1
|
Abstract
Bacillus subtilis is the best described member of the Gram positive bacteria. It is a typical rod shaped bacterium and grows by elongation in its long axis, before dividing at mid cell to generate two similar daughter cells. B. subtilis is a particularly interesting model for cell cycle studies because it also carries out a modified, asymmetrical division during endospore formation, which can be simply induced by starvation. Cell growth occurs strictly by elongation of the rod, which maintains a constant diameter at all growth rates. This process involves expansion of the cell wall, requiring intercalation of new peptidoglycan and teichoic acid material, as well as controlled hydrolysis of existing wall material. Actin-like MreB proteins are the key spatial regulators that orchestrate the plethora of enzymes needed for cell elongation, many of which are thought to assemble into functional complexes called elongasomes. Cell division requires a switch in the orientation of cell wall synthesis and is organised by a tubulin-like protein FtsZ. FtsZ forms a ring-like structure at the site of impending division, which is specified by a range of mainly negative regulators. There it recruits a set of dedicated division proteins to form a structure called the divisome, which brings about the process of division. During sporulation, both the positioning and fine structure of the division septum are altered, and again, several dedicated proteins that contribute specifically to this process have been identified. This chapter summarises our current understanding of elongation and division in B. subtilis, with particular emphasis on the cytoskeletal proteins MreB and FtsZ, and highlights where the major gaps in our understanding remain.
Collapse
|
2
|
Zou Y, Li Y, Ekanayake SB, Dillon JAR. An Escherichia coli expression model reveals the species-specific function of FtsA from Neisseria gonorrhoeae in cell division. FEMS Microbiol Lett 2017; 364:3739240. [PMID: 28431102 DOI: 10.1093/femsle/fnx078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/17/2017] [Indexed: 11/14/2022] Open
Abstract
Escherichia coli (Ec) has been used to study the function of cell division proteins from different microorganisms, especially when genetic tools are limited for studying these proteins in their native hosts. The expression of ftsA from Neisseria gonorrhoeae (Ng) disrupted cell division in E. coli resulting in a significant increase in cell length. In some cells, FtsANg localised to the division site and the poles of E. coli cells, but the majority of cells showed no specifical localisation. FtsANg did not complement an E. coli ftsA mutant strain. Bacterial two-hybrid and GST pull-down assays indicated that FtsANg interacted with FtsNEc, but no other cell division proteins from E. coli. This interaction was mediated through the 2A and 2B subdomains of FtsANg. This evidence suggests that the function of FtsANg is species specific.
Collapse
Affiliation(s)
- Yinan Zou
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, SK S7N 5E5, Canada
| | - Yan Li
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, SK S7N 5E5, Canada.,Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Sanjaya B Ekanayake
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, SK S7N 5E5, Canada
| | - Jo-Anne R Dillon
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, SK S7N 5E5, Canada.,Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, SK S7N 5E5, Canada.,Department of Biology, College of Arts and Science, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
3
|
Donovan C, Bramkamp M. Cell division in Corynebacterineae. Front Microbiol 2014; 5:132. [PMID: 24782835 PMCID: PMC3989709 DOI: 10.3389/fmicb.2014.00132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/14/2014] [Indexed: 12/02/2022] Open
Abstract
Bacterial cells must coordinate a number of events during the cell cycle. Spatio-temporal regulation of bacterial cytokinesis is indispensable for the production of viable, genetically identical offspring. In many rod-shaped bacteria, precise midcell assembly of the division machinery relies on inhibitory systems such as Min and Noc. In rod-shaped Actinobacteria, for example Corynebacterium glutamicum and Mycobacterium tuberculosis, the divisome assembles in the proximity of the midcell region, however more spatial flexibility is observed compared to Escherichia coli and Bacillus subtilis. Actinobacteria represent a group of bacteria that spatially regulate cytokinesis in the absence of recognizable Min and Noc homologs. The key cell division steps in E. coli and B. subtilis have been subject to intensive study and are well-understood. In comparison, only a minimal set of positive and negative regulators of cytokinesis are known in Actinobacteria. Nonetheless, the timing of cytokinesis and the placement of the division septum is coordinated with growth as well as initiation of chromosome replication and segregation. We summarize here the current knowledge on cytokinesis and division site selection in the Actinobacteria suborder Corynebacterineae.
Collapse
Affiliation(s)
- Catriona Donovan
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Marc Bramkamp
- Department of Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Haeusser DP, Hoashi M, Weaver A, Brown N, Pan J, Sawitzke JA, Thomason LC, Court DL, Margolin W. The Kil peptide of bacteriophage λ blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genet 2014; 10:e1004217. [PMID: 24651041 PMCID: PMC3961180 DOI: 10.1371/journal.pgen.1004217] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli cells by rapid inhibition of FtsZ ring formation. Mutant alleles of ftsZ resistant to the Kil protein map to the FtsZ polymer subunit interface, stabilize FtsZ ring assembly, and confer increased resistance to endogenous FtsZ inhibitors, consistent with Kil inhibiting FtsZ assembly. Cells with the normally essential cell division gene zipA deleted (in a modified background) display normal FtsZ rings after kil expression, suggesting that ZipA is required for Kil-mediated inhibition of FtsZ rings in vivo. In support of this model, point mutations in the C-terminal FtsZ-interaction domain of ZipA abrogate Kil activity without discernibly altering FtsZ-ZipA interactions. An affinity-tagged-Kil derivative interacts with both FtsZ and ZipA, and inhibits sedimentation of FtsZ filament bundles in vitro. Together, these data inspire a model in which Kil interacts with FtsZ and ZipA in the cell to prevent FtsZ assembly into a coherent, division-competent ring structure. Phage growth assays show that kil+ phage lyse ∼30% later than kil mutant phage, suggesting that Kil delays lysis, perhaps via its interaction with FtsZ and ZipA.
Collapse
Affiliation(s)
- Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Marina Hoashi
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Anna Weaver
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Nathan Brown
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James Pan
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James A. Sawitzke
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Lynn C. Thomason
- Frederick National Laboratory for Cancer Research, Leidos Biomedical, Inc., Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Donald L. Court
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|
5
|
Natale P, Pazos M, Vicente M. TheEscherichia colidivisome: born to divide. Environ Microbiol 2013; 15:3169-82. [DOI: 10.1111/1462-2920.12227] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Paolo Natale
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Manuel Pazos
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| | - Miguel Vicente
- Centro Nacional de Biotecnología (CNB-CSIC); C/Darwin n° 3 E-28049 Madrid Spain
| |
Collapse
|
6
|
Buske PJ, Levin PA. Extreme C terminus of bacterial cytoskeletal protein FtsZ plays fundamental role in assembly independent of modulatory proteins. J Biol Chem 2012; 287:10945-57. [PMID: 22298780 DOI: 10.1074/jbc.m111.330324] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bacterial cell division typically requires assembly of the cytoskeletal protein FtsZ into a ring (Z-ring) at the nascent division site that serves as a foundation for assembly of the division apparatus. High resolution imaging suggests that the Z-ring consists of short, single-stranded polymers held together by lateral interactions. Several proteins implicated in stabilizing the Z-ring enhance lateral interactions between FtsZ polymers in vitro. Here we report that residues at the C terminus of Bacillus subtilis FtsZ (C-terminal variable region (CTV)) are both necessary and sufficient for stimulating lateral interactions in vitro in the absence of modulatory proteins. Swapping the 6-residue CTV from B. subtilis FtsZ with the 4-residue CTV from Escherichia coli FtsZ completely abolished lateral interactions between chimeric B. subtilis FtsZ polymers. The E. coli FtsZ chimera readily formed higher order structures normally seen only in the presence of molecular crowding agents. CTV-mediated lateral interactions are important for the integrity of the Z-ring because B. subtilis cells expressing the B. subtilis FtsZ chimera had a low frequency of FtsZ ring formation and a high degree of filamentation relative to wild-type cells. Site-directed mutagenesis of the B. subtilis CTV suggests that electrostatic forces are an important determinant of lateral interaction potential.
