology to genes involved in the synthesis of a polysaccharide. Considering that 10 of the 15 genes are missing in B. abortus and that all the polysaccharides described in the Brucella genus (lipopolysaccharide, native hapten, and polysaccharide B) have been detected in all the species, it seems likely that the genes described here might be part of a cluster for the synthesis of a novel Brucella polysaccharide. Several polysaccharides have been identified as important virulence factors, and the discovery of a novel polysaccharide in the brucellae which is probably not synthesized in B. abortus might be interesting for a better understanding of the pathogenicity and host preference differences observed between the Brucella species. However, the possibility that the genes described in this paper no longer encode the synthesis of a polysaccharide cannot be excluded. Brucellae belong to the alpha-2 subdivision of the class Proteobacteria, which includes other microorganisms living in association with eucaryotic cells, some of them synthesizing extracellular polysaccharides involved in the interaction with the host cell. The genes described in this paper might be a remnant of the common ancestor of the alpha-2 subdivision of the class Proteobacteria, and the brucellae might have lost such extracellular polysaccharide during evolution if it was not necessary for survival or for establishment of the infectious process. Nevertheless, further studies are necessary to identify the entire DNA fragment missing in B. abortus strains and to elucidate the mechanism responsible for such deletion, since only 9,948 bp of the deletion was present in the sequenced B. melitensis DNA fragment.
Collapse
Affiliation(s)
- N Vizcaíno
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
33
|
12 Virulence Determinants in the Bacterial Phytopathogen Erwinia. J Microbiol Methods 1999. [DOI: 10.1016/s0580-9517(08)70123-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
|
34
|
Construction of a range of derivatives of the biological control strain agrobacterium rhizogenes K84: a study of factors involved in biological control of crown gall disease. Appl Environ Microbiol 1998; 64:3977-82. [PMID: 9758829 PMCID: PMC106588 DOI: 10.1128/aem.64.10.3977-3982.1998] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biological control strain Agrobacterium rhizogenes K84 is an effective agent in the control of Agrobacterium pathogens, the causative agents of crown gall disease. A number of factors are thought to play a role in the control process, including production of the specific agrocins 84 and 434, which differ in the spectra of pathogenic strains that they inhibit in vitro. A range of derivatives of strain K84 has been developed with every combination of the three resident plasmids, pAgK84, pAgK434, and pAtK84b, including a plasmid-free strain. These derivatives produced either both, one, or neither of the characterized agrocins 84 and 434 and were isolated by plasmid curing, conjugation, and Tn5 transposon mutagenesis. The ability of the derivative strains to inhibit gall formation on almond roots was compared to that of the wild-type K84 parent. Treatment with the plasmid-free derivative did not result in a significant level of control of an A. rhizogenes pathogen based on numbers or dry weight of galls formed on injured almond roots. The presence of plasmid pAgK84, pAgK434, or pAtK84b significantly enhanced the biological control efficacy of K84 derivatives, and the highest level of control was observed with strains harboring two or more plasmids. The results observed with strains deficient in agrocin 434 production suggest that this product may play an important role in the biological control of A. rhizogenes pathogens. The involvement of plasmid pAgK84b in biological control has not previously been reported. This study supports the conclusion that multiple factors are involved in the success of strain K84 as a biological control agent.
Collapse
|
35
|
Affiliation(s)
- C I Kado
- Department of Plant Pathology, University of California, Davis 95616, USA
| |
Collapse
|
36
|
Matthysse AG, McMahan S. Root colonization by Agrobacterium tumefaciens is reduced in cel, attB, attD, and attR mutants. Appl Environ Microbiol 1998; 64:2341-5. [PMID: 9647796 PMCID: PMC106392 DOI: 10.1128/aem.64.7.2341-2345.1998] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Root colonization by Agrobacterium tumefaciens was measured by using tomato and Arabidopsis thaliana roots dipped in a bacterial suspension and planted in soil. Wild-type bacteria showed extensive growth on tomato roots; the number of bacteria increased from 10(3) bacteria/cm of root length at the time of inoculation to more than 10(7) bacteria/cm after 10 days. The numbers of cellulose-minus and nonattaching attB, attD, and attR mutant bacteria were less than 1/10,000th the number of wild-type bacteria recovered from tomato roots. On roots of A. thaliana ecotype Landsberg erecta, the numbers of wild-type bacteria increased from about 30 to 8,000 bacteria/cm of root length after 8 days. The numbers of cellulose-minus and nonattaching mutant bacteria were 1/100th to 1/10th the number of wild-type bacteria recovered after 8 days. The attachment of A. tumefaciens to cut A. thaliana roots incubated in 0.4% sucrose and observed with a light microscope was also reduced with cel and att mutants. These results suggest that cellulose synthesis and attachment genes play a role in the ability of the bacteria to colonize roots, as well as in bacterial pathogenesis.
