1
|
Kim J, Kim C, Kim S, Ihee H, Shin W, Kim EJ, Lee JK. The Photoactive Photosynthetic Reaction Center of a Rhodobacter sphaeroides Mutant Lacking 3-Vinyl (Bacterio)Chlorophyllide a Hydratase Contains 3-Vinyl Bacteriochlorophyll a. Microbiol Spectr 2023; 11:e0387822. [PMID: 36971575 PMCID: PMC10101016 DOI: 10.1128/spectrum.03878-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Rhodobacter sphaeroides mutant BF-lacking 3-vinyl (bacterio)chlorophyllide a hydratase (BchF)-accumulates chlorophyllide a (Chlide a) and 3-vinyl bacteriochlorophyllide a (3V-Bchlide a). BF synthesizes 3-vinyl bacteriochlorophyll a (3V-Bchl a) through prenylation of 3V-Bchlide a and assembles a novel reaction center (V-RC) using 3V-Bchl a and Mg-free 3-vinyl bacteriopheophytin a (3V-Bpheo a) at a molar ratio of 2:1. We aimed to verify whether a bchF-deleted R. sphaeroides mutant produces a photochemically active RC that facilitates photoheterotrophic growth. The mutant grew photoheterotrophically-implying a functional V-RC-as confirmed by the emergence of growth-competent suppressors of bchC-deleted mutant (BC) under irradiation. Suppressor mutations in BC were localized to bchF, which diminished BchF activity and caused 3V-Bchlide a accumulation. bchF expression carrying the suppressor mutations in trans resulted in the coproduction of V-RC and wild-type RC (WT-RC) in BF. The V-RC had a time constant (τ) for electron transfer from the primary electron donor P (a dimer of 3V-Bchl a) to the A-side containing 3V-Bpheo a (HA) similar to that of the WT-RC and a 60% higher τ for electron transfer from HA to quinone A (QA). Thus, the electron transfer from HA to QA in the V-RC should be slower than that in the WT-RC. Furthermore, the midpoint redox potential of P/P+ of the V-RC was 33 mV more positive than that of the WT-RC. R. sphaeroides, thus, synthesizes the V-RC when 3V-Bchlide a accumulates. The V-RC can support photoheterotrophic growth; however, its photochemical activity is inferior to that of the WT-RC. IMPORTANCE 3V-Bchlide a is an intermediate in the bacteriochlorophyll a (Bchl a)-specific biosynthetic branch and prenylated by bacteriochlorophyll synthase. R. sphaeroides synthesizes V-RC that absorbs light at short wavelengths. The V-RC was not previously discovered because 3V-Bchlide a does not accumulate during the growth of WT cells synthesizing Bchl a. The levels of reactive oxygen species increased with the onset of photoheterotrophic growth in BF, resulting in a long lag period. Although the inhibitor of BchF is unknown, the V-RC may act as a substitute for the WT-RC when BchF is completely inhibited. Alternatively, it may act synergistically with WT-RC at low levels of BchF activity. The V-RC may broaden the absorption spectra of R. sphaeroides and supplement its photosynthetic ability at various wavelengths of visible light to a greater extent than that by the WT-RC alone.
Collapse
Affiliation(s)
- June Kim
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Changwon Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science, Daejeon, Republic of Korea
| | - Siin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science, Daejeon, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science, Daejeon, Republic of Korea
| | - Woonsup Shin
- Department of Chemistry, Sogang University, Seoul, Republic of Korea
| | - Eui-Jin Kim
- Microbial Research Department, Nakdonggang National Institute of Biological Resources, Gyeongsangbuk-do, Republic of Korea
| | - Jeong K. Lee
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Cryo-EM structures of light-harvesting 2 complexes from Rhodopseudomonas palustris reveal the molecular origin of absorption tuning. Proc Natl Acad Sci U S A 2022; 119:e2210109119. [PMID: 36251992 PMCID: PMC9618040 DOI: 10.1073/pnas.2210109119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The light-harvesting (LH) complexes of phototrophic bacteria absorb solar energy for photosynthesis, and it is important to understand how the protein components influence the way bound pigments absorb light. We studied the LH2 complexes of Rhodopseudomonas palustris, which are encoded by a multigene family. Various combinations of LH2 genes were deleted, yielding strains that assemble only one of the four types of LH2. Following purification, the structures of four LH2 complexes were determined by cryogenic electron microscopy, revealing a basic nonameric ring structure comprising nine αβ-polypeptide pairs. An additional hitherto unknown polypeptide, γ, was found in each structure that binds six further bacteriochlorophylls. Comparison of these different structures shows how nature tunes their ability to absorb different wavelengths of light. The genomes of some purple photosynthetic bacteria contain a multigene puc family encoding a series of α- and β-polypeptides that together form a heterogeneous antenna of light-harvesting 2 (LH2) complexes. To unravel this complexity, we generated four sets of puc deletion mutants in Rhodopseudomonas palustris, each encoding a single type of pucBA gene pair and enabling the purification of complexes designated as PucA-LH2, PucB-LH2, PucD-LH2, and PucE-LH2. The structures of all four purified LH2 complexes were determined by cryogenic electron microscopy (cryo-EM) at resolutions ranging from 2.7 to 3.6 Å. Uniquely, each of these complexes contains a hitherto unknown polypeptide, γ, that forms an extended undulating ribbon that lies in the plane of the membrane and that encloses six of the nine LH2 αβ-subunits. The γ-subunit, which is located near to the cytoplasmic side of the complex, breaks the C9 symmetry of the LH2 complex and binds six extra bacteriochlorophylls (BChls) that enhance the 800-nm absorption of each complex. The structures show that all four complexes have two complete rings of BChls, conferring absorption bands centered at 800 and 850 nm on the PucA-LH2, PucB-LH2, and PucE-LH2 complexes, but, unusually, the PucD-LH2 antenna has only a single strong near-infared (NIR) absorption peak at 803 nm. Comparison of the cryo-EM structures of these LH2 complexes reveals altered patterns of hydrogen bonds between LH2 αβ-side chains and the bacteriochlorin rings, further emphasizing the major role that H bonds play in spectral tuning of bacterial antenna complexes.
Collapse
|
3
|
Niedzwiedzki DM, Gardiner AT, Blankenship RE, Cogdell RJ. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities. PHOTOSYNTHESIS RESEARCH 2018; 137:389-402. [PMID: 29725994 DOI: 10.1007/s11120-018-0512-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBAabce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBAabce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Photosynthetic Antenna Research Center, University in St Louis, Campus Box 1138, St. Louis, MO, 63130, USA.
| | - Alastair T Gardiner
- Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Robert E Blankenship
- Photosynthetic Antenna Research Center, University in St Louis, Campus Box 1138, St. Louis, MO, 63130, USA
- Department of Biology, Washington University in St Louis, St. Louis, MO, 63130, USA
- Department of Chemistry, Washington University in St Louis, St. Louis, MO, 63130, USA
| | - Richard J Cogdell
- Davidson Building, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Southall J, Henry SL, Gardiner AT, Roszak AW, Mullen W, Carey AM, Kelly SM, de Percin Northumberland CO, Cogdell RJ. Characterisation of a pucBA deletion mutant from Rhodopseudomonas palustris lacking all but the pucBA d genes. PHOTOSYNTHESIS RESEARCH 2018; 135:9-21. [PMID: 28567613 PMCID: PMC5783997 DOI: 10.1007/s11120-017-0386-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/08/2017] [Indexed: 06/01/2023]
Abstract
Rhodopseudomonas palustris is a species of purple photosynthetic bacteria that has a multigene family of puc genes that encode the alpha and beta apoproteins, which form the LH2 complexes. A genetic dissection strategy has been adopted in order to try and understand which spectroscopic form of LH2 these different genes produce. This paper presents a characterisation of one of the deletion mutants generated in this program, the pucBAd only mutant. This mutant produces an unusual spectroscopic form of LH2 that only has a single large NIR absorption band at 800 nm. Spectroscopic and pigment analyses on this complex suggest that it has basically a similar overall structure as that of the wild-type HL LH2 complex. The mutant has the unique phenotype where the mutant LH2 complex is only produced when cells are grown at LL. At HL the mutant only produces the LH1-RC core complex.
Collapse
Affiliation(s)
- June Southall
- Institute of Molecular Cell and Systems Biology, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK.
| | - Sarah L Henry
- Biomedical Engineering, School of Engineering, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Alastair T Gardiner
- Institute of Molecular Cell and Systems Biology, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Aleksander W Roszak
- Institute of Molecular Cell and Systems Biology, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK
| | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Anne-Marie Carey
- Center for Innovations in Medicine, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave., Tempe, AZ, 85287-5001, USA
| | - Sharon M Kelly
- Institute of Molecular Cell and Systems Biology, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK
| | | | - Richard J Cogdell
- Institute of Molecular Cell and Systems Biology, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK
| |
Collapse
|
5
|
Mothersole DJ, Jackson PJ, Vasilev C, Tucker JD, Brindley AA, Dickman MJ, Hunter CN. PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides. Mol Microbiol 2015; 99:307-27. [PMID: 26419219 PMCID: PMC4949548 DOI: 10.1111/mmi.13235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 01/21/2023]
Abstract
The mature architecture of the photosynthetic membrane of the purple phototroph Rhodobacter sphaeroides has been characterised to a level where an atomic-level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown. Here we investigate the assembly of light-harvesting LH2 and reaction centre-light-harvesting1-PufX (RC-LH1-PufX) photosystem complexes using spectroscopy, pull-downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lhaA and pucC mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in ΔlhaA mutants assemble to form normal RC-LH1-PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative and proceeds to completion. LhaA and PucC form oligomers at sites of initiation of membrane invagination; LhaA associates with RCs, bacteriochlorophyll synthase (BchG), the protein translocase subunit YajC and the YidC membrane protein insertase. These associations within membrane nanodomains likely maximise interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG-SecDF-YajC-YidC assembly machinery, thereby co-ordinating pigment delivery, the co-translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes.