Collapse
Affiliation(s)
- Paul J Buske
- Department of Biology, Washington University, Saint Louis, Missouri 63130, USA
| | | |
Collapse
|
7
|
Shimotohno KW, Kawamura F, Natori Y, Nanamiya H, Magae J, Ogata H, Endo T, Suzuki T, Yamaki H. Inhibition of Septation in Bacillus subtilis by a Peptide Antibiotic, Edeine B1. Biol Pharm Bull 2010; 33:568-71. [DOI: 10.1248/bpb.33.568] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Fujio Kawamura
- Department of Life Science, College of Science, Rikkyo University
| | - Yousuke Natori
- Department of Life Science, College of Science, Rikkyo University
| | - Hideaki Nanamiya
- Department of Life Science, College of Science, Rikkyo University
| | - Junji Magae
- Department of Biotechnology, Institute of Research and Innovation
| | | | | | | | - Hiroshi Yamaki
- Faculty of Pharmacy, Keio University
- Department of Biotechnology, Institute of Research and Innovation
| |
Collapse
|
8
|
Michie KA, Monahan LG, Beech PL, Harry EJ. Trapping of a spiral-like intermediate of the bacterial cytokinetic protein FtsZ. J Bacteriol 2006; 188:1680-90. [PMID: 16484179 PMCID: PMC1426551 DOI: 10.1128/jb.188.5.1680-1690.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The earliest stage in bacterial cell division is the formation of a ring, composed of the tubulin-like protein FtsZ, at the division site. Tight spatial and temporal regulation of Z-ring formation is required to ensure that division occurs precisely at midcell between two replicated chromosomes. However, the mechanism of Z-ring formation and its regulation in vivo remain unresolved. Here we identify the defect of an interesting temperature-sensitive ftsZ mutant (ts1) of Bacillus subtilis. At the nonpermissive temperature, the mutant protein, FtsZ(Ts1), assembles into spiral-like structures between chromosomes. When shifted back down to the permissive temperature, functional Z rings form and division resumes. Our observations support a model in which Z-ring formation at the division site arises from reorganization of a long cytoskeletal spiral form of FtsZ and suggest that the FtsZ(Ts1) protein is captured as a shorter spiral-forming intermediate that is unable to complete this reorganization step. The ts1 mutant is likely to be very valuable in revealing how FtsZ assembles into a ring and how this occurs precisely at the division site.
Collapse
Affiliation(s)
- Katherine A Michie
- Institute for the Biotechnology of Infectious Diseases, University of Technology, Sydney, NSW 2007, Australia
| | | | | | | |
Collapse
|
9
|
Honrubia-Marcos MP, Ramos A, Gil JA. Overexpression of the ftsZ gene from Corynebacterium glutamicum (Brevibacterium lactofermentum) in Escherichia coli. Can J Microbiol 2005; 51:85-9. [PMID: 15782238 DOI: 10.1139/w04-105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our goal in this work was to overexpress the essential cell division FtsZ protein from Corynebacterium glutamicum (Brevibacterium lactofermentum) (FtsZCG) in Escherichia coli to produce anti-FtsZCG polyclonal antibodies. Previous results from our laboratory showed that ftsZCG was not expressed in E. coli in a sufficient amount to purify FtsZCG. However, when ftsZCG (without upstream sequences) was transcriptionally fused to the T7 promoter, different truncated FtsZCG proteins (28-32 kDa) were overexpressed in E. coli, and in all cases, stop codons were created because of DNA deletions or rearrangements. Nevertheless, we were able to overexpress and purify an N-terminally hexa-His-tagged FtsZCG from uninduced E. coli cells carrying a pET-28a(+) derivative, yielding about 5 mg of 98% pure protein per 100-mL culture.
Collapse
Affiliation(s)
- María Pilar Honrubia-Marcos
- Area de Microbiología, Departamento de Ecología, Genética y Microbiología, Facultad de Biología, Universidad de León, Spain
| | | | | |
Collapse
|
10
|
Feucht A, Errington J. ftsZ mutations affecting cell division frequency, placement and morphology in Bacillus subtilis. Microbiology (Reading) 2005; 151:2053-2064. [PMID: 15942012 DOI: 10.1099/mic.0.27899-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key event in cytokinesis in bacteria is the assembly of the essential division protein FtsZ into ring-like structures at the nascent division site. FtsZ is the prokaryotic homologue of tubulin, and is found in nearly all bacteria. In vitro, FtsZ polymerizes in the presence of GTP to form higher-ordered polymers. FtsZ consists of two domains, with the GTP-binding site located in the N-terminal domain. The less-conserved C-terminal domain contains residues important for GTP hydrolysis, but its overall function is still unclear. This paper reports the development of a simple strategy to generate mutations in the essential division gene ftsZ. Nine novel and viable ftsZ mutants of Bacillus subtilis are described. Eight of the mutations would affect the C-terminus of FtsZ. The collection of mutants exhibits a range of morphological phenotypes, ranging from normal to highly filamentous cells; some produce minicells, or divide in a twisted configuration; one mutation has a temperature-sensitive effect specifically impairing sporulation. The sites of the amino acid changes generated by the mutations could be informative about FtsZ function and its protein–protein interactions.
Collapse
Affiliation(s)
- Andrea Feucht
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Jeffery Errington
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
11
|
Zhao Y, Hammond RW, Lee IM, Roe BA, Lin S, Davis RE. Cell division gene cluster in Spiroplasma kunkelii: functional characterization of ftsZ and the first report of ftsA in mollicutes. DNA Cell Biol 2004; 23:127-34. [PMID: 15000753 DOI: 10.1089/104454904322759948] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spiroplasma kunkelii is a helical, wall-less bacterium that causes corn stunt disease. In adaptation to its phloem-inhabiting parasitic lifestyle, the bacterium has undergone a reductive evolutionary process and, as a result, possesses a compact genome with a gene set approaching the minimal complement necessary for multiplication and pathogenesis. We cloned a much-reduced cell division gene cluster from S. kunkelii and functionally characterized the key division gene, ftsZ(sk). The 1236-bp open reading frame of ftsZ(sk) is capable of encoding a protein with a calculated molecular mass of 44.1 kDa. Protein sequence alignment revealed that FtsZ(sk) is remarkably similar to FtsZ proteins from other eubacteria, and possesses the conserved GTP-binding and hydrolyzing motifs. We demonstrated that overexpression of ftsZ(sk) in Escherichia coli causes transgression of the host cell division, resulting in a filamentous phenotype. We also report, for the first time, the presence of a ftsA gene in the cell division cluster of a mollicute species.
