1
|
Liu YC, Han LL, Chen TY, Lu YB, Feng H. Characterization of a Protease Hyper-Productive Mutant of Bacillus pumilus by Comparative Genomic and Transcriptomic Analysis. Curr Microbiol 2020; 77:3612-3622. [PMID: 32749522 DOI: 10.1007/s00284-020-02154-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
Bacillus pumilus BA06 has great potential for the production of alkaline proteases. To improve the protease yield, classical mutagenesis to combine the physical and chemical mutagens was performed to obtain a protease hyper-productive mutant SCU11. The full genome sequences of BA06 and SCU11 strains were assembled through DNA sequencing using the PacBio sequencing platform. By comparative genomics analysis, 147 SNPs and 15 InDels were found between these two genomes, which lead to alternation of coding sequence in 15 genes. Noticeable, the gene (kinA) encoding sporulation kinase A is interrupted by introducing a stop codon in its coding region in BA06. Interestedly, this gene is reversely corrected in SCU11. Furthermore, comparative transcriptome analysis revealed that kinA and two positive regulatory genes (DegU and Spo0A) were upregulated in transcription in SCU11. In terms of the transcriptional data, upregulation of a phosphorylation cascade starting with KinA may enhance Spo0A phosphorylation, and thus activate expression of the gene aprE (encoding major extracellular protease) through repression of AbrB (a repressor of aprE) and activation of SinI, an antagonist of SinR (a repressor of aprE). In addition, the other genes involved in various metabolic pathways, especially of membrane transport and sporulation, were altered in transcription between these two strains. Conclusively, our transcriptome data suggested that upregulation degU and spo0A, as well as kinA, may at least partially contribute to the high production of alkaline protease in SCU11.
Collapse
Affiliation(s)
- Yong-Cheng Liu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Lin-Li Han
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Tian-Yu Chen
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Yan-Bing Lu
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China
| | - Hong Feng
- College of Life Sciences, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, Sichuan University, Chengdu, 610064, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Interplay of CodY and ScoC in the Regulation of Major Extracellular Protease Genes of Bacillus subtilis. J Bacteriol 2016; 198:907-20. [PMID: 26728191 DOI: 10.1128/jb.00894-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/24/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED AprE and NprE are two major extracellular proteases in Bacillus subtilis whose expression is directly regulated by several pleiotropic transcriptional factors, including AbrB, DegU, ScoC, and SinR. In cells growing in a rich, complex medium, the aprE and nprE genes are strongly expressed only during the post-exponential growth phase; mutations in genes encoding the known regulators affect the level of post-exponential-phase gene expression but do not permit high-level expression during the exponential growth phase. Using DNA-binding assays and expression and mutational analyses, we have shown that the genes for both exoproteases are also under strong, direct, negative control by the global transcriptional regulator CodY. However, because CodY also represses scoC, little or no derepression of aprE and nprE was seen in a codY null mutant due to overexpression of scoC. Thus, CodY is also an indirect positive regulator of these genes by limiting the synthesis of a second repressor. In addition, in cells growing under conditions that activate CodY, a scoC null mutation had little effect on aprE or nprE expression; full effects of scoC or codY null mutations could be seen only in the absence of the other regulator. However, even the codY scoC double mutant did not show high levels of aprE and nprE gene expression during exponential growth phase in a rich, complex medium. Only a third mutation, in abrB, allowed such expression. Thus, three repressors can contribute to reducing exoprotease gene expression during growth in the presence of excess nutrients. IMPORTANCE The major Bacillus subtilis exoproteases, AprE and NprE, are important metabolic enzymes whose genes are subject to complex regulation by multiple transcription factors. We show here that expression of the aprE and nprE genes is also controlled, both directly and indirectly, by CodY, a global transcriptional regulator that responds to the intracellular pools of amino acids. Direct CodY-mediated repression explains a long-standing puzzle, that is, why exoproteases are not produced when cells are growing exponentially in a medium containing abundant quantities of proteins or their degradation products. Indirect regulation of aprE and nprE through CodY-mediated repression of the scoC gene, encoding another pleiotropic repressor, serves to maintain a significant level of repression of exoprotease genes when CodY loses activity.