Collapse
Affiliation(s)
- David J Mothersole
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Philip J Jackson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.,ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Cvetelin Vasilev
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Jaimey D Tucker
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
6
|
Adams PG, Hunter CN. Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1616-27. [PMID: 22659614 DOI: 10.1016/j.bbabio.2012.05.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/18/2012] [Accepted: 05/25/2012] [Indexed: 11/19/2022]
Abstract
The model photosynthetic bacterium Rhodobacter sphaeroides uses a network of bacteriochlorophyll (BChl)-protein complexes embedded in spherical intracytoplasmic membranes (ICM) to collect and utilise solar energy. We studied the effects of high- and low-light growth conditions, where BChl levels increased approximately four-fold from 1.6×10(6) to 6.5×10(6) molecules per cell. Most of this extra pigment is accommodated in the proliferating ICM system, which increases from approximately 274 to 1468 vesicles per cell. Thus, 16×10(6)nm(2) of specialised membrane surface area is made available for harvesting and utilising solar energy compared to 3×10(6)nm(2) under high-light conditions. Membrane mapping using atomic force microscopy revealed closely packed dimeric and monomeric reaction centre-light harvesting 1-PufX (RC-LH1-PufX) complexes in high-light ICM with room only for small clusters of LH2, whereas extensive LH2-only domains form during adaptation to low light, with the LH2/RC ratio increasing three-fold. The number of upper pigmented band (UPB) sites where membrane invagination is initiated hardly varied; 704 (5.8×10(5) BChls/cell) and 829 (4.9×10(5) BChls/cell) UPB sites per cell were estimated under high- and low-light conditions, respectively. Thus, the lower ICM content in high-light cells is a consequence of fewer ICM invaginations reaching maturity. Taking into account the relatively poor LH2-to-LH1 energy transfer in UPB membranes it is likely that high-light cells are relatively inefficient at energy trapping, but can grow well enough without the need to fully develop their photosynthetic membranes from the relatively inefficient UPB to highly efficient mature ICM.
Collapse
Affiliation(s)
- Peter G Adams
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
7
|
Woronowicz K, Olubanjo OB, Sung HC, Lamptey JL, Niederman RA. Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity. PHOTOSYNTHESIS RESEARCH 2012; 111:125-138. [PMID: 22396151 DOI: 10.1007/s11120-011-9707-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100 W/m(2) and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24 h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24 h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48 h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24 h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers University, Busch Campus, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | | | | | | | | |
Collapse
|
8
|
Woronowicz K, Olubanjo OB, Sung HC, Lamptey JL, Niederman RA. Differential assembly of polypeptides of the light-harvesting 2 complex encoded by distinct operons during acclimation of Rhodobacter sphaeroides to low light intensity. PHOTOSYNTHESIS RESEARCH 2011; 108:201-214. [PMID: 21863386 DOI: 10.1007/s11120-011-9681-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 08/10/2011] [Indexed: 05/31/2023]
Abstract
In order to obtain an improved understanding of the assembly of the bacterial photosynthetic apparatus, we have conducted a proteomic analysis of pigment-protein complexes isolated from the purple bacterium Rhodobacter sphaeroides undergoing acclimation to reduced incident light intensity. Photoheterotrophically growing cells were shifted from 1,100 to 100 W/m(2) and intracytoplasmic membrane (ICM) vesicles isolated over 24-h were subjected to clear native polyacrylamide gel electrophoresis. Bands containing the LH2 and reaction center (RC)-LH1 complexes were excised and subjected to in-gel trypsin digestion followed by liquid chromatography (LC)-mass spectroscopy (MS)/MS. The results revealed that the LH2 band contained distinct levels of the LH2-α and -β polypeptides encoded by the two puc operons. Polypeptide subunits encoded by the puc2AB operon predominated under high light and in the early stages of acclimation to low light, while after 24 h, the puc1BAC components were most abundant. Surprisingly, the Puc2A polypeptide containing a 251 residue C-terminal extension not present in Puc1A, was a protein of major abundance. A predominance of Puc2A components in the LH2 complex formed at high light intensity is followed by a >2.5-fold enrichment in Puc1B levels between 3 and 24 h of acclimation, accompanied by a nearly twofold decrease in Puc2A levels. This indicates that the puc1BAC operon is under more stringent light control, thought to reflect differences in the puc1 upstream regulatory region. In contrast, elevated levels of Puc2 polypeptides were seen 48 h after the gratuitous induction of ICM formation at low aeration in the dark, while after 24 h of acclimation to low light, an absence of alterations in Puc polypeptide distributions was observed in the upper LH2-enriched gel band, despite an approximate twofold increase in overall LH2 levels. This is consistent with the origin of this band from a pool of LH2 laid down early in development that is distinct from subsequently assembled LH2-only domains, forming the LH2 gel band.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Department of Molecular Biology and Biochemistry, Rutgers University, Busch Campus, 604 Allison Road, Piscataway, NJ 08854-8082, USA
| | | | | | | | | |
Collapse
|
9
|
Expression characterization and actual function of the second pucBA in Rhodobacter sphaeroides. Biosci Rep 2009; 29:165-72. [PMID: 18798732 DOI: 10.1042/bsr20080061] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The puc2BA operon of Rhodobacter sphaeroides is highly similar to the original puc1BA operon. Genetic, biochemical and spectroscopic approaches were used to investigate the function of puc2BA; the puc1BA and puc2BA structural genes were amplified and cloned into the pRK415 vector controlled by the puc promoter from R. sphaeroides, which was then introduced into R. sphaeroides mutant strains. The results indicated that puc2BA was normally expressed and puc2BA-encoded polypeptides were assembled into membrane LHII (light-harvesting II) complexes, although the puc2A-encoded polypeptide was much larger than the puc1A-encoded polypeptide. Semi-quantitative RT-PCR (reverse transcription-PCR) and SDS/PAGE indicated that puc1BA and puc2BA were expressed in R. sphaeroides when integrated into the genome or expressed from vectors. Furthermore, the polypeptides from the puc1BA and puc2BA genes were both involved in LHII assembly, and pucC is also necessary to assemble LHII complexes. Nevertheless, the LHII complexes synthesized from puc2BA in R. sphaeroides have blue-shift absorption bands at 801 and 846 nm.
Collapse
|
10
|
Wang W, Hu Z, Li J, Chen X, Chen G. Characteristics of light-harvesting complex II mutant of Rhodobacter sphaeroides with alterations at the transmembrane helices of beta-subunit. BIOCHEMISTRY. BIOKHIMIIA 2009; 74:807-812. [PMID: 19747103 DOI: 10.1134/s0006297909070153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The peripheral light-harvesting complex II (LHII) is an important component of the photosynthetic apparatus of Rhodobacter sphaeroides. In this study, genetic, biochemical, and spectroscopic approaches were applied to investigate the spectral properties and functions of LHII in which two amino acid residues Phe32 and Leu42 in the transmembrane helix domain of pucB-encoded beta-apoprotein were replaced by Leu and Pro. The mutated LHII complex showed blue shift of absorbance peaks in the near infrared region at approximately 801-845 nm in R. sphaeroides. It should be noted that the B800 peak was much lower than that of the native LHII, and transfer energy was efficient from the B800 to the B850 pigments in the LHII complex. The results suggest that the mutated pucB could be expressed in R. sphaeroides, and the functional LHII was assembled into the membrane of R. sphaeroides notwithstanding with the different spectral properties. These mutated residues were indeed critical for the modulation of characteristics and function of LHII complex.