Collapse
Affiliation(s)
- Yan Zhao
- Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, USA
| | | | | | | | | | | |
Collapse
|
12
|
Romberg L, Levin PA. Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol 2004; 57:125-54. [PMID: 14527275 PMCID: PMC5517307 DOI: 10.1146/annurev.micro.57.012903.074300] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
FtsZ is a prokaryotic tubulin homolog that assembles into a ring at the future site of cell division. The resulting "Z ring" forms the framework for the division apparatus, and its assembly is regulated throughout the bacterial cell cycle. A highly dynamic structure, the Z ring exhibits continual subunit turnover and the ability to rapidly assemble, disassemble, and, under certain circumstances, relocalize. These in vivo properties are ultimately due to FtsZ's capacity for guanosine triphosphate (GTP)-dependent, reversible polymerization. FtsZ polymer stability appears to be fine-tuned such that subtle changes in its assembly kinetics result in large changes in the Z ring structure. Thus, regulatory proteins that modulate FtsZ's assembly dynamics can cause the ring to rapidly remodel in response to developmental and environmental cues.
Collapse
Affiliation(s)
- Laura Romberg
- Institute for Cellular and Chemical Biology, Harvard Medical School, SGM 604, 250 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
13
|
Lee KN, Padmalayam I, Baumstark B, Baker SL, Massung RF. Characterization of the ftsZ gene from Ehrlichia chaffeensis, Anaplasma phagocytophilum, and Rickettsia rickettsii, and use as a differential PCR target. DNA Cell Biol 2003; 22:179-86. [PMID: 12804116 DOI: 10.1089/104454903321655800] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Degenerate primers corresponding to highly conserved regions of previously characterized ftsZ genes were used to PCR amplify a portion of the ftsZ gene from the genomic DNA of Ehrlichia chaffeensis (ftsZ(Ech)), Anaplasma phagocytophilum (ftsZ(Ap)), and Rickettsia rickettsii (ftsZ(Rr)). Genome walking was then used to amplify the 5' and 3' termini of the genes. The DNA sequences of the resulting amplification products yielded open reading frames coding for proteins with molecular masses of 42.0, 45.7, and 48.3 kDa for A. phagocytophilum, E. chaffeensis, and R. rickettsii, respectively. These homologs are 20 to 70 amino acids longer than the FtsZ proteins characterized in bacteria such as Escherichia coli and Bacillus subtilis, but do not possess the large extended carboxyl-termini found in the FtsZ proteins of Bartonella, Rhizobium, and Agrobacterium species. The functional domains important for FtsZ activity are conserved within the ehrlichial and rickettsial FtsZ protein sequences. The R. rickettsii FtsZ sequence is highly homologous to the FtsZ protein previously described for Rickettsia prowazekii (89% identity), and identical to the FtsZ protein of Rickettsia conorii. The percent identity observed between the A. phagocytophilum and E. chaffeensis FtsZ proteins is only 79% and is particularly low in the carboxyl-terminal region (15.8% identity). Primers were designed to PCR amplify a portion of the variable carboxyl-terminal region of the ftsZ gene, and used to differentiate each agent based on the size of the amplicons: A. phagocytophilum, 278 bp; E. chaffeensis, 341 bp; and Rickettsia spp., 425 bp.
Collapse
Affiliation(s)
- Kemba N Lee
- Division of Viral and Rickettsial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | |
Collapse
|
14
|
Robson SA, Michie KA, Mackay JP, Harry E, King GF. The Bacillus subtilis cell division proteins FtsL and DivIC are intrinsically unstable and do not interact with one another in the absence of other septasomal components. Mol Microbiol 2002; 44:663-74. [PMID: 11994149 DOI: 10.1046/j.1365-2958.2002.02920.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bacterial septum appears to comprise a macromolecular assembly of essential cell division proteins (the 'septasome') that are responsible for physically dividing the cell during cytokinesis. FtsL and DivIC are essential components of this division machinery in Bacillus subtilis. We used yeast two-hybrid analysis as well as a variety of biochemical and biophysical methods to examine the proposed interaction between Bacillus subtilis FtsL and DivIC. We show that FtsL and DivIC are thermodynamically unstable proteins that are likely to be unfolded and therefore targeted for degradation unless stabilized by interactions with other components of the septasome. However, we show that this stabilization does not result from a direct interaction between FtsL and DivIC. We propose that the observed interdependence of DivIC and FtsL stability is a result of indirect interactions that are mediated by other septasomal proteins.
Collapse
Affiliation(s)
- Scott A Robson
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032, USA
| | | | | | | | | |
Collapse
|
15
|
Momynaliev KT, Smirnova OV, Lazyrev VN, Akopian TA, Chelysheva VV, Ayala JA, Simankova AN, Borchsenius SN, Govorun VM. Characterization of the Mycoplasma hominis ftsZ gene and its sequence variability in mycoplasma clinical isolates. Biochem Biophys Res Commun 2002; 293:155-62. [PMID: 12054578 DOI: 10.1016/s0006-291x(02)00184-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We cloned and sequenced Mycoplasma hominis chromosomal fragment containing ftsZ gene. The wild-type expression of the gene was shown at RNA level by reverse transcription followed by PCR amplification. We revealed that M. hominis FtsZ had a comparatively low similarity to proteins of Mycoplasma genitalium and Mycoplasma pneumoniae. After full ftsZ gene sequencing for 14 clinical isolates of M. hominis, single-nucleotide substitutions were found in 21 positions, 6 of them being common for almost all isolates. This ftsZ gene polymorphism may be used for subtyping of M. hominis in clinical samples. Expression of the M. hominis ftsZ gene in different Escherichia coli strains was also demonstrated, and M. hominis FtsZ protein was purified from E. coli cells transformed with recombinant expression plasmid. Complementation between the M. hominis FtsZ and E. coli FtsZ could be shown. The comparison of FtsZ protein structures may also be used for investigation of bacterial phylogenetic relationships.