Collapse
|
3
|
Regulation of an intracellular subtilisin protease activity by a short propeptide sequence through an original combined dual mechanism. Proc Natl Acad Sci U S A 2011; 108:3536-41. [PMID: 21307308 DOI: 10.1073/pnas.1014229108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A distinct class of the biologically important subtilisin family of serine proteases functions exclusively within the cell and forms a major component of the bacilli degradome. However, the mode and mechanism of posttranslational regulation of intracellular protease activity are unknown. Here we describe the role played by a short N-terminal extension prosequence novel amongst the subtilisins that regulates intracellular subtilisin protease (ISP) activity through two distinct modes: active site blocking and catalytic triad rearrangement. The full-length proenzyme (proISP) is inactive until specific proteolytic processing removes the first 18 amino acids that comprise the N-terminal extension, with processing appearing to be performed by ISP itself. A synthetic peptide corresponding to the N-terminal extension behaves as a mixed noncompetitive inhibitor of active ISP with a K(i) of 1 μM. The structure of the processed form has been determined at 2.6 Å resolution and compared with that of the full-length protein, in which the N-terminal extension binds back over the active site. Unique to ISP, a conserved proline introduces a backbone kink that shifts the scissile bond beyond reach of the catalytic serine and in addition the catalytic triad is disrupted. In the processed form, access to the active site is unblocked by removal of the N-terminal extension and the catalytic triad rearranges to a functional conformation. These studies provide a new molecular insight concerning the mechanisms by which subtilisins and protease activity as a whole, especially within the confines of a cell, can be regulated.
Collapse
|
4
|
Vévodová J, Gamble M, Künze G, Ariza A, Dodson E, Jones DD, Wilson KS. Crystal structure of an intracellular subtilisin reveals novel structural features unique to this subtilisin family. Structure 2010; 18:744-55. [PMID: 20541512 DOI: 10.1016/j.str.2010.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/11/2010] [Accepted: 03/26/2010] [Indexed: 10/19/2022]
Abstract
The intracellular subtilisin proteases (ISPs) are the only known members of the important and ubiquitous subtilisin family that function exclusively within the cell, constituting a major component of the degradome in many Gram-positive bacteria. The first ISP structure reported herein at a spacing of 1.56 A reveals features unique among subtilisins that has enabled potential functional and physiological roles to be assigned to sequence elements exclusive to the ISPs. Unlike all other subtilisins, ISP from B. clausii is dimeric, with residues from the C terminus making a major contribution to the dimer interface by crossing over to contact the partner subunit. A short N-terminal extension binds back across the active site to provide a potential novel regulatory mechanism of intrinsic proteolytic activity: a proline residue conserved throughout the ISPs introduces a kink in the polypeptide backbone that lifts the target peptide bond out of reach of the catalytic residues.
Collapse
Affiliation(s)
- Jitka Vévodová
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
Longo MA, Novella IS, Garcia LA, Diaz M. Comparison of Bacillus subtilis and Serratia marcescens as protease producers under different operating conditions. J Biosci Bioeng 2005; 88:35-40. [PMID: 16232570 DOI: 10.1016/s1389-1723(99)80172-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/1998] [Accepted: 05/22/1999] [Indexed: 11/15/2022]
Abstract
Two microorganisms, Bacillus subtilis and Serratia marcescens, have been selected in order to assess their ability to produce proteases. First, their performances have been studied using three media providing different levels of the main nutrients (complex, semi-defined and defined). The optimal absolute production was obtained in the complex media, while maximum protease activity per cell weight appeared in defined medium for Bacillus and in semi-defined and complex media for Serratia. Then, the effects of applying different environmental conditions to the cells were studied. The two microorganisms were immobilised in calcium alginate beads, protease production by these systems was assessed in the previously tested culture media, and the performances in free and immobilized operating conditions were compared. The richest medium seemed to be the best one in terms of absolute protease production, although the use of semi-defined or defined media could be considered more appropriate, in order to minimise growth of cells leaked from the support, and therefore downstream processing cost. Productivity was slightly higher in free cultures than in immobilized cultures, and retention of enzyme within the alginate beads was detected in the latter, indicating the occurrence of diffusional limitations. In all the cases studied, Serratia marcescens appeared as a better protease producer than B. subtilis, in terms of absolute production. This fact could be related to the different cell growth levels observed for the two microorganisms.