Collapse
Affiliation(s)
- Wanneng Wang
- College of Bioengineering, Chongqing University, Shapingba, Chongqing, 400030, China
| | | | | | | | | |
Collapse
|
11
|
Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2007; 190:286-99. [PMID: 17965166 DOI: 10.1128/jb.01375-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter sphaeroides 2.4.1 is a facultative photosynthetic anaerobe that grows by anoxygenic photosynthesis under anaerobic-light conditions. Changes in energy generation pathways under photosynthetic and aerobic respiratory conditions are primarily controlled by oxygen tensions. In this study, we performed time series microarray analyses to investigate transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration. Major changes in gene expression profiles occurred in the initial 15 min after the shift from anaerobic-light to aerobic-dark conditions, with changes continuing to occur up to 4 hours postshift. Those genes whose expression levels changed significantly during the time series were grouped into three major classes by clustering analysis. Class I contained genes, such as that for the aa3 cytochrome oxidase, whose expression levels increased after the shift. Class II contained genes, such as those for the photosynthetic apparatus and Calvin cycle enzymes, whose expression levels decreased after the shift. Class III contained genes whose expression levels temporarily increased during the time series. Many genes for metabolism and transport of carbohydrates or lipids were significantly induced early during the transition, suggesting that those endogenous compounds were initially utilized as carbon sources. Oxidation of those compounds might also be required for maintenance of redox homeostasis after exposure to oxygen. Genes for the repair of protein and sulfur groups and uptake of ferric iron were temporarily upregulated soon after the shift, suggesting they were involved in a response to oxidative stress. The flagellar-biosynthesis genes were expressed in a hierarchical manner at 15 to 60 min after the shift. Numerous transporters were induced at various time points, suggesting that the cellular composition went through significant changes during the transition from anaerobic photosynthesis to aerobic respiration. Analyses of these data make it clear that numerous regulatory activities come into play during the transition from one homeostatic state to another.
Collapse
|
12
|
Tavano CL, Podevels AM, Donohue TJ. Identification of genes required for recycling reducing power during photosynthetic growth. J Bacteriol 2005; 187:5249-58. [PMID: 16030219 PMCID: PMC1196016 DOI: 10.1128/jb.187.15.5249-5258.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Photosynthetic organisms have the unique ability to transform light energy into reducing power. We study the requirements for photosynthesis in the alpha-proteobacterium Rhodobacter sphaeroides. Global gene expression analysis found that approximately 50 uncharacterized genes were regulated by changes in light intensity and O\2 tension, similar to the expression of genes known to be required for photosynthetic growth of this bacterium. These uncharacterized genes included RSP4157 to -4159, which appeared to be cotranscribed and map to plasmid P004. A mutant containing a polar insertion in RSP4157, CT01, was able to grow via photosynthesis under autotrophic conditions using H2 as an electron donor and CO2 as a carbon source. However, CT01 was unable to grow photoheterotrophically in a succinate-based medium unless compounds that could be used to recycle reducing power (the external electron acceptor dimethyl sulfoxide (DMSO) or CO2 were provided. This suggests that the insertion in RSP4157 caused a defect in recycling reducing power during photosynthetic growth when a fixed carbon source was present. CT01 had decreased levels of RNA for genes encoding putative glycolate degradation functions. We found that exogenous glycolate also rescued photoheterotrophic growth of CT01, leading us to propose that CO2 produced from glycolate metabolism can be used by the Calvin cycle to recycle reducing power generated in the photosynthetic apparatus. The ability of glycolate, CO2, or DMSO to support photoheterotrophic growth of CT01 suggests that one or more products of RSP4157 to -4159 serve a previously unknown role in recycling reducing power under photosynthetic conditions.
Collapse
Affiliation(s)
- Christine L Tavano
- University of Wisconsin-Madison Department of Bacteriology, 420 Henry Mall, Madison, WI 53711, USA
| | | | | |
Collapse
|
13
|
Abstract
Control of the synthesis of the purple bacterial photosystem has been an active area of research for many decades. The period of the 1960s involved physiological characterization of photosystem synthesis under different growth conditions. In the 1970s Barry Marrs and coworkers developed genetic tools that were used to define and map genes needed for synthesis of photopigments. The 1980s was a period of cloning and physical mapping of photosynthesis genes onto the chromosome, the demonstration that regulation of photosystem synthesis involved transcriptional control of gene expression, and sequence analysis of photosynthesis genes. The 1990s was a period of the discovery and characterization of regulatory genes that control synthesis of the photosystem in response to alterations in oxygen tension and light intensity. Although several photosynthetic organisms are mentioned for comparison and contrast, the focus of this minireview is on Rhodobacter capsulatus.
Collapse
Affiliation(s)
- Carl Bauer
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA,
| |
Collapse
|
14
|
Fales L, Nogaj L, Zeilstra-Ryalls J. Analysis of the upstream sequences of the Rhodobacter sphaeroides 2.4.1 hemA gene: in vivo evidence for the presence of two promoters that are both regulated by fnrL. PHOTOSYNTHESIS RESEARCH 2002; 74:143-51. [PMID: 16228552 DOI: 10.1023/a:1020947308227] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The presumed DNA target for the Rhodobacter sphaeroides 2.4.1 FnrL regulatory protein is the FNR consensus sequence, TTGAT-N(4)-ATCAA, based on (1) similarities between the helix-turn-helix motifs of FnrL and the Escherichia coli homologue, Fnr, and (2) the established FnrL dependence for anaerobic induction of six gene clusters all having upstream FNR consensus-like sequences. We are interested in understanding the regulation of one among these; namely, the hemA gene, which codes for one of two isozymes of 5-aminolevulinate (ALA) synthase in this organism. Here, we present in vivo evidence that the hemA gene is transcribed from two promoters. Both are under oxygen control, and disabling the fnrL gene abolishes induction of each promoter in response to lowering oxygen tension. Based on the 5' position of the FNR consensus sequence relative to the downstream promoter, we had hypothesized that activation of that promoter is mediated by binding of FnrL to the FNR consensus sequence. Consistent with this hypothesis, we found here that transcription from the downstream promoter is no longer inducible when the FNR consensus sequence is deleted. With respect to the upstream promoter, based on the fact that the +1 site of transcription from that promoter is within the FNR consensus sequence, we propose an indirect role for FnrL. This possibility is discussed, together with other unresolved aspects of hemA expression.
Collapse
Affiliation(s)
- Linda Fales
- Department of Biological Sciences, Oakland University, 374 Dodge Hall, Rochester, MI, 48309, USA,
| | | | | |
Collapse
|
15
|
Kaplan S. Photosynthesis genes and their expression in Rhodobacter sphaeroides 2.4.1: a tribute to my students and associates. PHOTOSYNTHESIS RESEARCH 2002; 73:95-108. [PMID: 16245109 DOI: 10.1023/a:1020437317471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This minireview traces the photosynthesis genes, their structure, function and expression in Rhodobacter sphaeroides 2.4.1, as applied to our understanding of the inducible photosynthetic intracytoplasmic membrane system or ICM. This focus has represented the research interests of this laboratory from the late 1960s to the present. This opportunity has been used to highlight the contributions of students and postdoctorals to this research effort. The work described here took place in a much greater and much broader context than what can be conveyed here. The 'timeline' begins with a clear acknowledgment of the work of June Lascelles and William Sistrom, whose foresight intuitively recognized the necessity of a 'genetic' approach to the study of photosynthesis in R. sphaeroides. The 'timeline' concludes with the completed genome sequence of R. sphaeroides 2.4.1. However, it is hoped the reader will recognize this event as not just a new beginning, but also as another hallmark describing this continuum.
Collapse
Affiliation(s)
- Samuel Kaplan
- Microbiology and Molecular Genetics, The University of Texas Health Science Center, Houston, UT-Houston Medical School, 6431 Fannin St, JFB 1.765, Houston, TX, 77030-1501, USA,
| |
Collapse
|
16
|
Choudhary M, Kaplan S. DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1. Nucleic Acids Res 2000; 28:862-7. [PMID: 10648776 PMCID: PMC102589 DOI: 10.1093/nar/28.4.862] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This paper describes the DNA sequence of the photosynthesis region of Rhodobacter sphaeroides 2.4.1 (T). The photosynthesis gene cluster is located within a approximately 73 kb Ase I genomic DNA fragment containing the puf, puhA, cycA and puc operons. A total of 65 open reading frames (ORFs) have been identified, of which 61 showed significant similarity to genes/proteins of other organisms while only four did not reveal any significant sequence similarity to any gene/protein sequences in the database. The data were compared with the corresponding genes/ORFs from a different strain of R.sphaeroides and Rhodobacter capsulatus, a close relative of R. sphaeroides. A detailed analysis of the gene organization in the photosynthesis region revealed a similar gene order in both species with some notable differences located to the pucBAC = cycA region. In addition, photosynthesis gene regulatory protein (PpsR, FNR, IHF) binding motifs in upstream sequences of a number of photosynthesis genes have been identified and shown to differ between these two species. The difference in gene organization relative to pucBAC and cycA suggests that this region originated independently of the photosynthesis gene cluster of R.sphaeroides.
Collapse
Affiliation(s)
- M Choudhary
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030, USA
| | | |
Collapse
|
17
|
Katsiou E, Sturgis JN, Robert B, Tadros MH. Heterologous expression of genes encoding bacterial light-harvesting complex II in Rhodobacter capsulatus and Rhodovulum sulfidophilum. Microbiol Res 1998; 153:189-204. [PMID: 9880926 DOI: 10.1016/s0944-5013(98)80001-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present work we report the high-level expression of foreign genes encoding the light-harvesting (LHII) membrane-spanning polypeptides in photosynthetic bacteria. To do this we first constructed three deletion strains of Rhodovulum (Rhv.) sulfidophilum in which all or part of the puc operon, encoding the peripheral light-harvesting proteins, is missing. To investigate the heterologous expression of the light-harvesting polypeptides from Rb. capsulatus in Rhv. sulfidophilum and vice versa we have reintroduced functional foreign LH genes into these and equivalent strains of Rhodobacter (Rb.) capsulatus. In some cases very high levels of expression were obtained (85%) of those observed in the wild type), while in other cases much lower expression was observed; possible reasons for these differences are discussed. The heterologously expressed proteins were shown to contain normal pigment-binding sites and to be normally and functionally integrated within the host photosynthetic apparatus. The results indicate that heterologous proteins are able to assemble properly and enter into the same protein-protein interactions as their analogs originally present in the host strain.