Collapse
Affiliation(s)
- K T Momynaliev
- Institute of Physico-Chemical Medicine, Malaya Pirogovskaya Str. 1A, Moscow 119992, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dziadek J, Madiraju MVVS, Rutherford SA, Atkinson MAL, Rajagopalan M. Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts. MICROBIOLOGY (READING, ENGLAND) 2002; 148:961-971. [PMID: 11932443 DOI: 10.1099/00221287-148-4-961] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ftsZ gene of Mycobacterium tuberculosis H37Rv has been characterized as the first step in determining the molecular events involved in the cell division process in mycobacteria. Western analysis revealed that intracellular levels of FtsZ are growth phase dependent in both M. tuberculosis and Mycobacterium smegmatis. Unregulated expression of M. tuberculosis ftsZ from constitutive hsp60 and dnaA promoters in M. tuberculosis hosts resulted in lethality whereas expression from only the hsp60 promoter was toxic in M. smegmatis hosts. Expression of ftsZ from the dnaA promoter in M. smegmatis resulted in approximately sixfold overproduction and the merodiploids exhibited slow growth, an increased tendency to clump and filament, and in some cases produced buds and branches. Many of the cells also contained abnormal and multiple septa. Expression of ftsZ from the chemically inducible acetamidase promoter in M. smegmatis hosts resulted in approximately 22-fold overproduction of FtsZ and produced filamentous cells, many of which lacked any visible septa. Visualization of the M. tuberculosis FtsZ tagged with green fluorescent protein in M. smegmatis by fluorescence microscopy revealed multiple fluorescent FtsZ foci, suggesting that steps subsequent to the formation of organized FtsZ structures but prior to septum formation are blocked in FtsZ-overproducing cells. Together these results suggest that the intracellular concentration of FtsZ protein is critical for productive septum formation in mycobacteria.
Collapse
Affiliation(s)
- Jaroslaw Dziadek
- Biomedical Research, The University of Texas Health Center at Tyler, 11937 US Hwy @ 271, Tyler, TX-75708-3154, USA1
| | - Murty V V S Madiraju
- Biomedical Research, The University of Texas Health Center at Tyler, 11937 US Hwy @ 271, Tyler, TX-75708-3154, USA1
| | - Stacey A Rutherford
- Biomedical Research, The University of Texas Health Center at Tyler, 11937 US Hwy @ 271, Tyler, TX-75708-3154, USA1
| | - Mark A L Atkinson
- Biomedical Research, The University of Texas Health Center at Tyler, 11937 US Hwy @ 271, Tyler, TX-75708-3154, USA1
| | - Malini Rajagopalan
- Biomedical Research, The University of Texas Health Center at Tyler, 11937 US Hwy @ 271, Tyler, TX-75708-3154, USA1
| |
Collapse
|
17
|
Feucht A, Lucet I, Yudkin MD, Errington J. Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol Microbiol 2001; 40:115-25. [PMID: 11298280 DOI: 10.1046/j.1365-2958.2001.02356.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The actin-like protein FtsA is present in many eubacteria, and genetic experiments have shown that it plays an important, sometimes essential, role in cell division. Here, we show that Bacillus subtilis FtsA is targeted to division sites in both vegetative and sporulating cells. As in other organisms FtsA is probably recruited immediately after FtsZ. In sporulating cells of B. subtilis FtsZ is recruited to potential division sites at both poles of the cell, but asymmetric division occurs at only one pole. We have now found that FtsA is recruited to only one cell pole, suggesting that it may play an important role in the generation of asymmetry in this system. FtsA is present in much higher quantities in B. subtilis than in Escherichia coli, with approximately one molecule of FtsA for five of FtsZ. This means that there is sufficient FtsA to form a complete circumferential ring at the division site. Therefore, FtsA may have a direct structural role in cell division. We have purified FtsA and shown that it behaves as a dimer and that it has both ATP-binding and ATP-hydrolysis activities. This suggests that ATP hydrolysis by FtsA is required, together with GTP hydrolysis by FtsZ, for cell division in B. subtilis (and possibly in most eubacteria).
Collapse
Affiliation(s)
- A Feucht
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | | | | | |
Collapse
|
18
|
Sievers J, Errington J. Analysis of the essential cell division gene ftsL of Bacillus subtilis by mutagenesis and heterologous complementation. J Bacteriol 2000; 182:5572-9. [PMID: 10986263 PMCID: PMC111003 DOI: 10.1128/jb.182.19.5572-5579.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2000] [Accepted: 07/05/2000] [Indexed: 11/20/2022] Open
Abstract
The ftsL gene is required for the initiation of cell division in a broad range of bacteria. Bacillus subtilis ftsL encodes a 13-kDa protein with a membrane-spanning domain near its N terminus. The external C-terminal domain has features of an alpha-helical leucine zipper, which is likely to be involved in the heterodimerization with another division protein, DivIC. To determine what residues are important for FtsL function, we used both random and site-directed mutagenesis. Unexpectedly, all chemically induced mutations fell into two clear classes, those either weakening the ribosome-binding site or producing a stop codon. It appears that the random mutagenesis was efficient, so many missense mutations must have been generated but with no phenotypic effect. Substitutions affecting hydrophobic residues in the putative coiled-coil domain, introduced by site-directed mutagenesis, also gave no observable phenotype except for insertion of a helix-breaking proline residue, which destroyed FtsL function. ftsL homologues cloned from three diverse Bacillus species, Bacillus licheniformis, Bacillus badius, and Bacillus circulans, could complement an ftsL null mutation in B. subtilis, even though up to 66% of the amino acid residues of the predicted proteins were different from B. subtilis FtsL. However, the ftsL gene from Staphylococcus aureus (whose product has 73% of its amino acids different from those of the B. subtilis ftsL product) was not functional. We conclude that FtsL is a highly malleable protein that can accommodate a large number of sequence changes without loss of function.
Collapse
Affiliation(s)
- J Sievers
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
19
|
Lu C, Stricker J, Erickson HP. FtsZ from Escherichia coli, Azotobacter vinelandii, and Thermotoga maritima--quantitation, GTP hydrolysis, and assembly. CELL MOTILITY AND THE CYTOSKELETON 2000; 40:71-86. [PMID: 9605973 DOI: 10.1002/(sici)1097-0169(1998)40:1<71::aid-cm7>3.0.co;2-i] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have cloned the ftsZ genes from Thermotoga maritima and Azotobacter vinelandii and expressed the proteins (TmFtsZ and AzFtsZ) in Escherichia coli. We compared these proteins to E. coli FtsZ (EcFtsZ), and found that several remarkable features of their GTPase activities were similar for all three species, implying that these characteristics may be universal among FtsZs. Using a calibrated protein assay, we found that all three FtsZs bound 1 mole guanine nucleotide per mole FtsZ and hydrolyzed GTP at high rates (> 2 GTP per FtsZ per min). All three required magnesium and a monovalent cation for GTP hydrolysis. Previous reports showed that EcFtsZ (and some other species) required potassium. We confirmed this specificity for EcFtsZ but found that potassium and sodium both worked for Az- and TmFtsZ. Specific GTPase activity had a striking dependence on FtsZ concentration: activity (per FtsZ molecule) was absent or low below 50 microg/ml, rose steeply from 50 to 300 microg/ml and plateaued at a constant high value above 300 microg/ml. This finding suggests that the active state requires a polymer that is assembled cooperatively at 50-300 microg/ml. A good candidate for the active polymer was visualized by negative stain electron microscopy--straight protofilaments and protofilament pairs were seen under all conditions with active GTPase. We suggest that the GTP hydrolysis of FtsZ may be coupled to assembly, as it is for tubulin, with hydrolysis occurring shortly after an FtsZ monomer associates onto a protofilament end. As a part of this study, we determined the concentration of EcFtsZ and TmFtsZ by quantitative amino acid analysis and used this to standardize the bicinchonic acid colorimetric assay. This is the first accurate determination of FtsZ concentration. Using this standard and quantitative Western blotting, we determined that the average E. coli cell has 15,000 molecules of FtsZ, at a concentration of 400 microg/ml. This is just above the plateau for full GTPase activity in vitro.