Collapse
Affiliation(s)
- A G Matthysse
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA.
| | | |
Collapse
|
37
|
Affiliation(s)
- A Das
- Department of Biochemistry, University of Minnesota, St. Paul 55108, USA
| |
Collapse
|
38
|
Kang HC, Ardourel MY, Guérin B, Monsigny M, Delmotte FM. Purification of two lectins from a nopalin Agrobacterium tumefaciens strain. Biochimie 1998; 80:87-94. [PMID: 9587666 DOI: 10.1016/s0300-9084(98)80060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lectins were evidenced on the surface of one Agrobacterium tumefaciens wild strain (82,139) by agglutination test and neoglycoprotein labelling. Bacteria were incubated in the presence of various fluorescein-labelled neoglycoproteins and the binding was assessed by a fluorimetric method. Among the fluorescein-labelled neoglycoproteins tested, the one bearing alpha-D-galactosyl residues was the most efficient. The labelling was optimal at pH 5.0 and naught at pH above 7. The binding was specifically inhibited by homologous fluorescein-free neoglycoproteins. A galactoside-specific lectin was purified to homogeneity by affinity chromatography on agarose-A4 substituted with alpha-D-galactopyranosyl residues. Upon polyacrylamide gel electrophoresis, a single band (M(r) 58,000) was detected. This alpha-D-galactoside-specific lectin agglutinated preferentially human B red blood cells at pH 5.0. Another lectin specific for alpha-L-rhamnoside (M(r) 40,000) not retained on the immobilised galactose was purified by affinity chromatography on alpha-L-rhamnosyl substituted agarose-A4. This L-rhamnoside-specific lectin preferentially agglutinated horse erythrocytes. On the basis of their M(r) and on their sugar specificity, these two lectins are novel lectins with regard to the known sugar-binding proteins present in the Rhizobiaceae family: Agrobacterium, Rhizobium or Bradyrhizobium strains.
Collapse
Affiliation(s)
- H C Kang
- Glycobiologie, Centre de Biophysique Moléculaire, UPR 4301 du CNRS, Orléans, France
| | | | | | | | | |
Collapse
|
39
|
Escudero J, Hohn B. Transfer and Integration of T-DNA without Cell Injury in the Host Plant. THE PLANT CELL 1997; 9:2135-2142. [PMID: 12237355 PMCID: PMC157063 DOI: 10.1105/tpc.9.12.2135] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Agrobacterium colonizes plant cells via a gene transfer mechanism that results in plant tumorigenesis. Virulence (vir) genes are transcriptionally activated in the bacteria by plant metabolites released from the wound site. Hence, it is believed that agrobacteria use injuries to facilitate their entrance into the host plant and that the wounded state is required for plant cell competence for Agrobacterium-mediated gene delivery. However, our experiments using vir gene-activated bacteria sprayed onto tobacco plantlets demonstrated that cells in unwounded plants could also be efficiently transformed. The condition of the plant cells was monitored using [beta]-glucuronidase under the control of a wound-inducible promoter. Infection of leaf tissue is light dependent, and it is drastically reduced when abscisic acid is exogenously applied to the plant. Under these experimental conditions, stomatal opening seems to be used by Agrobacterium to circumvent the physical barrier of the cuticle. These results thus show that the proposed cellular responses evoked by wounding in higher plants are not essential for Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- J. Escudero
- Friedrich Miescher-Institut, Postfach 2543, CH-4002 Basel, Switzerland
| | | |
Collapse
|
40
|
Reuhs BL, Kim JS, Matthysse AG. Attachment of Agrobacterium tumefaciens to carrot cells and Arabidopsis wound sites is correlated with the presence of a cell-associated, acidic polysaccharide. J Bacteriol 1997; 179:5372-9. [PMID: 9286990 PMCID: PMC179406 DOI: 10.1128/jb.179.17.5372-5379.1997] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
An early step in crown gall tumor formation involves the attachment of Agrobacterium tumefaciens to host plant cells. A. tumefaciens C58::A205 (C58 attR) is a Tn3HoHo1 insertion mutant that was found to be avirulent on Bryophyllum daigremontiana and unable to attach to carrot suspension cells. The mutation mapped to an open reading frame encoding a putative protein of 247 amino acids which has significant homology to transacetylases from many bacteria. Biochemical analysis of polysaccharide extracts from wild-type strain C58 and the C58::A205 mutant showed that the latter was deficient in the production of a cell-associated polysaccharide. Anion-exchange chromatography followed by 1H nuclear magnetic resonance and gas chromatography-mass spectrometry analyses showed that the polysaccharide produced by strain C58 was an acetylated, acidic polysaccharide and that the polysaccharide preparation contained three sugars: glucose, glucosamine, and an unidentified deoxy-sugar. Application of the polysaccharide preparation from strain C58 to carrot suspension cells prior to inoculation with the bacteria effectively inhibited attachment of the bacteria to the carrot cells, whereas an identical preparation from strain C58::A205 had no inhibitory effect and did not contain the acidic polysaccharide. Similarly, preincubation of Arabidopsis thaliana root segments with the polysaccharide prevented attachment of strain C58 to that plant. This indicates that the acidic polysaccharide may play a role in the attachment of A. tumefaciens to host soma plant cells.