Collapse
Affiliation(s)
- E Katsiou
- Institut für Biologie II, Albert-Ludwigs-Universität, Freiburg, Germany
| | | | | | | |
Collapse
|
18
|
Nickens DG, Bauer CE. Analysis of the puc operon promoter from Rhodobacter capsulatus. J Bacteriol 1998; 180:4270-7. [PMID: 9696778 PMCID: PMC107426 DOI: 10.1128/jb.180.16.4270-4277.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/1998] [Accepted: 06/09/1998] [Indexed: 11/20/2022] Open
Abstract
Expression of the Rhodobacter capsulatus puc operon, which codes for structural polypeptides of the light-harvesting-II peripheral antenna complex, is highly regulated in response to alterations in oxygen tension and light intensity. To obtain an understanding of the puc promoter region we report the high-resolution 5' mapping of the puc mRNA transcriptional start site and DNA sequence analysis of the puc upstream regulatory sequence (pucURS). A sigma70-type promoter sequence was identified (pucP1) which has a high degree of sequence similarity with carotenoid and bacteriochlorophyll biosynthesis promoters. Inspection of the DNA sequence also indicated the presence of two CrtJ and four integration host factor (IHF) binding sites. Transcriptional fusions of the pucURS fused to lacZ also confirmed that puc promoter activity is regulated by the transcriptional regulators IHF, CrtJ, and RegA. Gel retardation analysis using cell extracts indicates that mutations in IHF and RegA disrupt protein binding to DNA fragments containing the pucURS.
Collapse
Affiliation(s)
- D G Nickens
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
19
|
Mouncey NJ, Kaplan S. Cascade regulation of dimethyl sulfoxide reductase (dor) gene expression in the facultative phototroph Rhodobacter sphaeroides 2.4.1T. J Bacteriol 1998; 180:2924-30. [PMID: 9603883 PMCID: PMC107260 DOI: 10.1128/jb.180.11.2924-2930.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1997] [Accepted: 03/25/1998] [Indexed: 02/07/2023] Open
Abstract
Under anaerobic-dark growth conditions, in the presence of the alternative electron acceptor dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO), Rhodobacter sphaeroides 2.4.1(T) respires anaerobically using the molybdoenzyme DMSO reductase (DMSOR). Genes encoding DMSOR and associated proteins are encoded by genes of the dor locus. Previously, we demonstrated that the expression of DMSOR is regulated by both the oxygen status of the cell via the FnrL protein and by the presence of DMSO or TMAO, presumably through the DorS-DorR two-component sensor-regulator system. Here we further investigate expression of the dor genes through the use of transcriptional lacZ fusions to the dorS, dorR, and dorC promoters. The expression of dorC::lacZ was strongly induced by the absence of oxygen and presence of DMSO. In accordance with our previous findings of DMSOR activity, dorC::lacZ expression was reduced by up to one-third when cells were grown photosynthetically in the presence of DMSO with medium or high light, compared to the expression observed after anaerobic-dark growth. The induction of dorC::lacZ expression in the presence of DMSO was dependent on the DorS and DorR proteins. Expression of the dorS and dorR genes was also induced in the absence of oxygen. In an FnrL mutant, dorS::lacZ expression was not induced when oxygen tensions in the media were lowered, in contrast to what occurred in the wild-type strain. The expression of dorS::lacZ and dorR::lacZ was dependent on the DorS and DorR proteins themselves, suggesting the importance of autoregulation. These results demonstrate a cascade regulation of dor gene expression, where the expression of the regulatory proteins DorS and DorR governs the downstream regulation of the dorCBA operon encoding the structural proteins of DMSOR.
Collapse
Affiliation(s)
- N J Mouncey
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
20
|
Zeilstra-Ryalls J, Gomelsky M, Eraso JM, Yeliseev A, O'Gara J, Kaplan S. Control of photosystem formation in Rhodobacter sphaeroides. J Bacteriol 1998; 180:2801-9. [PMID: 9603864 PMCID: PMC107241 DOI: 10.1128/jb.180.11.2801-2809.1998] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- J Zeilstra-Ryalls
- Department of Microbiology and Molecular Genetics, University of Texas Health Sciences Center-Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
21
|
Hagemann GE, Katsiou E, Forkl H, Steindorf AC, Tadros MH. Gene cloning and regulation of gene expression of the puc operon from Rhodovulum sulfidophilum. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1351:341-58. [PMID: 9130598 DOI: 10.1016/s0167-4781(96)00228-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rhodovulum (Rhv.) sulfidophilum, unlike other nonsulfur purple bacteria, is able to synthesize the peripheral antenna complex even under fully aerobic conditions in the dark. We have obtained strong evidence that Rhv. sulfidophilum encodes only one copy of the puc operon, comprising pucB, pucA and pucC. pucB and pucA encode the beta- and alpha-polypeptides. The third ORF (pucC), downstream of pucA, has a strong homology to pucC of Rhodobacter (Rb.) capsulatus. Deletion mutation analysis indicated that the requirement for the pucC gene product for LH II expression was less strict than in Rb. capsulatus. Comparison of the deduced alpha and beta polypeptide sequences with the directly determined primary structure revealed a C-terminal processing of the alpha-subunit. Primer extension analysis showed that the pucBAC is transcribed from a sigma70-type promoter 130 bases upstream of the translational start of pucB. Transcriptional expression of the pucBAC operon in Rhv. sulfidophilum is higher, the lower the light intensity is, and is not reduced to a ground-level by the presence of oxygen. Based on lacZ fusions the relative promoter activities were, for dark aerobic:dark semiaerobic:low light anaerobic:medium light anaerobic:high light anaerobic, 5.5:7.0:2.0:1.0:0.78. Still unidentified cis-regulatory elements or binding sites of trans-regulatory elements are apparently localized in two distinct upstream regions. Furthermore, comparison of the promoter region of the Rhv. sulfidophilum pucBAC with the promoter regions of puc operons in related species showed distinct differences in the regulatory elements. The significance of these results with respect to the regulation of transcription and the oxygen-independent synthesis of LH II from Rhv. sulfidophilum is discussed.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacteria/genetics
- Bacteria/growth & development
- Bacteria/metabolism
- Bacterial Proteins
- Base Sequence
- Chromosome Mapping
- Cloning, Molecular
- Gene Deletion
- Gene Expression Regulation, Bacterial
- Light-Harvesting Protein Complexes
- Molecular Sequence Data
- Mutation
- Open Reading Frames
- Operon/genetics
- Photosynthetic Reaction Center Complex Proteins/genetics
- Photosystem II Protein Complex
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- G E Hagemann
- Institute for Biology II/Microbiology, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Gardiner AT, Mackenzie RC, Barrett SJ, Kaiser K, Cogdell RJ. The purple photosynthetic bacterium Rhodopseudomonas acidophila contains multiple puc peripheral antenna complex (LH2) genes: Cloning and initial characterisation of four β/α pairs. PHOTOSYNTHESIS RESEARCH 1996; 49:223-235. [PMID: 24271700 DOI: 10.1007/bf00034783] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/1996] [Accepted: 07/23/1996] [Indexed: 06/02/2023]
Abstract
The genome of the purple non-sulphur photosynthetic bacterium Rhodopseudomonas acidophila has been found to contain multiple copies of puc light-harvesting (LH2) peripheral antenna complex genes. Three wild-type isolates each exhibiting dissimilar peripheral antenna complex phenotypes in response to growth at reduced light intensity, were found to contain different numbers of these genes. Twenty-three puc cross-hybridising clones were isolated from a genomic library constructed from Rhodopseudomonas acidophila strain 7050; two of which were examined further; 2.6kb from one clone was sequenced and found to contain three β/α gene pairs designated puc (1)BA, puc (2)BA and puc (3)BA. The putative translated polypeptides are very like, but not identical to those from B800-820 complexes and upstream sequence homologies suggests that this treble gene cluster has arisen through a relatively recent gene duplication event. From the other clone 0.6kb was sequenced and found to contain a further gene pair, puc (4)BA, which is capable of encoding apoproteins for a B800-850-like complex. When the cells are grown at 'high' or 'low' light intensity Northern analyses showed that only puc (4)BA is expressed under 'high' light conditions. Furthermore, pucBA mRNA transcripts were detected in all three species in the range 500-780 nt. In Rhodopseudomonas acidophila post-transcriptional regulatory mechanisms also play a role in determining the amount of peripheral antenna present in the intra-cytoplasmic membrane.