Collapse
Affiliation(s)
- C Lu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
20
|
Maier SK, Scherer S, Loessner MJ. Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl Environ Microbiol 1999; 65:3942-9. [PMID: 10473399 PMCID: PMC99724 DOI: 10.1128/aem.65.9.3942-3949.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/1999] [Accepted: 06/17/1999] [Indexed: 11/20/2022] Open
Abstract
We investigated the cellular mechanisms that led to growth inhibition, morphological changes, and lysis of Bacillus cereus WSBC 10030 when it was challenged with a long-chain polyphosphate (polyP). At a concentration of 0.1% or higher, polyP had a bacteriocidal effect on log-phase cells, in which it induced rapid lysis and reductions in viable cell counts of up to 3 log units. The cellular debris consisted of empty cell wall cylinders and polar caps, suggesting that polyP-induced lysis was spatially specific. This activity was strictly dependent on active growth and cell division, since polyP failed to induce lysis in cells treated with chloramphenicol and in stationary-phase cells, which were, however, bacteriostatically inhibited by polyP. Similar observations were made with B. cereus spores; 0.1% polyP inhibited spore germination and outgrowth, and a higher concentration (1.0%) was even sporocidal. Supplemental divalent metal ions (Mg(2+) and Ca(2+)) could almost completely block and reverse the antimicrobial activity of polyP; i. e., they could immediately stop lysis and reinitiate rapid cell division and multiplication. Interestingly, a sublethal polyP concentration (0.05%) led to the formation of elongated cells (average length, 70 microm) after 4 h of incubation. While DNA replication and chromosome segregation were undisturbed, electron microscopy revealed a complete lack of septum formation within the filaments. Exposure to divalent cations resulted in instantaneous formation and growth of ring-shaped edges of invaginating septal walls. After approximately 30 min, septation was complete, and cell division resumed. We frequently observed a minicell-like phenotype and other septation defects, which were probably due to hyperdivision activity after cation supplementation. We propose that polyP may have an effect on the ubiquitous bacterial cell division protein FtsZ, whose GTPase activity is known to be strictly dependent on divalent metal ions. It is tempting to speculate that polyP, because of its metal ion-chelating nature, indirectly blocks the dynamic formation (polymerization) of the Z ring, which would explain the aseptate phenotype.
Collapse
Affiliation(s)
- S K Maier
- Institut für Mikrobiologie, Forschungszentrum für Milch und Lebensmittel Weihenstephan, Technische Universität München, 85350 Freising, Germany
| | | | | |
Collapse
|
21
|
Kukekova AV, Malinin AY, Ayala JA, Borchsenius SN. Characterization of Acholeplasma laidlawii ftsZ gene and its gene product. Biochem Biophys Res Commun 1999; 262:44-9. [PMID: 10448065 DOI: 10.1006/bbrc.1999.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ftsZ gene was found among representatives of all bacterial groups. FtsZ protein is an essential component of cell division ring. Contraction of this cytoskeleton-like ring is believed to be the universal way of bacterial division. Acholeplasma laidlawii possesses all features of the minimal mycoplasma cell and some traits of cell-wall bacteria and seems to be a promising object for study of basic principles of the bacterial division process. We cloned an A. laidlawii chromosomal fragment containing ftsZ gene and two flanking orf which also were identified. A. laidlawii FtsZ protein has been determined with polyclonal antibodies raised in rabbit. It was demonstrated that ftsZ gene of A. laidlawii could be expressed in E. coli cells. We also revealed that A. laidlawii FtsZ had a low similarity to proteins of Mycoplasma genitalium and M. pneumoniae. The comparison of FtsZ structures may be used for investigation of bacterial phylogenetic relations.
Collapse
Affiliation(s)
- A V Kukekova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Avenue 4, St. Petersburg, 194064, Russia
| | | | | | | |
Collapse
|
22
|
Ohashi Y, Chijiiwa Y, Suzuki K, Takahashi K, Nanamiya H, Sato T, Hosoya Y, Ochi K, Kawamura F. The lethal effect of a benzamide derivative, 3-methoxybenzamide, can be suppressed by mutations within a cell division gene, ftsZ, in Bacillus subtilis. J Bacteriol 1999; 181:1348-51. [PMID: 9973366 PMCID: PMC93517 DOI: 10.1128/jb.181.4.1348-1351.1999] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3-Methoxybenzamide (3-MBA), which is known to be an inhibitor of ADP-ribosyltransferase, inhibits cell division in Bacillus subtilis, leading to filamentation and eventually lysis of cells. Our genetic analysis of 3-MBA-resistant mutants indicated that the primary target of the drug is the cell division system involving FtsZ function during both vegetative growth and sporulation.
Collapse
Affiliation(s)
- Y Ohashi
- Laboratory of Molecular Genetics, College of Science, Rikkyo (St. Paul's) University, Toshima-ku, Tokyo 171-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Daniel RA, Harry EJ, Katis VL, Wake RG, Errington J. Characterization of the essential cell division gene ftsL(yIID) of Bacillus subtilis and its role in the assembly of the division apparatus. Mol Microbiol 1998; 29:593-604. [PMID: 9720875 DOI: 10.1046/j.1365-2958.1998.00954.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have identified the Bacillus subtilis homologue of the essential cell division gene, ftsL, of Escherichia coli. Repression of ftsL in a strain engineered to carry a conditional promoter results in cell filamentation, with a near immediate arrest of cell division. The filaments show no sign of invagination, indicating that division is blocked at an early stage. FtsL is also shown to be required for septation during sporulation, and depletion of FtsL blocks the activation but not the synthesis of the prespore-specific sigma factor, sigmaF. Immunofluorescence microscopy shows that depletion of FtsL has little or no effect on FtsZ ring formation, but the assembly of other division proteins, DivIB and DivIC, at the site of division is prevented. Repression of FtsL also results in a rapid loss of DivIC protein, indicating that DivIC stability is dependent on the presence of FtsL, in turn suggesting that FtsL is intrinsically unstable. The instability of one or more components of the division apparatus may be important for the cyclic assembly/disassembly of the division apparatus.