Collapse
Affiliation(s)
- M A Longo
- Departamento de Ingeniería Química, Facultad de Química, c/ Julian Claveria s/n, 33006 Oviedo, Spain
| | | | | | | |
Collapse
|
6
|
Lee AY, Goo Park S, Kho CW, Young Park S, Cho S, Lee SC, Lee DH, Myung PK, Park BC. Identification of the degradome of Isp-1, a major intracellular serine protease of Bacillus subtilis, by two-dimensional gel electrophoresis and matrix- assisted laser desorption/ionization-time of flight analysis. Proteomics 2005; 4:3437-45. [PMID: 15529410 DOI: 10.1002/pmic.200400997] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Intracellular serine protease-1 (Isp-1) is a major intracellular serine protease of Bacillus subtilis, whose functions still remain largely unknown. Furthermore, physiological substrates are yet to be determined. To identify Isp-1 substrates, we digested extract obtained from an Isp-1 deficient Bacillus mutant with purified Isp-1 and examined eliminated or decreased spots by two-dimensional gel and matrix-assisted laser desorption/ionization-time of flight analyses. Proteins degraded by Isp-1, termed the Isp-1 degradome, are involved in a variety of cellular functions such as DNA packing, genetic competence, and protein secretion. From the degradome we selected ClpC and EF-Tu as putative Isp-1 substrates and studied their in vitro degradation. ClpC and EF-Tu contain putative cleavage sites for Isp-1. N-terminal sequencing of in vitro proteolytic fragments of ClpC and EF-Tu revealed that these sites are indeed recognized and cleaved by Isp-1. Moreover, the cellular levels of ClpC and EF-Tu were dramatically reduced at the late stationary phase, where the expression level of Isp-1 was greatly increased. These results suggest that the regulated proteolysis of ClpC by Isp-1 plays an important role in the stationary phase adaptive response. This degradomic approach could provide a powerful tool for finding physiological substrates of many proteolytic enzymes whose functions remain to be determined.
Collapse
Affiliation(s)
- Ah Young Lee
- Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Nishiguchi M, Honda K, Amikura R, Nakamura K, Yamane K. Structural requirements of Bacillus subtilis small cytoplasmic RNA for cell growth, sporulation, and extracellular enzyme production. J Bacteriol 1994; 176:157-65. [PMID: 7506707 PMCID: PMC205027 DOI: 10.1128/jb.176.1.157-165.1994] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bacillus subtilis small cytoplasmic RNA (scRNA; 271 nucleotides) is a member of the signal recognition particle (SRP) RNA family, which has evolutionarily conserved primary and secondary structures. The scRNA consists of three domains corresponding to domains I, II, and IV of human SRP 7S RNA. To identify the structural determinants required for its function, we constructed mutant scRNAs in which individual domains or conserved nucleotides were deleted, and their importance was assayed in vivo. The results demonstrated that domain IV of scRNA is necessary to maintain cell viability. On the other hand, domains I and II were not essential for vegetative growth but were preferentially required for the RNA to achieve its active structure, and assembled ribonucleoprotein between Ffh and scRNA is required for sporulation to proceed. This view is highly consistent with the fact that the presence of domains I and II is restricted to sporeforming B. subtilis scRNA among eubacterial SRP RNA-like RNAs.
Collapse
Affiliation(s)
- M Nishiguchi
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
8
|
Shiga Y, Yamagata H, Udaka S. Characterization of the gene encoding an intracellular proteinase inhibitor of Bacillus subtilis and its role in regulation of the major intracellular proteinase. J Bacteriol 1993; 175:7130-7. [PMID: 8226659 PMCID: PMC206853 DOI: 10.1128/jb.175.22.7130-7137.1993] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene (ipi) for an intracellular proteinase inhibitor (BsuPI) from Bacillus subtilis was cloned and found to encode a polypeptide consisting of 119 amino acids with no cysteine residues. The deduced amino acid sequence contained the N-terminal amino acid sequence of the inhibitor, which was chemically determined previously, and showed no significant homology to any other proteinase inhibitors. Analysis of the transcription initiation site and mRNA showed that the ipi gene formed an operon with an upstream open reading frame with an unknown function. The transcriptional control of ipi gene expression was demonstrated by Northern (RNA) blot analysis, and the time course of transcriptional enhancement roughly corresponded to the results observed at the protein level. Strains in which the ipi gene was disrupted or in which BsuPI was overexpressed constitutively sporulated normally. Analysis of the time course of production of the intracellular proteinase and proteinase inhibitor in these strains suggested that BsuPI directly regulated the major intracellular proteinase (ISP-1) activity in vivo.