Collapse
Affiliation(s)
- A T Gardiner
- Department of Biochemistry, School of Biological Sciences, University of Glasgow, University Avenue, G12 8QQ, Glasgow, Scotland
| | | | | | | | | |
Collapse
|
23
|
Germeroth L, Reiländer H, Michel H. Molecular cloning, DNA sequence and transcriptional analysis of the Rhodospirillum molischianum B800/850 light-harvesting genes. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1275:145-50. [PMID: 8695630 DOI: 10.1016/0005-2728(96)00017-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The amino acid sequences of the B800/850 light-harvesting proteins from Rhodospirillum molischianum were determined by Edman degradation. On the basis of these amino acid sequences, two degenerated oligonucleotides were synthesized and used for PCR of genomic DNA. The resulting 150 bp DNA fragment was cloned, sequenced and used for subsequent Southern blot analysis of digested genomic DNA. A 2.3 kbp EcoRI fragment strongly hybridized to the probe and a size selected genomic library from genomic DNA was constructed. One clone scored positive during screening of the library with the PCR-fragment and subsequent DNA sequence analysis of the clone revealed the presence of three A-genes (A1A2A3) encoding alpha-polypeptides and of two B-genes (B1B2) encoding beta-polypeptides of the B800/850 complex. The arrangement of the different genes are B1A1, B2A2 and A3 where only B1 and B2 are preceded by typical Shine-Dalgarno sequences. In addition, typical nucleotide sequences for a rho-independent termination of transcription are located downstream of the genes A1 and A2. The deduced amino acid sequences revealed that the alpha-genes encoded for identical polypeptides, whereas the deduced beta-polypeptides differed in their amino acid sequence at four positions. Transcriptional operon analysis revealed that the genes A1B1 and A2B2 are both dicistronically transcribed, whereas the gene A3 is not.
Collapse
Affiliation(s)
- L Germeroth
- Max-Planck-Institut für Biophysik, Abteilung Molekulare Membranbiologie, Frankfurt/M., Germany
| | | | | |
Collapse
|
24
|
Sabaty M, Kaplan S. mgpS, a complex regulatory locus involved in the transcriptional control of the puc and puf operons in Rhodobacter sphaeroides 2.4.1. J Bacteriol 1996; 178:35-45. [PMID: 8550440 PMCID: PMC177618 DOI: 10.1128/jb.178.1.35-45.1996] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A new method has been developed in order to select mutants showing decreased puc operon transcription in Rhodobacter sphaeroides 2.4.1. A transcriptional fusion of a promoterless fragment derived from the sacB gene, encoding the levansucrase from Bacillus subtilis, to the upstream regulatory region of the puc operon has been constructed. With appropriate levels of exogenous sucrose, survivors of a sucrose killing challenge have been isolated. Subsequent analysis revealed the presence of both cis- and trans-acting "down" mutations in relation to puc operon expression. One of the trans-acting regulatory mutations was chosen for further study. The original mutation showed less than 2% of the level of puc operon transcription compared with the wild type under aerobic conditions and an 86% reduction under dark dimethyl sulfoxide conditions. This mutation can be complemented by a 3.9-kb BamHI DNA fragment derived from a cosmid contained within a genomic cosmid bank. DNA sequence analysis of this fragment revealed the presence of a 2.8-kb open reading frame, designated mgpS, which would encode a 930-amino-acid protein. The N-terminal portion of the putative protein product presents homologies to proteins of the RNA helicase family. Disruption of the chromosomal mgpS resulted in decreased transcription of both puc and puf, while the presence of mgpS in multicopy in the wild type, 2.4.1., increased puc expression by a factor of 2 under aerobic conditions. Structural analysis of the mgpS locus revealed that expression of mgpS was likely to be complex. A smaller protein containing the 472 C-terminal amino acids of MgpS is able to act by itself as an activator of puc transcription and is expressed independently of the large open reading frame in which it is contained.
Collapse
Affiliation(s)
- M Sabaty
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston 77225, USA
| | | |
Collapse
|
25
|
Lee JK, Kaplan S. Transcriptional Regulation of puc Operon Expression in Rhodobacter sphaeroides. J Biol Chem 1995. [DOI: 10.1074/jbc.270.35.20453] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
26
|
Gomelsky M, Kaplan S. appA, a novel gene encoding a trans-acting factor involved in the regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. J Bacteriol 1995; 177:4609-18. [PMID: 7642486 PMCID: PMC177224 DOI: 10.1128/jb.177.16.4609-4618.1995] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A new gene, the product of which is involved in the regulation of photosynthesis gene expression in the anoxygenic photosynthetic bacterium Rhodobacter sphaeroides 2.4.1, has been identified. The isolation of this gene, designated appA (activation of photopigment and puc expression), was based on its ability, when provided in extra copies, to partially suppress mutations in the two-component PrrB-PrrA regulatory system. The presence of extra copies of the appA gene in either prrB, prrA, or wild-type strains resulted in an activation of puc::lacZ expression under aerobic conditions. Constructed AppA null mutants did not grow photosynthetically and were impaired in the synthesis of both bacteriochlorophyll and carotenoids, as well as the structural proteins of the photosynthetic spectral complexes. When grown anaerobically in the dark, these mutants accumulated bacteriochlorophyll precursors. The expression of lacZ fusions to several photosynthesis genes and operons, including puc, puf, and bchF, was decreased in the AppA mutant strains in comparison with the wild type. To examine the role of AppA involvement in bacteriochlorophyll biosynthesis, we inactivated an early gene, bchE, of the bacteriochlorophyll pathway in both wild-type and AppA- mutant backgrounds. The double mutant, AppA- BchE-, was found to be severely impaired in photosynthesis gene expression, similar to the AppA- BchE+ mutant and in contrast to the AppA+ BchE- mutant. This result indicated that AppA is more likely involved in the regulation of expression of the bch genes than in the biosynthetic pathway per se. The appA gene was sequenced and appears to encode a protein of 450 amino acids with no obvious homology to known proteins.
Collapse
Affiliation(s)
- M Gomelsky
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston 77030, USA
| | | |
Collapse
|
27
|
Energy migration in Rhodobacter sphaeroides mutants altered by mutagenesis of the peripheral LH2 complex or by removal of the core LH1 complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(95)00069-u] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Gomelsky M, Kaplan S. Isolation of regulatory mutants in photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1 and partial complementation of a PrrB mutant by the HupT histidine-kinase. MICROBIOLOGY (READING, ENGLAND) 1995; 141 ( Pt 8):1805-1819. [PMID: 7551045 DOI: 10.1099/13500872-141-8-1805] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The photosynthetic bacterium Rhodobacter sphaeroides responds to the transition from aerobiosis to anaerobic photosynthesis by increasing the expression of the photosynthesis genes. Mutants have been isolated based on their inability, following such a transition, to increase transcription of the puc operon encoding the apoproteins of the light-harvesting complex II. Mutant D5, a representative of one mutant class, described here, although remaining photosynthetically competent, produced only low levels of the photosynthetic spectral complexes. Complementation analysis revealed that either the gene for the photosynthesis response regulator prrA or the gene encoding its cognate sensor kinase, prrB, was capable of rescuing this mutant. However, partial complementation of this mutant was achieved by placing in trans additional copies of other defined genes from the cosmid library of R. sphaeroides. We describe this effect in detail, attributable to the hupT gene, which has been proposed to encode a histidine-kinase for the hydrogen uptake system in Rhodobacter capsulatus. The effect of HupT on the expression of the photosynthesis genes was mediated through PrrA and independent of a functioning hydrogen uptake system. Thus, we raise the possibility that HupT can participate in phosphorylation of the heterologous response regulator PrrA by so-called cross-talk and therefore partially compensate for the defect in the mutant described. The observation of cross-talk, together with the complementation analysis, allowed us to assign the original mutation to the prrB gene; this was confirmed by DNA sequencing. Analysis of cross-talk in the wild-type, prrB and prrA genetic backgrounds suggested that besides kinase activity, PrrB may possess phosphatase activity toward PrrA. We also report the cloning, organization and structure of some of the hup genes from R. sphaeroides and construction of a Hup- strain.
Collapse
|
29
|
Eraso JM, Kaplan S. Oxygen-insensitive synthesis of the photosynthetic membranes of Rhodobacter sphaeroides: a mutant histidine kinase. J Bacteriol 1995; 177:2695-706. [PMID: 7751278 PMCID: PMC176939 DOI: 10.1128/jb.177.10.2695-2706.1995] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two new loci, prrB and prrC, involved in the positive regulation of photosynthesis gene expression in response to anaerobiosis, have been identified in Rhodobacter sphaeroides. prrB encodes a sensor histidine kinase that is responsive to the removal of oxygen and functions through the response regulator PrrA. Inactivation of prrB results in a substantial reduction of photosynthetic spectral complexes as well as in the inability of cells to grow photosynthetically at low to medium light intensities. Together, prrB and prrA provide the major signal involved in synthesis of the specialized intracytoplasmic membrane (ICM), harboring components essential to the light reactions of photosynthesis. Previously, J. K. Lee and S. Kaplan (J. Bacteriol. 174:1158-1171, 1992) identified a mutant which resulted in high-level expression of the puc operon, encoding the apoproteins giving rise to the B800-850 spectral complex, in the presence of oxygen as well as in the synthesis of the ICM under conditions of high oxygenation. This mutation is shown to reside in prrB, resulting in a leucine-to-proline change at position 78 in mutant PrrB (PRRB78). Measurements of mRNA levels in cells containing the prrB78 mutation support the idea that prrB is a global regulator of photosynthesis gene expression. Two additional mutants, PRRB1 and PRRB2, which make two truncated forms of the PrrB protein, possess substantially reduced amounts of spectral complexes. Although the precise role of prrC remains to be determined, evidence suggests that it too is involved in the regulatory cascade involving prrB and prrA. The genetic organization of the photosynthesis response regulatory (PRR) region is discussed.