Collapse
Affiliation(s)
- R A Daniel
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | | | |
Collapse
|
24
|
Fawcett P, Melnikov A, Youngman P. The Bacillus SpoIIGA protein is targeted to sites of spore septum formation in a SpoIIE-independent manner. Mol Microbiol 1998; 28:931-43. [PMID: 9663680 DOI: 10.1046/j.1365-2958.1998.00849.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The process of bacterial cell division involves the assembly of a complex of proteins at the site of septation that probably provides both the structural and the cytokinetic functions required for elaboration and closure of the septal annulus. During sporulation in Bacillus subtilis, this complex of proteins is modified by the inclusion of a sporulation-specific protein, SpoIIE, which plays a direct role in gene regulation and also has a genetically separable role in determining the gross structural properties of the specialized sporulation septum. We demonstrate by both green fluorescent protein (GFP) fusions and indirect immunofluorescence microscopy that SpoIIGA, a protein required for proteolytic cleavage of pro-sigmaE, is also targeted to the sporulation septum. Septal localization of SpoIIGA-GFP occurred even in the structurally abnormal septum formed by a SpoIIE null mutant. We also report the isolation of a spoIIGA homologue from Bacillus megaterium, a species in which the cells are significantly larger than those of B. subtilis. We have exploited the physical dimensions of the B. megaterium sporangium, in conjunction with wide-field deconvolution microscopy, to construct three-dimensional projections of sporulating cells. These projections indicate that SpoIIGA-GFP is initially localized in an annulus at the septal periphery and is only later localized uniformly throughout the septa. Localization was also detected in a B. subtilis spo0H null strain that fails to construct a spore septum. We propose that SpoIIGA is sequestered in the septum by an interaction with components of the septation machinery and that this interaction begins before the construction of the asymmetric septum.
Collapse
Affiliation(s)
- P Fawcett
- University of Georgia, Department of Genetics, Athens 30602, USA
| | | | | |
Collapse
|
25
|
Abstract
Bacteria usually divide by building a central septum across the middle of the cell. This review focuses on recent results indicating that the tubulin-like FtsZ protein plays a central role in cytokinesis as a major component of a contractile cytoskeleton. Assembly of this cytoskeletal element abutting the membrane is a key point for regulation. The characterization of FtsZ homologues in Mycoplasmas, Archaea, and chloroplasts implies that the constriction mechanism is conserved and that FtsZ can constrict in the absence of peptidoglycan synthesis. In most Eubacteria, the internal cytoskeleton must also regulate synthesis of septal peptidoglycan. The Escherichia coli septum-specific penicillin-binding protein 3 (PBP3) forms a complex with other enzymes involved in murein metabolism, suggesting a centrally located transmembrane complex capable of splicing multiple new strands of peptidoglycan into the cell wall. Important questions remain about the spatial and temporal control of bacterial division.
Collapse
Affiliation(s)
- D Bramhill
- Department of Enzymology, Merck Research Laboratories, Rahway, New Jersey 07065-0900, USA.
| |
Collapse
|
26
|
Ma X, Sun Q, Wang R, Singh G, Jonietz EL, Margolin W. Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring. J Bacteriol 1997; 179:6788-97. [PMID: 9352931 PMCID: PMC179610 DOI: 10.1128/jb.179.21.6788-6797.1997] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
FtsZ and FtsA are essential for cell division in Escherichia coli and colocalize to the septal ring. One approach to determine what regions of FtsA and FtsZ are important for their interaction is to identify in vivo interactions between FtsA and FtsZ from different species. As a first step, the ftsA genes of Rhizobium meliloti and Agrobacterium tumefaciens were isolated and characterized. In addition, an FtsZ homolog that shared the unusual C-terminal extension of R. meliloti FtsZ1 was found in A. tumefaciens. In order to visualize their localization in cells, we tagged these proteins with green fluorescent protein (GFP). When R. meliloti FtsZ1-GFP or A. tumefaciens FtsZ-GFP was expressed at low levels in E. coli, they specifically localized only to the E. coli FtsZ ring, possibly by coassembly. When A. tumefaciens FtsA-GFP or R. meliloti FtsA-GFP was expressed in E. coli, they failed to localize detectably to the E. coli FtsZ ring. However, when R. meliloti FtsZ1 was coexpressed with them, fluorescence localized to a band at the midcell division site, strongly suggesting that FtsA from either A. tumefaciens or R. meliloti can bind directly to its cognate FtsZ. As expected, GFP-tagged FtsZ1 and FtsA from either R. meliloti or A. tumefaciens localized to the division site in A. tumefaciens cells. Therefore, the 61 amino acid changes between A. tumefaciens FtsA and R. meliloti FtsA do not prevent their direct interaction with FtsZ1 from either species, suggesting that those residues are not essential for protein-protein contacts. Moreover, the failure of the two non-E. coli FtsA derivatives to interact strongly with E. coli FtsZ in this in vivo system unless their cognate FtsZ was also present suggests that FtsA-FtsZ interactions have coevolved and that the residues which differ between the E. coli proteins and those of the two other species may be important for specific interactions.
Collapse
Affiliation(s)
- X Ma
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wang X, Huang J, Mukherjee A, Cao C, Lutkenhaus J. Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 1997; 179:5551-9. [PMID: 9287012 PMCID: PMC179428 DOI: 10.1128/jb.179.17.5551-5559.1997] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The interaction of FtsZ with itself, GTP, and FtsA was examined by analyzing the sensitivity of FtsZ to proteolysis and by using the yeast two-hybrid system. The N-terminal conserved domain consisting of 320 amino acids bound GTP, and a central region of FtsZ, encompassing slightly more than half of the protein, was cross-linked to GTP. Site-directed mutagenesis revealed that none of six highly conserved aspartic acid and asparagine residues were required for GTP binding. These results indicate that the specificity determinants for GTP binding are different than those for the GTPase superfamily. The N-terminal conserved domain of FtsZ contained a site for self-interaction that is conserved between FtsZ proteins from distantly related bacterial species. FtsZ320, which was truncated at the end of the conserved domain, was a potent inhibitor of division although it expressed normal GTPase activity and could polymerize. FtsZ was also found to interact directly with FtsA, and this interaction could also be observed between these proteins from distantly related bacterial species.
Collapse
Affiliation(s)
- X Wang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | |
Collapse
|
28
|
Kobayashi M, Asai Y, Hatakeyama K, Kijima N, Wachi M, Nagai K, Yukawa H. Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria. Biochem Biophys Res Commun 1997; 236:383-8. [PMID: 9240446 DOI: 10.1006/bbrc.1997.6930] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Taking advantage of highly conserved domains present in the ftsZ genes from Escherichia coli, Rhizobium meliloti, and Bacillus subtilis, we designed degenerate oligonucleotides (oligos) corresponding to these regions. These oligos were used as primers in PCR in order to amplify DNA sequences from Brevibacterium flavum MJ233 chromosomal DNA. The PCR product was used as a probe to recover genomic fragments from a lambda library of Br. flavum MJ233. The complete nucleotide sequence (nt) of the cloned 4.2-kb EcoRI fragment containing the ftsZ homolog from Br. flavum MJ233 indicated that the deduced gene product of the Br. flavum ftsZ homolog is composed of 438 amino acids (aa) with a deduced molecular weight of 46.9 kDa. This size of molecular weight was also confirmed by the in vitro protein synthesis assay. Comparison of this aa sequence to the corresponding sequences from E. coli, Rh. meliloti, B. subtilis, and Streptomyces coelicolor revealed a high degree of conservation and suggested that the Br. flavum ftsZ homolog has a putative GTP binding motif and a GTP hydrolizing region. Expression of Br. flavum ftsZ gene in E. coli, JM109 inhibited its cell division, leading to filamentation. This suggested that the Br. flavum ftsZ product competed with the E. coli ftsZ product.