Collapse
Affiliation(s)
- Y Shiga
- Department of Applied Biological Sciences, Faculty of Agriculture, Nagoya University, Japan
| | | | | |
Collapse
|
9
|
Kučerová H, Moravcová J, Váchová L, Ludvík J, Chaloupka J. Netropsin suppresses the rise of activity of an intracellular proteolytic system in sporulatingBacillus megaterium. Curr Microbiol 1993. [DOI: 10.1007/bf01575919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Tanaka T, Kawata M, Mukai K. Altered phosphorylation of Bacillus subtilis DegU caused by single amino acid changes in DegS. J Bacteriol 1991; 173:5507-15. [PMID: 1909319 PMCID: PMC208264 DOI: 10.1128/jb.173.17.5507-5515.1991] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Bacillus subtilis sacU locus consists of the degS and degU genes, which play a major role in controlling the production of degradative enzymes including extracellular proteases. DegS has been shown to be autophosphorylated and to transfer the phosphoryl group to DegU. In this study, we partially purified the DegS proteins which carry amino acid changes resulting from various mutations and examined the phosphorylation reaction. The mutations used were degS42, causing a reduction in exoprotease production, and degS100(Hy) and degS200(Hy), causing overproduction of the enzymes. The following results were obtained. The DegS protein derived from degS42 was deficient in both autophosphorylation and subsequent phosphate transfer to DegU. Compared with wild-type DegS, the DegS proteins derived from the overproduction mutations, degS100(Hy) and degS200(Hy), were less active in the autophosphorylation and phosphorylation of DegU. However, the DegU phosphates produced by the mutant DegS proteins were more stable than that produced by the wild-type DegS. These results suggest that phosphorylation is tightly linked to exoprotease production and that the prolonged retention of the phosphoryl moiety on DegU activates the genes for the extracellular proteases. It was also shown that the rate of dephosphorylation of DegU-phosphate was increased as the amount of DegS was increased. All of these results suggest that DegS is involved in the dephosphorylation of DegU-phosphate.
Collapse
Affiliation(s)
- T Tanaka
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| | | | | |
Collapse
|
11
|
Affiliation(s)
- X S He
- Department of Biochemistry and Biophysics University of California, Davis 95616
| | | | | |
Collapse
|
12
|
Msadek T, Kunst F, Klier A, Rapoport G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J Bacteriol 1991; 173:2366-77. [PMID: 1901055 PMCID: PMC207789 DOI: 10.1128/jb.173.7.2366-2377.1991] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Production of a class of both secreted and intracellular degradative enzymes in Bacillus subtilis is regulated at the transcriptional level by a signal transduction pathway which includes the DegS-DegU two-component system and at least two additional regulatory genes, degQ and degR, encoding polypeptides of 46 and 60 amino acids, respectively. Expression of degQ was shown to be controlled by DegS-DegU. This expression is decreased in the presence of glucose and increased under any of the following conditions: growth with poor carbon sources, amino acid deprivation, phosphate starvation, and growth in the presence of decoyinine, a specific inhibitor of GMP synthetase. In addition, expression of degQ is shown to be positively regulated by the ComP-ComA two-component system. Separate targets for regulation of degQ gene expression by DegS-DegU and ComP-ComA were located by deletion analysis between positions -393 and -186 and between positions -78 and -40, respectively. Regulation of degQ expression by amino acid deprivation was shown to be dependent upon ComA. Regulation by phosphate starvation, catabolite repression, and decoyinine was independent of the two-component systems and shown to involve sequences downstream from position -78. The ComP-ComA and DegS-DegU two-component systems seem to be closely related, sharing several target genes in common, such as late competence genes, as well as the degQ regulatory gene. Sequence analysis of the degQ region revealed the beginning of an open reading frame directly downstream from degQ. Disruption of this gene, designated comQ, suggests that it also controls expression of degQ and is required for development of genetic competence.