Collapse
Affiliation(s)
- J M Eraso
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | |
Collapse
|
30
|
Gomelsky M, Kaplan S. Genetic evidence that PpsR from Rhodobacter sphaeroides 2.4.1 functions as a repressor of puc and bchF expression. J Bacteriol 1995; 177:1634-7. [PMID: 7883723 PMCID: PMC176785 DOI: 10.1128/jb.177.6.1634-1637.1995] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The ppsR gene (R. J. Penfold and J. M. Pemberton, J. Bacteriol. 176:2869-2876, 1994) from Rhodobacter sphaeroides 2.4.1 functions as a transcriptional repressor of puc and bchF expression. The carboxy terminus of PpsR, containing the putative DNA-binding domain, by itself possesses repressor activity. Intact palindromes having the motif TGT-N12-ACA are required for PpsR activity.
Collapse
Affiliation(s)
- M Gomelsky
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center Medical School, Houston 77030
| | | |
Collapse
|
31
|
Lang HP, Cogdell RJ, Gardiner AT, Hunter CN. Early steps in carotenoid biosynthesis: sequences and transcriptional analysis of the crtI and crtB genes of Rhodobacter sphaeroides and overexpression and reactivation of crtI in Escherichia coli and R. sphaeroides. J Bacteriol 1994; 176:3859-69. [PMID: 8021167 PMCID: PMC205582 DOI: 10.1128/jb.176.13.3859-3869.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the purple photosynthetic bacterium Rhodobacter sphaeroides, the desaturation of phytoene has already been implicated in the assembly of the light-harvesting 2 complex (H.P. Lang and C.N. Hunter, Biochem. J. 298:197-205, 1994). The phytoene synthase and desaturase enzymes mediate the first steps specific for carotenoid biosynthesis up to and including the synthesis of the colored carotenoid neurosporene. In this report, we present the DNA and deduced amino acid sequences of the genes encoding these proteins, namely, crtB and crtI, from R. sphaeroides and present evidence for the existence of a crtIB operon. Both genes have been shown to possess putative puc and puf operon-like promoter sequences, and oxygen regulation and the point of initiation of the crtI transcript have been demonstrated. The complete crtI gene has been overexpressed in Escherichia coli and R. sphaeroides and shown to catalyze three desaturations of phytoene to give neurosporene. This activity was shown to be ATP dependent, and the cofactor requirement was investigated by using a spectroscopic assay for in vitro carotenogenic activity. Although the crtI and crtB genes have been sequenced from a number of different organisms, the transcriptional organization and regulation of these genes have not been analyzed in detail. In this report, we have located the transcription initiation point and have shown that R. sphaeroides possesses an oxygen-regulated CrtI-type phytoene desaturase gene that forms a transcriptional operon with crtB.
Collapse
Affiliation(s)
- H P Lang
- Department of Molecular Biology and Biotechnology, Robert Hill Institute for Photosynthesis, University of Sheffield, Western Bank, United Kingdom
| | | | | | | |
Collapse
|
32
|
Lang HP, Hunter CN. The relationship between carotenoid biosynthesis and the assembly of the light-harvesting LH2 complex in Rhodobacter sphaeroides. Biochem J 1994; 298 ( Pt 1):197-205. [PMID: 8129720 PMCID: PMC1138001 DOI: 10.1042/bj2980197] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Coloured carotenoids play some undefined role in the assembly of a functional light-harvesting 2 (LH2) complex in photosynthetic bacteria. We have used a series of transposon Tn5 insertion mutants disrupted at various stages of the carotenoid-biosynthetic pathway, together with an LH2 deletion/insertion mutant, to investigate this effect in Rhodobacter sphaeroides. Mutants were initially characterized by low-temperature absorbance spectroscopy and ultrastructural analysis: Northern-blot analysis demonstrated normal pucBA transcripts for LH2 polypeptides in all the carotenoid mutants. Analysis of translation of the puc transcript and investigation of the fate of any resulting LH2 polypeptides by SDS/PAGE, Western-blot and pulse-chase experiments clearly demonstrated that, in the absence of coloured carotenoids, the LH2 alpha- and beta-polypeptides are synthesized but are rapidly turned over and do not become stably integrated into the membrane. Complementation of mutants with lesions in the crtB and crtI genes, encoding phytoene synthase and phytoene desaturase respectively, with the cloned R. sphaeroides crtI gene, resulted in restoration of carotenoid biosynthesis and stable assembly of the LH2 complex in the crtI mutant but not in the crtB mutant, despite the presence of the CrtI protein.
Collapse
Affiliation(s)
- H P Lang
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, U.K
| | | |
Collapse
|
33
|
McEwan AG. Photosynthetic electron transport and anaerobic metabolism in purple non-sulfur phototrophic bacteria. Antonie Van Leeuwenhoek 1994; 66:151-64. [PMID: 7747929 DOI: 10.1007/bf00871637] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Purple non-sulfur phototrophic bacteria, exemplified by Rhodobacter capsulatus and Rhodobacter sphaeroides, exhibit a remarkable versatility in their anaerobic metabolism. In these bacteria the photosynthetic apparatus, enzymes involved in CO2 fixation and pathways of anaerobic respiration are all induced upon a reduction in oxygen tension. Recently, there have been significant advances in the understanding of molecular properties of the photosynthetic apparatus and the control of the expression of genes involved in photosynthesis and CO2 fixation. In addition, anaerobic respiratory pathways have been characterised and their interaction with photosynthetic electron transport has been described. This review will survey these advances and will discuss the ways in which photosynthetic electron transport and oxidation-reduction processes are integrated during photoautotrophic and photoheterotrophic growth.
Collapse
Affiliation(s)
- A G McEwan
- Department of Microbiology, University of Queensland, Brisbane, Australia
| |
Collapse
|
34
|
Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Involvement of an integration host factor-binding sequence. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80552-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
35
|
Tadros MH, Katsiou E, Hoon MA, Yurkova N, Ramji DP. Cloning of a new antenna gene cluster and expression analysis of the antenna gene family of Rhodopseudomonas palustris. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:867-75. [PMID: 7693467 DOI: 10.1111/j.1432-1033.1993.tb18315.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The genome of Rhodopseudomonas palustris contains five antenna gene clusters, alpha beta a, alpha beta b, alpha beta c, alpha beta d and alpha beta e, which encode the light-harvesting peripheral antenna complex II polypeptides. The isolation and characterisation of the gene which encodes the alpha e and beta e polypeptides are reported. The primary structure of the beta e polypeptide is identical to that of beta b whilst the structure of alpha e is different from the other alpha subunits so far characterised. All five of the gene clusters were transcribed under high-light conditions while under low-light conditions only three were transcribed (alpha beta b, alpha beta d and alpha beta e). Furthermore, Northern-blot analysis showed that the gene clusters encode RNA transcripts of either 500 or 650 nucleotides. Individual members of the gene family showed a differential response in terms of the regulation of abundance of mRNA upon growth under either high-light or low-light intensities. Possible promoter sequences and operator sites upstream of the alpha beta b, alpha beta d and alpha beta e genes were located. Furthermore using puc-lacZ fusions in trans in R. palustris, we were able to examine the positions of the promoter of the gene clusters. The significance of these observations with respect to the regulation, organization and role of the peripheral antenna is discussed.
Collapse
Affiliation(s)
- M H Tadros
- Institut für Biologie II/Mikrobiologie, Freiburg, Germany
| | | | | | | | | |
Collapse
|
36
|
Shimada H, Ohta H, Masuda T, Shioi Y, Takamiya K. A putative transcription factor binding to the upstream region of the puf operon in Rhodobacter sphaeroides. FEBS Lett 1993; 328:41-4. [PMID: 8344432 DOI: 10.1016/0014-5793(93)80961-s] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Gel shift assays of the upstream region of the puf operon in Rhodobacter sphaeroides were performed using cell-free extracts from cells grown under various culture conditions. The results suggested that a protein binding to the upstream region functioned as a repressor-like substance of the expression of the operon by oxygen tension or light. The density of the shifted band of cell-free extracts from cells irradiated with blue light under semi-aerobic conditions was higher than that with red light. Phosphatase treatment of the cell-free extracts strongly increased the DNA-binding affinity of the protein.