Collapse
Affiliation(s)
- B L Reuhs
- Complex Carbohydrate Research Center, University of Georgia, Athens 30602-4712, USA.
| | | | | |
Collapse
|
41
|
Nam J, Matthysse AG, Gelvin SB. Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T-DNA integration. THE PLANT CELL 1997; 9:317-33. [PMID: 9090878 PMCID: PMC156921 DOI: 10.1105/tpc.9.3.317] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We show that among ecotypes of Arabidopsis, there is considerable variation in their susceptibility to crown gall disease. Differences in susceptibility are heritable and, in one ecotype, segregate as a single major contributing locus. In several ecotypes, recalcitrance to tumorigenesis results from decreased binding of Agrobacterium to inoculated root explants. The recalcitrance of another ecotype occurs at a late step in T-DNA transfer. Transient expression of a T-DNA-encoded beta-glucuronidase gusA gene is efficient, but the ecotype is deficient in crown gall tumorigenesis, transformation to kanamycin resistance, and stable GUS expression. This ecotype is also more sensitive to gamma radiation than is a susceptible ecotype. DNA gel blot analysis showed that after infection by Agrobacterium, less T-DNA was integrated into the genome of the recalcitrant ecotype than was integrated into the genome of a highly susceptible ecotype.
Collapse
Affiliation(s)
- J Nam
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | |
Collapse
|
42
|
Matthysse AG, Yarnall HA, Young N. Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens. J Bacteriol 1996; 178:5302-8. [PMID: 8752352 PMCID: PMC178331 DOI: 10.1128/jb.178.17.5302-5308.1996] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transposon mutants of Agrobacterium tumefaciens which were avirulent and unable to attach to plant cells were isolated and described previously. A clone from a library of Agrobacterium tumefaciens DNA which was able to complement these chromosomal att mutants was identified. Tn3HoHo1 insertions in this clone were made and used to replace the wild-type genes in the bacterial chromosome by marker exchange. The resulting mutants were avirulent and showed either no or very much reduced attachment to carrot suspension culture cells. We sequenced a 10-kb region of this clone and found a putative operon containing nine open reading frames (ORFs) (attA1A2BCDEFGH). The second and third ORFs (attA2 and attB) showed homology to genes encoding the membrane-spanning proteins (potB and potH; potC and potI) of periplasmic binding protein-dependent (ABC) transport systems from gram-negative bacteria. The homology was strongest to proteins involved in the transport of spermidine and putrescine. The first and fifth ORFs (attA1 and attE) showed homology to the genes encoding ATP-binding proteins of these systems including potA, potG, and cysT from Escherichia coli; occP from A. tumefaciens; cysA from Synechococcus spp.; and ORF-C from an operon involved in the attachment of Campylobacte jejuni. The ability of mutants in these att genes to bind to host cells was restored by addition of conditioned medium during incubation of the bacteria with host cells.