Collapse
Affiliation(s)
- T Msadek
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique URA 1300, Institute Pasteur, Paris, France
| | | | | | | |
Collapse
|
13
|
Moravcová J, Chaloupka J. Characteristics of intracellular proteolytic activities of Bacillus megaterium. Folia Microbiol (Praha) 1990; 35:402-12. [PMID: 2125291 DOI: 10.1007/bf02821409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intracellular proteolytic activities of B. megaterium KM occur soluble in the cytoplasm and periplasm and insoluble in the membrane. Two proteolytic enzymes were found in the cytoplasmic fraction by gel filtration on Sephadex G 150 and by polyacrylamide gel electrophoresis. The first enzyme called CI was stable, had a relative molecular mass of Mr = 105,000 (M = 105 kg/mol) and was inhibited by EDTA and PMSF, whereas the second, designated CII, was labile and had a relative molecular mass of Mr = 46,000 (M = 46 kg/mol). Because of its lability it could not be characterized in detail. In the "periplasm" only a single proteolytic enzyme P (Mr = 28,000; M = 28 kg/mol) inhibited by EDTA could be demonstrated. The extracellular enzyme exhibited similar properties. The membrane proteolytic activity was sensitive to PMSF and EDTA. The membrane enzymes have not yet been solubilized. In cells of the mutant KM 12 that does not produce the extracellular proteinase, only one type of proteinase, in all its properties identical with the cytoplasmic proteinase CI, could be demonstrated.
Collapse
Affiliation(s)
- J Moravcová
- Institute of Microbiology, Czechoslovak Academy of Sciences, Prague
| | | |
Collapse
|
14
|
Graves L, Switzer R. Aspartokinase II from Bacillus subtilis is degraded in response to nutrient limitation. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Msadek T, Kunst F, Henner D, Klier A, Rapoport G, Dedonder R. Signal transduction pathway controlling synthesis of a class of degradative enzymes in Bacillus subtilis: expression of the regulatory genes and analysis of mutations in degS and degU. J Bacteriol 1990; 172:824-34. [PMID: 1688843 PMCID: PMC208512 DOI: 10.1128/jb.172.2.824-834.1990] [Citation(s) in RCA: 214] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The rates of synthesis of a class of both secreted and intracellular degradative enzymes in Bacillus subtilis are controlled by a signal transduction pathway defined by at least four regulatory genes: degS, degU, degQ (formerly sacQ), and degR (formerly prtR). The DegS-DegU proteins show amino acid similarities with two-component procaryotic modulator-effector pairs such as NtrB-NtrC, CheA-CheY, and EnvZ-OmpR. By analogy with these systems, it is possible that DegS is a protein kinase which could catalyze the transfer of a phosphoryl moiety to DegU, which acts as a positive regulator. DegR and DegQ correspond to polypeptides of 60 and 46 amino acids, respectively, which also activate the synthesis of degradative enzymes. We show that the degS and degU genes are organized in an operon. The putative sigma A promoter of the operon was mapped upstream from degS. Mutations in degS and degU were characterized at the molecular level, and their effects on transformability and cell motility were studied. The expression of degQ was shown to be subject both to catabolite repression and DegS-DegU-mediated control, allowing an increase in the rate of synthesis of degQ under conditions of nitrogen starvation. These results are consistent with the hypothesis that this control system responds to an environmental signal such as limitations of nitrogen, carbon, or phosphate sources.
Collapse
Affiliation(s)
- T Msadek
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique URA 1300, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
16
|
Sheehan SM, Switzer RL. Intracellular serine protease 1 of Bacillus subtilis is formed in vivo as an unprocessed, active protease in stationary cells. J Bacteriol 1990; 172:473-6. [PMID: 2104610 PMCID: PMC208455 DOI: 10.1128/jb.172.1.473-476.1990] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Western immunoblots and assays of Bacillus subtilis extracts showed that intracellular serine protease 1 is produced in a form larger than previously reported, appears not to have undergone N-terminal processing, and is active in the presence or absence of calcium. No evidence for an inactive precursor form of the protease was found.