Collapse
Affiliation(s)
- H Shimada
- Department of Biological Sciences, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | |
Collapse
|
37
|
Klug G. Regulation of expression of photosynthesis genes in anoxygenic photosynthetic bacteria. Arch Microbiol 1993; 159:397-404. [PMID: 7683456 DOI: 10.1007/bf00288584] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- G Klug
- Zentrum für Molekulare Biologie, Im Neuenheimer Feld 282, Heidelberg, Germany
| |
Collapse
|
38
|
Neidle EL, Kaplan S. 5-Aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol 1993; 175:2304-13. [PMID: 8468291 PMCID: PMC204518 DOI: 10.1128/jb.175.8.2304-2313.1993] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the photosynthetic bacterium Rhodobacter sphaeroides, two genes, hemA and hemT, each encode a distinct 5-aminolevulinic acid (ALA) synthase isozyme (E. L. Neidle and S. Kaplan, J. Bacteriol. 175:2292-2303, 1993). This enzyme catalyzes the first and rate-limiting step in a branched pathway for tetrapyrrole formation, leading to the biosynthesis of hemes, bacteriochlorophylls, and corrinoids. In an attempt to determine the functions of hemA and hemT, mutant strains were constructed with specific chromosomal disruptions. These chromosomal disruption allowed hemA and hemT to be precisely localized on the larger and smaller of two R. sphaeroides chromosomes, respectively. Mutants carrying a single hemA or hemT disruption grew well without the addition of ALA, whereas a mutant, HemAT1, in which hemA and hemT had both been inactivated required exogenous ALA for growth. The growth rates, ALA synthase enzyme levels, and the amounts of bacteriochlorophyll-containing intracytoplasmic membrane spectral complexes of all strains were compared. Under photosynthetic growth conditions, the levels of bacteriochlorophyll, carotenoids, and B800-850 and B875 light-harvesting complexes were significantly lower in the Hem mutants than in the wild type. In the mutant strains, available bacteriochlorophyll appeared to be preferentially targeted to the B875 light-harvesting complex relative to the B800-850 complex. In strain HemAT1, the amount of B800-850 complex varied with the concentration of ALA added to the growth medium, and under conditions of ALA limitation, no B800-850 complexes could be detected. In the Hem mutants, there were aberrant transcript levels corresponding to the puc and puf operons encoding structural polypeptides of the B800-850 and B875 complexes. These results suggest that hemA and hemT expression is coupled to the genetic control of the R. sphaeroides photosynthetic apparatus.
Collapse
Affiliation(s)
- E L Neidle
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston 77225
| | | |
Collapse
|
39
|
Gibson LC, McGlynn P, Chaudhri M, Hunter CN. A putative anaerobic coproporphyrinogen III oxidase in Rhodobacter sphaeroides. II. Analysis of a region of the genome encoding hemF and the puc operon. Mol Microbiol 1992; 6:3171-86. [PMID: 1453956 DOI: 10.1111/j.1365-2958.1992.tb01773.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The puc operon of Rhodobacter sphaeroides encoding polypeptides of the major light-harvesting complex, LH2, has been found to be linked to hemF, a gene encoding a putative anaerobic coproporphyrinogen III oxidase. The puc-hemF region of the R. sphaeroides genome has been investigated by insertional mutagenesis, complementation analysis of these insertional mutants and DNA sequencing. A third gene, designated pucC, has been found immediately downstream of pucA and has been shown to be essential for LH2 expression. pucC is cotranscribed with pucB and pucA; however, hemF and the pucBAC operon were found not to be transcriptionally linked. Ultrastructural studies indicated that the morphology of the intracytoplasmic membrane may depend upon expression of pucC as well as pucBA.
Collapse
Affiliation(s)
- L C Gibson
- Krebs Institute, Department of Molecular Biology, University of Sheffield, UK
| | | | | | | |
Collapse
|
40
|
McGlynn P, Hunter C. Isolation and characterization of a putative transcription factor involved in the regulation of the Rhodobacter sphaeroides pucBA operon. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49880-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Garà E, Toledo JC, Gibert I, Barbé J. Nucleotide sequence of the methoxyneurosporene dehydrogenase gene from Rhodobacter sphaeroides: Comparison with other bacterial carotenoid dehydrogenases. FEMS Microbiol Lett 1992. [DOI: 10.1111/j.1574-6968.1992.tb05048.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
42
|
Jones MR, Fowler GJ, Gibson LC, Grief GG, Olsen JD, Crielaard W, Hunter CN. Mutants of Rhodobacter sphaeroides lacking one or more pigment-protein complexes and complementation with reaction-centre, LH1, and LH2 genes. Mol Microbiol 1992; 6:1173-84. [PMID: 1588816 DOI: 10.1111/j.1365-2958.1992.tb01556.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The photosynthetic apparatus of Rhodobacter sphaeroides is comprised of three types of pigment-protein complex: the photochemical reaction centre and its attendant LH1 and LH2 light-harvesting complexes. To augment existing deletion/insertion mutants in the genes coding for these complexes we have constructed two further mutants, one of which is a novel double mutant which is devoid of all three types of complex. We have also constructed vectors for the expression of either LH1, LH2 or reaction-centre genes. The resulting system allows each pigment-protein complex to be studied either as part of an intact photosystem or as the sole complex in the cell. In this way we have demonstrated that reaction centres can assemble independently of either light-harvesting complex in R. sphaeroides. In addition, the isolation of derivatives of the deletion/insertion mutants exhibiting spontaneous mutations in carotenoid biosynthesis provides an avenue for examining the role of carotenoids in the assembly of the photosynthetic apparatus. We show that the LH1 complex is assembled regardless of the carotenoid background, and that the type of carotenoid present modifies the absorbance of the LH1 bacteriochlorophylls.
Collapse
Affiliation(s)
- M R Jones
- Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Benning C, Somerville CR. Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J Bacteriol 1992; 174:2352-60. [PMID: 1551852 PMCID: PMC205858 DOI: 10.1128/jb.174.7.2352-2360.1992] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
All photosynthetic organisms are thought to contain the sulfolipid 6-sulfo-alpha-D-quinovosyl diacylglycerol. However, the pathway of sulfolipid biosynthesis has not been elucidated, and the functional or structural significance of this lipid is not known. Mutants of Rhodobacter sphaeroides deficient in sulfolipid accumulation were isolated by directly screening for altered sulfolipid content. The mutants had no apparent phenotype except for the sulfolipid deficiency. A gene, designated sqdA, which complemented one of the mutations was isolated and characterized. The putative sqdA gene product is a protein with a molecular mass of 33.6 kDa that has no sequence similarity to any enzyme of known function.
Collapse
Affiliation(s)
- C Benning
- MSU-DOE-Plant Research Laboratory, Michigan State University, East Lansing 48824-1312
| | | |
Collapse
|
44
|
Lee JK, Kaplan S. cis-acting regulatory elements involved in oxygen and light control of puc operon transcription in Rhodobacter sphaeroides. J Bacteriol 1992; 174:1146-57. [PMID: 1735709 PMCID: PMC206407 DOI: 10.1128/jb.174.4.1146-1157.1992] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcriptional expression of the puc operon in Rhodobacter sphaeroides is highly regulated by both oxygen and light. The approximately 600 bp of DNA upstream of the 5' ends of the two puc-specific transcripts encompasses two functionally separable cis-acting domains. The upstream regulatory region (URS) (-629 to -150) is responsible for enhanced transcriptional regulation of puc operon expression by oxygen and light. The more proximal upstream region (downstream regulatory region [DRS]), containing putative promoter(s), operator(s), and factor binding sites (-150 to -1), is involved in unenhanced transcriptional expression of the puc operon under aerobic and anaerobic conditions. Thus, the DRS shows normal derepression of puc operon expression when cells are shifted from aerobic to photosynthetic growth conditions in terms of percent change but does not show the potential range of expression that is only observed when elements of the URS are present. Because of these observations, we have made a distinction between anaerobic control (describing the shift) and oxygen control (describing the magnitude of derepression). Promoter(s) and/or activator function(s) of the puc operon is associated with a 35-bp DNA region between -92 and -57. Homologous sequences at -10 to -27 and -35 to -52 appear to involve additional regulatory elements: mutations at -12 (A to C) and -26 (G to A) result in partial derepression of puc operon expression under conditions of high aeration. Both point mutations require the upstream regulatory region (-629 to -150) to be present in cis for partial derepression of puc operon transcription under aerobic conditions. Immediately upstream of the promoter and/or activator region are overlapping consensus sequences for IHF (integratin host factor) and FNR (fumarate nitrate reductase) (-105 to -129). This region appears to be essential for enhanced expression of the puc operon. Thus, these two regulatory domains (URS and DRS) appear to involve approximately seven unique regulatory elements. In addition, the data reveal a direct interaction between the URS (-629 to -150) and the DRS (-150 to -1).