Collapse
Affiliation(s)
- A G Matthysse
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | | | |
Collapse
|
43
|
Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 1996; 12:327-51. [DOI: 10.1007/bf00340209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/07/1996] [Accepted: 02/10/1996] [Indexed: 11/26/2022]
|
44
|
Escudero J, Neuhaus G, Hohn B. Intracellular Agrobacterium can transfer DNA to the cell nucleus of the host plant. Proc Natl Acad Sci U S A 1995; 92:230-4. [PMID: 11607505 PMCID: PMC42851 DOI: 10.1073/pnas.92.1.230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrobacterium tumefaciens is a Gram-negative, soil-borne bacterium responsible for the crown gall disease of plants. The galls result from genetic transformation of plant cells by the bacteria. Genes located on the transferred DNA (T-DNA), which is part of the large tumor-inducing (Ti) plasmid of Agrobacterium, are integrated into host plant chromosomes and expressed. This transfer requires virulence (vir) genes that map outside the T-DNA on the Ti plasmid and that encode a series of elaborate functions that appear similar to those of interbacterial plasmid transfer. It remains a major challenge to understand how T-DNA moves from Agrobacterium into the plant cell nucleus, in view of the complexity of obstacles presented by the eukaryotic host cell. Specific anchoring of bacteria to the outer surface of the plant cell seems to be an important prelude to the mobilization of the T-DNA/protein complex from the bacterial cell to the plant cell. However, the precise mode of infection is not clear, although a requirement of wounded cells has been documented. By using a microinjection approach, we show here that the process of T-DNA transfer from the bacteria to the eukaryotic nucleus can occur entirely inside the plant cell. Such transfer is absolutely dependent on induction of vir genes and a functional virB operon. Thus, A. tumefaciens can function as an intracellular infectious agent in plants.
Collapse
Affiliation(s)
- J Escudero
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | |
Collapse
|
45
|
Abstract
Cyclic beta-glucans are low-molecular-weight cell surface carbohydrates that are found almost exclusively in bacteria of the Rhizobiaceae family. These glucans are major cellular constituents, and under certain culture conditions their levels may reach up to 20% of the total cellular dry weight. In Agrobacterium and Rhizobium species, these molecules contain between 17 and 40 glucose residues linked solely by beta-(1,2) glycosidic bonds. In Bradyrhizobium species, the cyclic beta-glucans are smaller (10 to 13 glucose residues) and contain glucose linked by both beta-(1,6) and beta-(1,3) glycosidic bonds. In some rhizobial strains, the cyclic beta-glucans are unsubstituted, whereas in other rhizobia these molecules may become highly substituted with moieties such as sn-1-phosphoglycerol. To date, two genetic loci specifically associated with cyclic beta-glucan biosynthesis have been identified in Rhizobium (ndvA and ndvB) and Agrobacterium (chvA and chvB) species. Mutants with mutations at these loci have been shown to be impaired in their ability to grow in hypoosmotic media, have numerous alterations in their cell surface properties, and are also impaired in their ability to infect plants. The present review will examine the structure and occurrence of the cyclic beta-glucans in a variety of species of the Rhizobiaceae. The possible functions of these unique molecules in the free-living bacteria as well as during plant infection will be discussed.
Collapse
Affiliation(s)
- M W Breedveld
- Department of Food Science, Pennsylvania State University, University Park 16802
| | | |
Collapse
|
46
|
Binns AN, Howitz VR. The genetic and chemical basis of recognition in the Agrobacterium: plant interaction. Curr Top Microbiol Immunol 1994; 192:119-38. [PMID: 7859503 DOI: 10.1007/978-3-642-78624-2_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A N Binns
- Department of Biology, University of Pennsylvania, Philadelphia 19104-6018
| | | |
Collapse
|
47
|
Swart S, Smit G, Lugtenberg BJ, Kijne JW. Restoration of attachment, virulence and nodulation of Agrobacterium tumefaciens chvB mutants by rhicadhesin. Mol Microbiol 1993; 10:597-605. [PMID: 7968537 DOI: 10.1111/j.1365-2958.1993.tb00931.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In contrast to wild-type Agrobacterium tumefaciens strains, beta-1,2-glucan-deficient chvB mutants were found to be unable to attach to pea root hair tips. The mutants appeared to produce rhicadhesin, the protein that mediates the first step in attachment of Rhizobiaceae cells to plant root hairs, but the protein was inactive. Both attachment to root hairs and virulence of the chvB mutants could be restored by treatment of the plants with active rhicadhesin, whereas treatment of plants with beta-1,2-glucan had no effect on attachment or virulence. Moreover, nodulation ability of a chvB mutant carrying a Sym plasmid could be restored by pretreatment of the host plant with rhicadhesin. Apparently the attachment-minus and avirulence phenotype of chvB mutants is caused by lack of active rhicadhesin, rather than directly being caused by a deficiency in beta-1,2-glucan synthesis. The results strongly suggest that rhicadhesin is essential for attachment and virulence of A. tumefaciens cells. They also indicate that the mechanisms of binding of Agrobacterium and Rhizobium bacteria to plant target cells are similar, despite differences between these target cells.