Collapse
Affiliation(s)
- S M Sheehan
- Department of Biochemistry, University of Illinois, Urbana 61801
| | | |
Collapse
|
17
|
Takagi M, Takada H, Imanaka T. Nucleotide sequence and cloning in Bacillus subtilis of the Bacillus stearothermophilus pleiotropic regulatory gene degT. J Bacteriol 1990; 172:411-8. [PMID: 2104607 PMCID: PMC208446 DOI: 10.1128/jb.172.1.411-418.1990] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The regulatory gene (degT) from Bacillus stearothermophilus NCA1503 which enhanced production of extracellular alkaline protease (Apr) was cloned in Bacillus subtilis with pTB53 as a vector. When B. subtilis MT-2 (Npr- [deficiency of neutral protease] Apr+) was transformed with the recombinant plasmid, pDT145, the plasmid carrier produced about three times more alkaline protease than did the wild-type strain. In contrast, when B. subtilis DB104 (Npr- Apr-) was used as a host, the transformant with pDT145 could not exhibit any protease activity. After construction of the deletion plasmids, DNA sequencing was done. A large open reading frame was found, and nucleotide sequence analysis showed that the degT gene was composed of 1,116 bases (372 amino acid residues, molecular weight of 41,244). A Shine-Dalgarno sequence was found nine bases upstream from the open reading frame. A B. subtilis strain carrying degT showed the following pleiotropic phenomena: (i) enhancement of production of extracellular enzymes such as alkaline protease and levansucrase, (ii) repression of autolysin activity, (iii) decrease of transformation efficiency for B. subtilis (competent cell procedure), (iv) altered control of sporulation, (v) loss of flagella, and (vi) abnormal cell division. When B. stearothermophilus SIC1 was transformed with the recombinant plasmid carrying degT, the transformants exhibited abnormal cell division. These phenomena are similar to those of the phenotypes of degSU(Hy) (hyperproduction), degQ(Hy), and degR mutants of B. subtilis. However, the amino acid sequence of the degT product (DegT) is different from those of the reported gene products. Furthermore, DegT includes a hydrophobic core region in the N-terminal portion (amino acid numbers 50 to 160), a consensus sequence for a DNA binding region (amino acid numbers 160 to 179), and a region homologous to transcription activator proteins (amino acid numbers 351 to 366). We discuss the possibility that the membrane protein DegT functions as a sensor protein and transfers the signal of environmental stimuli to the regulatory region of target genes to activate or repress transcription of the genes.
Collapse
Affiliation(s)
- M Takagi
- Department of Fermentation Technology, Faculty of Engineering, Osaka University, Japan
| | | | | |
Collapse
|
18
|
Henner DJ, Yang M, Ferrari E. Localization of Bacillus subtilis sacU(Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J Bacteriol 1988; 170:5102-9. [PMID: 3141378 PMCID: PMC211577 DOI: 10.1128/jb.170.11.5102-5109.1988] [Citation(s) in RCA: 122] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mutations in the sacU region have a pleiotropic phenotype. Certain mutations designated sacU(Hy), for example, express degradative enzymes at high levels, are able to sporulate in the presence of glucose, have severely reduced transformation efficiencies, and are nonmotile. We isolated and sequenced the sacU gene region of Bacillus subtilis. Two open reading frames were found in the sacU region, and sacU(Hy) mutations were localized to both of these open reading frames. The two open reading frames have similarities to two widespread families of proteins that mediate responses to environmental stimuli.
Collapse
Affiliation(s)
- D J Henner
- Department of Cell Genetics, Genentech, Inc., South San Francisco, California
| | | | | |
Collapse
|
19
|
Kunst F, Debarbouille M, Msadek T, Young M, Mauel C, Karamata D, Klier A, Rapoport G, Dedonder R. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J Bacteriol 1988; 170:5093-101. [PMID: 3141377 PMCID: PMC211576 DOI: 10.1128/jb.170.11.5093-5101.1988] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The sacU locus has been cloned by using two independent strategies, and the presence of two open reading frames was deduced from the nucleotide sequence. Open reading frame 1 encodes a 45,000-dalton polypeptide that is similar to the products of the Salmonella typhimurium cheA and Escherichia coli cpxA genes, which act as sensory transducers. Open reading frame 2 encodes a 26,000-dalton polypeptide that is similar to a family of transcriptional activators, including the products of the Bacillus subtilis spoOA and spoOF and the E. coli ompR and dye genes. These similarities suggest that the products of the B. subtilis sacU locus form a sensor-transducer couple, which functions to relay information about specific environmental changes to the transcription apparatus.
Collapse
Affiliation(s)
- F Kunst
- Unité de Biochimie Microbienne, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|