Collapse
Affiliation(s)
- M Kobayashi
- Tsukuba Research Center, Mitsubishi Chemical Corporation, Inashiki, Ibaraki, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Padmalayam I, Anderson B, Kron M, Kelly T, Baumstark B. The 75-kilodalton antigen of Bartonella bacilliformis is a structural homolog of the cell division protein FtsZ. J Bacteriol 1997; 179:4545-52. [PMID: 9226264 PMCID: PMC179290 DOI: 10.1128/jb.179.14.4545-4552.1997] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A genomic library of Bartonella bacilliformis was constructed and screened with human anti-Bartonella serum from a patient with the chronic, verruga peruana phase of bartonellosis. An immunoreactive clone isolated from this library was found to code for a 591-amino-acid protein with a high degree of sequence similarity to the FtsZ family of proteins. The degree of amino acid identity between the B. bacilliformis protein (FtsZ[Bb]) and the other FtsZ proteins is especially pronounced over the N-terminal 321 amino acids (N-terminal domain) of the sequence, with values ranging from 45% identity for the homolog from Micrococcus luteus (FtsZ[Ml]) to 91% identity for the homolog from Rhizobium melliloti, (FtsZ[Rm1]). All of the functional domains required for FtsZ activity are conserved in FtsZ(Bb) and are located within the N-terminal domain of the protein. FtsZ(Bb) is approximately twice as large as most of the other FtsZ proteins previously reported, a property it shares with FtsZ(Rm1). Like the Rhizobium homolog, FtsZ(Bb) has a C-terminal region of approximately 256 amino acids that is absent in the other FtsZ proteins. Evidence is presented that implicates this region in the protein's antigenicity and suggests that, unlike most other FtsZ homologs, FtsZ(Bb) is at least partly exposed at the cell surface. PCR analysis revealed that an ftsZ gene similar in size to the B. bacilliformis gene is present in Bartonella henselae, a bacterium that is closely related to B. bacilliformis.
Collapse
Affiliation(s)
- I Padmalayam
- Department of Biology, Georgia State University, Atlanta 30302, USA.
| | | | | | | | | |
Collapse
|
30
|
Ohta N, Ninfa AJ, Allaire A, Kulick L, Newton A. Identification, characterization, and chromosomal organization of cell division cycle genes in Caulobacter crescentus. J Bacteriol 1997; 179:2169-80. [PMID: 9079901 PMCID: PMC178952 DOI: 10.1128/jb.179.7.2169-2180.1997] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report a detailed characterization of cell division cycle (cdc) genes in the differentiating gram-negative bacterium Caulobacter crescentus. A large set of temperature-sensitive cdc mutations was isolated after treatment with the chemical mutagen N-methyl-N'-nitro-N-nitrosoguanidine. Analysis of independently isolated mutants at the nonpermissive temperature identified a variety of well-defined terminal phenotypes, including long filamentous cells blocked at various stages of the cell division cycle and two unusual classes of mutants with defects in both cell growth and division. The latter strains are uniformly arrested as either short bagel-shaped coils or large predivisional cells. The polar morphology of these cdc mutants supports the hypothesis that normal cell cycle progression is directly responsible for developmental regulation in C. crescentus. Genetic and physical mapping of the conditional cdc mutations and the previously characterized dna and div mutations identified at least 21 genes that are required for normal cell cycle progression. Although most of these genes are widely scattered, the genetically linked divA, divB, and divE genes were shown by genetic complementation and physical mapping to be organized in one gene cluster at 3200 units on the chromosome. DNA sequence analysis and marker rescue experiments demonstrated that divE is the C. crescentus ftsA homolog and that the ftsZ gene maps immediately adjacent to ftsA. On the basis of these results, we suggest that the C. crescentus divA-divB-divE(ftsA)-ftsZ gene cluster corresponds to the 2-min fts gene cluster of Escherichia coli.
Collapse
Affiliation(s)
- N Ohta
- Department of Molecular Biology, Princeton University, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
31
|
Arnau J, Sørensen KI. The isolation of novel heat shock genes in Lactococcus lactis using RNA subtractive hybridization. Gene 1997; 188:229-34. [PMID: 9133596 DOI: 10.1016/s0378-1119(96)00812-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lactococcus lactis is subjected to heat shock (hs) during cheese manufacturing. A number of conserved hs genes have been cloned and studied in this organism, although no regulatory gene, e.g. alternative sigma factor, has been identified. RNA subtractive hybridization was used to identify genes expressed very early when L. lactis MG1363 was shifted from 30 to 43 degrees C. 32P-labeled cDNA synthesized from RNA isolated from hs cells at 43 degrees C was mixed with an excess vegetative RNA and the mixture was directly used as a probe after a short hybridization step. Northern analysis revealed a moderate induction for the probes used, and low expression was also detected in non-hs cells, demonstrating the applicability of this technique for the detection of differentially expressed genes. The probes were used to identify genomic library clones containing the corresponding genes. Among the five clones studied, a cell division operon including a putative ftsZ homolog (pJAK2) was identified. Additionally, a putative hsp86 homolog (pJAK3), three different transposase encoding genes (pJAK1 and pJAK3), a gene coding for a deoR-like transcriptional repressor (pJAK4) and a putative regulatory gene that showed homology to an alkaline shock protein (pJAK5) were characterized.
Collapse
Affiliation(s)
- J Arnau
- Department of Dairy and Food Science, The Royal Veterinary and Agricultural University, Frederiksberg C, Denmark.
| | | |
Collapse
|
32
|
Kawamoto S, Watanabe H, Hesketh A, Ensign JC, Ochi K. Expression analysis of the ssgA gene product, associated with sporulation and cell division in Streptomyces griseus. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 4):1077-1086. [PMID: 9141673 DOI: 10.1099/00221287-143-4-1077] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ssgA gene of Streptomyces griseus B2682, when present in high copy number, results in both suppression of sporulation and fragmented growth of mycelia. Western analysis with polyclonal antibodies against the gene product (SsgA) revealed a close correlation between SsgA accumulation and the onset of sporulation in wild-type cells. The protein was only detected in the cytoplasm. Certain developmental mutants of S. griseus (afs, reIC and brgA) which are defective in aerial mycelium formation in solid culture and submerged spore formation in liquid culture failed to accumulate SsgA. The SsgA protein appeared shortly (1 h) after nutritional shift-down of strain B2682 cells. afs mutant cells sporulated and expressed SsgA only when A-factor was present both before and after nutritional shift-down. Introduction of the ssgA gene in a low-copy-number vector into strain B2682 resulted in fivefold overexpression of SsgA, and was accompanied by fragmented growth of mycelia and suppression of submerged spore formation (in liquid culture) and aerial mycelium formation (in solid culture). Streptomycin production was not inhibited. In a control experiment, a nonfunctional ssgA gene possessing a frameshift mutation near its N-terminus had no effect on either growth or sporulation. It is proposed that the ssgA gene product plays a role in promoting the developmental process of S. griseus.