Collapse
Affiliation(s)
- J K Lee
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, P.O. Box 20708, Houston 77225
| | | |
Collapse
|
45
|
Lee JK, Kaplan S. Isolation and characterization of trans-acting mutations involved in oxygen regulation of puc operon transcription in Rhodobacter sphaeroides. J Bacteriol 1992; 174:1158-71. [PMID: 1735710 PMCID: PMC206408 DOI: 10.1128/jb.174.4.1158-1171.1992] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcriptional expression of the puc operon in Rhodobacter sphaeroides 2.4.1 is dependent on the partial pressure of oxygen. By using transcriptional fusions in trans of a promoterless fragment derived from the aminoglycoside-3'-phosphotransferase gene of Tn903 to puc operon-specific DNA containing a 629-bp 5' cis-acting regulatory region involved in the expression of puc-specific mRNA, we selected Kmr colonies under aerobic conditions. Two broad classes of mutations, trans and cis, which are involved in O2 control of puc operon transcription, fall into several distinct phenotypic classes. The cis-acting regulatory mutations are characterized in detail elsewhere (J.K. Lee and S. Kaplan, J. Bacteriol. 174:1146-1157, 1992). Two trans-acting regulatory mutants, CL1a and T1a, which are B800-850- Car- and apparently B875-, respectively, were shown to derepress puc operon transcription in the presence of oxygen. The mutation giving rise to CL1a has been shown to act at the puc operon-specific cis-acting upstream regulatory region (-629 to -92). On the other hand, the mutation giving rise to T1a, identifying a second trans-acting regulatory factor(s), appears to act at both the upstream (-629 to -92) and the downstream (-92 to -1) regulatory regions of the puc operon as well as at the level(s) of bacteriochlorophyll and carotenoid biosyntheses, as revealed by the presence of the B800-850 complex under chemoheterotrophic growth conditions. Both the B800-850- Car- phenotype and the trans-acting effect on puc operon expression in mutant CL1a were complemented with a 2.2-kb DNA fragment located within the carotenoid gene cluster. Mutant T1a was complemented with a 7.0-kb EcoRI restriction fragment containing the puhA gene and its flanking DNA (6.3 kb) to restore expression of the B875 complex and to suppress the trans-acting effect resulting in the loss of 02 control. Under chemoheterotrophic conditions, mutant T1a was highly unstable, segregating into a PS- mutant designated T4.
Collapse
Affiliation(s)
- J K Lee
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77225
| | | |
Collapse
|
46
|
Hunter CN, McGlynn P, Ashby MK, Burgess JG, Olsen JD. DNA sequencing and complementation/deletion analysis of the bchA-puf operon region of Rhodobacter sphaeroides: in vivo mapping of the oxygen-regulated puf promoter. Mol Microbiol 1991; 5:2649-61. [PMID: 1779756 DOI: 10.1111/j.1365-2958.1991.tb01974.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Within the photosynthetic gene cluster of Rhodobacter sphaeroides the genes encoding light-harvesting LHI and reaction-centre complexes are transcriptionally linked in the order pufBALMX. The region stretching 1.6 kb upstream of pufB has been examined by DNA sequencing and by complementation/deletion analysis. These studies demonstrate that three open reading frames are located upstream of pufB. One open reading frame, designated bchA, terminates just inside pufQ, which is located proximal to pufB. BchA contains a 37 bp region that functions as the oxygen-regulated promoter for pufQ, and probably for the puf operon as a whole. We also demonstrate that the protein encoded by pufQ appears to play a role in bacteriochlorophyll biosynthesis.
Collapse
Affiliation(s)
- C N Hunter
- Department of Molecular Biology, Krebs Institute, University of Sheffield, Western Bank, UK
| | | | | | | | | |
Collapse
|
47
|
Wu YQ, MacGregor BJ, Donohue TJ, Kaplan S, Yen B. Genetic and physical mapping of the Rhodobacter sphaeroides photosynthetic gene cluster from R-prime pWS2. Plasmid 1991; 25:163-76. [PMID: 1924554 DOI: 10.1016/0147-619x(91)90010-t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Plasmid pWS2 is an R68.45 chimera originally isolated as an R-prime which complemented the Rhodobacter sphaeroides bch-420 allele. Our experiments have shown that pWS2 is also able to complement a wide range of R. sphaeroides pigment and photosynthetic mutants employing nitrosoquanidine, transposon or insertion-generated mutations effecting puhA, puc, puf, cycA, bch, and crt genes. A combination of orthogonal-field-alternation gel electrophoresis, transverse alternating field gel electrophoresis, and conventional electrophoresis have been used to estimate the size of pWS2 at congruent to 168.3 +/- 3.5 kb. A restriction map of the congruent to 109 kb of R. sphaeroides insert DNA was generated by partial and complete restriction endonuclease digestion coupled with Southern hybridization analysis using either gene-specific or junction fragment probes. Genes encoding bacteriochlorophyll (Bchl)-binding proteins (pufBALMX, pucBA, and puhA), cytochrome c2 (cycA), and enzymes involved in Bchl (bch) and carotenoid (crt) biosynthesis have been shown to reside within a contiguous 53-kb region of the R. sphaeroides DNA present on pWS2. The puf operon lies at one end of the 53-kb segment, while the genes puhA, cycA, and pucBA, the latter two of which are located within congruent to 12.0 kb of each other, define the other end of this 53-kb region. The genetic and physical mapping data provided in this paper are discussed in terms of the similarities and differences in the organization of the photosynthetic gene cluster between R. sphaeroides and other photosynthetic bacteria as well as highlighting the use of pWS2 in studies of photosynthetic gene structure and function.
Collapse
Affiliation(s)
- Y Q Wu
- Shanghai Institute of Plant Physiology, Academia Sinica, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Coomber SA, Chaudhri M, Connor A, Britton G, Hunter CN. Localized transposon Tn5 mutagenesis of the photosynthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 1990; 4:977-89. [PMID: 2170816 DOI: 10.1111/j.1365-2958.1990.tb00670.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Four genes essential for bacteriochlorophyll biosynthesis were known to be encoded within a 45 kb region of the Rhodobacter sphaeroides genome, the boundaries of which are defined by puh and puf genes for reaction-centre and light-harvesting LH1 complexes. The cluster is represented by eight overlapping inserts cloned in the mobilizable vector pSUP202. We have used localized transposon Tn5 mutagenesis to characterize this cluster further; a total of 87 independent insertions were generated which identify nine genes for bacteriochlorophyll biosynthesis, six for carotenoid biosynthesis, and puhA encoding the reaction-centre H subunit. This work provides an essential framework for a detailed study of the structure and expression of genes for photosynthesis in this bacterium.
Collapse
Affiliation(s)
- S A Coomber
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, UK
| | | | | | | | | |
Collapse
|
49
|
Pille S, Chuat JC, Breton AM, Clément-Métral JD, Galibert F. Cloning, nucleotide sequence, and expression of the Rhodobacter sphaeroides Y thioredoxin gene. J Bacteriol 1990; 172:1556-61. [PMID: 2137818 PMCID: PMC208632 DOI: 10.1128/jb.172.3.1556-1561.1990] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Synthetic oligodeoxynucleotide probes based on the known amino acid sequence of Rhodobacter sphaeroides Y thioredoxin were used to identify, clone, and sequence the structural gene. The amino acid sequence derived from the DNA sequence of the R. sphaeroides gene was identical to the known amino acid sequence of R. sphaeroides thioredoxin. An NcoI site was created by directed mutagenesis at the beginning of the thioredoxin gene, inducing in the encoded protein the replacement of serine in position 2 by alanine. The 421-base-pair NcoI-PstI restriction fragment obtained was ligated in the pKK233-2 expression vector and the resulting hybrid plasmid was used to transform Escherichia coli strains lacking functional thioredoxin. Transformants that complemented mutations in the trxA gene were identified by increased colony size on rich medium, growth on minimal medium with methionine sulfoxide, and ability to support M13 growth and T7 replication; this latter phenotype implies correct interaction between R. sphaeroides thioredoxin and the product of T7 gene 5. The presence of R. sphaeroides thioredoxin was further confirmed by enzyme assay.
Collapse
Affiliation(s)
- S Pille
- Groupe de Conception Moléculaire, Laboratoire de Technologie Enzymatique, Compiègne, France
| | | | | | | | | |
Collapse
|
50
|
Complementation of a reaction center-deficient Rhodobacter sphaeroides pufLMX deletion strain in trans with pufBALM does not restore the photosynthesis-positive phenotype. J Bacteriol 1990; 172:977-85. [PMID: 2404961 PMCID: PMC208526 DOI: 10.1128/jb.172.2.977-985.1990] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The puf operon in Rhodobacter sphaeroides is composed of the genes for the photosynthetic reaction center L and M subunits, light-harvesting antenna complex I, and one other open reading frame termed pufX. Complementation of a reaction center-deficient, photosynthetically incompetent pufLMX deletion strain in trans with a fragment containing the entire puf operon, including pufX and an additional 1,100 base pairs of DNA downstream of pufX, restored the reaction center and the photosynthesis-positive phenotype. Complementation of the same strain with pufBALM restores the reaction center to the level seen with the entire puf operon but not the photosynthesis-positive phenotype. Northern (RNA) blot analysis revealed that oxygen regulated transcription was not blocked in the absence of pufX and the downstream region. Spectroscopic and protein analyses indicated that the pigment-binding protein complexes, including the reaction center, were expressed and showed normal absorption characteristics. A 20% reduction in the amount of light-harvesting antenna complex II and a corresponding increase in the amount of light-harvesting antenna complex I were observed in the deletion strain harboring the plasmid with the puf insert lacking the pufX gene and the downstream region compared with those complemented with the entire puf operon and an additional downstream 1,100 base pairs.
Collapse
|