Collapse
Affiliation(s)
- S Swart
- Institute of Molecular Plant Sciences, Leiden University, The Netherlands
| | | | | | | |
Collapse
|
48
|
Abstract
The presence of the Ti plasmid favorably influences the attachment of agrobacteria to grape callus cells, especially during the early stages of a 2-h incubation.
Agrobacterium
strains attached to a similar extent to both the crown gall-resistant cultivar (Catawba),
Vitis labruscana
, and the crown gall-susceptible cultivar (Chancellor),
Vitis
sp. Attachment of the virulent strain to grape callus cells is blocked by the avirulent strain HLB-2 in both the tissue culture cell suspension and the seedling root systems.
Collapse
Affiliation(s)
- X A Pu
- Department of Plant Pathology, University of Missouri-Columbia, 108 Waters Hall, Columbia, Missouri 65211
| | | |
Collapse
|
49
|
Mulholland V, Hinton JC, Sidebotham J, Toth IK, Hyman LJ, Pérombelon MC, Reeves PJ, Salmond GP. A pleiotropic reduced virulence (Rvi-) mutant of Erwinia carotovora subspecies atroseptica is defective in flagella assembly proteins that are conserved in plant and animal bacterial pathogens. Mol Microbiol 1993; 9:343-56. [PMID: 8412685 DOI: 10.1111/j.1365-2958.1993.tb01695.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Erwinia carotovora subsp. atroseptica was mutagenized and assayed for virulence in planta. Those mutants which exhibited reduced virulence (Rvi-) were assayed for growth rate, auxotrophy and extracellular enzyme secretion and seven mutants were found to be wild type for all of these phenotypes. When screened for other phenotypes, two were found to be non-motile. One mutant was complemented for motility by a heterologous gene library. A 2.7kb XmaIII-ClaI complementing fragment was sequenced and the gene products were found to have similarity to flagella biosynthesis gene products from several bacteria. Further similarity was found to a pathogenicity protein from the plant pathogen Xanthomonas campestris pv. glycines and to the Spa pathogenicity proteins of the human pathogen Shigella flexneri, which are involved in the surface presentation of antigens. These studies highlight the emergence of common themes in the molecular strategies employed by both plant and animal bacterial pathogens for the targeting of proteins involved in the elaboration of disease.
Collapse
Affiliation(s)
- V Mulholland
- Department of Biological Sciences, University of Warwick, Coventry, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wirawan IG, Kang HW, Kojima M. Isolation and characterization of a new chromosomal virulence gene of Agrobacterium tumefaciens. J Bacteriol 1993; 175:3208-12. [PMID: 8491736 PMCID: PMC204646 DOI: 10.1128/jb.175.10.3208-3212.1993] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A mutant (strain B119) of Agrobacterium tumefaciens with a chromosomal mutation was isolated by transposon (Tn5) mutagenesis. The mutant exhibited growth rates on L agar and minimal medium (AB) plates similar to those of the parent strain (strain A208 harboring a nopaline-type Ti plasmid). The mutant was avirulent on all host plants tested: Daucus carota, Cucumis sativus, and Kalanchoe diagremontiana. The mutant was not impaired in attachment ability to carrot cells. The mutant had one insertion of Tn5 in its chromosome. The avirulent phenotype of B119 was shown to be due to the Tn5 insertion in the chromosome by the marker exchange technique. A wild-type target chromosomal segment (3.0 kb) which included the site of mutation was cloned and sequenced. Two open reading frames, ORF-1 (468 bp) and ORF-2 (995 bp), were identified in the 3.0-kb DNA segment. Tn5 was inserted in the middle of ORF-2 (acvB gene). Introduction of the acvB gene into the mutant B119 strain complemented the avirulent phenotype of the strain. Homology search found no genes homologous to acvB, although it had some similarity to the open reading frame downstream of the virA gene on the Ti plasmid. Thus, the acvB gene identified in this study seems to be a new chromosomal virulence gene of A. tumefaciens.
Collapse
Affiliation(s)
- I G Wirawan
- Research Institute for Biochemical Regulation, Faculty of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|