Collapse
Affiliation(s)
- Shinichi Kawamoto
- National Food Research Institute, 2-1-2 Kannondai, Tsukuba, Ibaraki 305, Japan
| | - Hajime Watanabe
- National Food Research Institute, 2-1-2 Kannondai, Tsukuba, Ibaraki 305, Japan
| | - Andrew Hesketh
- National Food Research Institute, 2-1-2 Kannondai, Tsukuba, Ibaraki 305, Japan
| | - Jerald C Ensign
- Department of Bacteriology, 1550 Linden Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kozo Ochi
- National Food Research Institute, 2-1-2 Kannondai, Tsukuba, Ibaraki 305, Japan
| |
Collapse
|
33
|
Abstract
Bacterial cell division occurs through the formation of an FtsZ ring (Z ring) at the site of division. The ring is composed of the tubulin-like FtsZ protein that has GTPase activity and the ability to polymerize in vitro. The Z ring is thought to function in vivo as a cytoskeletal element that is analogous to the contractile ring in many eukaryotic cells. Evidence suggests that the Z ring is utilized by all prokaryotic organisms for division and may also be used by some eukaryotic organelles. This review summarizes our present knowledge about the formation, function, and evolution of the Z ring in prokaryotic cell division.
Collapse
Affiliation(s)
- J Lutkenhaus
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City 66160, USA
| | | |
Collapse
|
34
|
Palacios P, Vicente M, Sánchez M. Dependency of Escherichia coli cell-division size, and independency of nucleoid segregation on the mode and level of ftsZ expression. Mol Microbiol 1996; 20:1093-8. [PMID: 8809761 DOI: 10.1111/j.1365-2958.1996.tb02549.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Expression of ftsZ in strain VIP205 is dissociated from its natural promoters, and is under the control of an inducible tac promoter. This abolishes the oscillation in ftsZ transcription observed in the wild type, allowing different levels of ftsZ expression. We demonstrate that this construction does not affect the expression of other genes, and has no effects on replication or nucleoid segregation. A shift in IPTG from 30 microM, that supports division at wild-type sizes, to lower (6 microM) or higher (100 microM) concentrations, indicates that VIP205 cells can divide within a broad range of FtsZ concentrations. Analysis of the morphological parameters during the transition from one IPTG concentration to another suggests that the correct timing of ftsZ expression, and the correct FtsZ concentration, are required for division to occur at normal cell sizes. After a transient division delay during the transition to lower IPTG concentrations, cells in which ftsZ is expressed continuously (yielding 80% of the wild-type FtsZ levels) divide with the same division time as the wild type, but at the expense of becoming 1.5 times larger. A precise control of ftsZ expression is required for normal division, but the existence of additional regulators to maintain the correct timing during the cell cycle cannot be ruled out.
Collapse
Affiliation(s)
- P Palacios
- Departamento de Biología Celular y del Desarrollo, Cousejo Superior de Investigaciones Científicas, Velázquez, Madrid, Spain
| | | | | |
Collapse
|
35
|
Wang X, Lutkenhaus J. Characterization of the ftsZ gene from Mycoplasma pulmonis, an organism lacking a cell wall. J Bacteriol 1996; 178:2314-9. [PMID: 8636032 PMCID: PMC177939 DOI: 10.1128/jb.178.8.2314-2319.1996] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ftsZ gene is required for cell division in Escherichia coli and Bacillus subtilis. In these organisms, FtsZ is located in a ring at the leading edge of the septum. This ring is thought to be responsible for invagination of the septum, either causing invagination of the cytoplasmic membrane or activating septum-specific peptidoglycan biosynthesis. In this paper, we report that the cell division gene ftsZ is present in two mycoplasma species, Mycoplasma pulmonis and Acholeplasma laidlawii, which are eubacterial organisms lacking a cell wall. Sequencing of the ftsZ homolog from M. pulmonis revealed that it was highly homologous to other known FtsZ proteins. The M. pulmonis ftsZ gene was overexpressed, and the purified M. pulmonis FtsZ bound GTP. Using antisera raised against this purified protein, we could demonstrate that it was expressed in M. pulmonis. Expression of the M. pulmonis ftsZ gene in E. coli inhibited cell division, leading to filamentation, which could be suppressed by increasing expression of the E. coli ftsZ gene. The implications of these results for the role of ftsZ in cell division are discussed.
Collapse
Affiliation(s)
- X Wang
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City 66103, USA
| | | |
Collapse
|
36
|
Margolin W, Wang R, Kumar M. Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin. J Bacteriol 1996; 178:1320-7. [PMID: 8631708 PMCID: PMC177805 DOI: 10.1128/jb.178.5.1320-1327.1996] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have isolated a homolog of the cell division gene ftsZ from the extremely halophilic archaebacterium Halobacterium salinarium. The predicted protein of 39 kDa is divergent relative to eubacterial homologs, with 32% identity to Escherichia coli FtsZ. No other eubacterial cell division gene homologs were found adjacent to H. salinarium ftsZ. Expression of the ftsZ gene region in H. salinarium induced significant morphological changes leading to the loss of rod shape. Phylogenetic analysis demonstrated that the H. salinarium FtsZ protein is more related to tubulins than are the FtsZ proteins of eubacteria, supporting the hypothesis that FtsZ may have evolved into eukaryotic tubulin.
Collapse
Affiliation(s)
- W Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston 77030, USA
| | | | | |
Collapse
|
37
|
Levin PA, Losick R. Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. Genes Dev 1996; 10:478-88. [PMID: 8600030 DOI: 10.1101/gad.10.4.478] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Entry into sporulation by the Gram-positive bacterium Bacillus subtilis is governed by two transcription factors, Spo0A and sigma H, and involves a switch in the site of division from a medial to a polar location. We report that at the onset of sporulation, assembly of the cell division protein FtsZ shifts from midcell to potential division sites near both poles. The switch to a bipolar pattern of FtsZ localization is dependent on Spo0A. Additionally, synthesis of an activated form of Spo0A during growth artificially activates the switch in FtsZ localization and results in the formation of polar septa. The sigma H factor, on the other hand, is dispensable for the switch in the position of the FtsZ assembly site, although it is required for formation of the polar septum. Our results suggest that during the transition from growth to sporulation, Spo0A induces the expression of genes that suppress FtsZ assembly at the midcell site and activate sites at both poles, whereas sigma H induces genes required for a subsequent step in cytokinesis.
Collapse
Affiliation(s)
- P A Levin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138 USA
| | | |
Collapse
|
38
|
Roine E, Nunn DN, Paulin L, Romantschuk M. Characterization of genes required for pilus expression in Pseudomonas syringae pathovar phaseolicola. J Bacteriol 1996; 178:410-7. [PMID: 8550460 PMCID: PMC177672 DOI: 10.1128/jb.178.2.410-417.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Nonpiliated, phage phi 6-resistant mutants of Pseudomonas syringae pv. phaseolicola were generated by Tn5 transposon mutagenesis. A P. syringae pv. phaseolicola LR700 cosmid library was screened with Tn5-containing EcoRI fragments cloned from nonpiliated mutants. The cosmid clone pVK253 complemented the nonpiliated mutant strain HB2.5. A 3.8-kb sequenced region spanning the Tn5 insertion site contained four open reading frames. The transposon-inactivated gene, designated pilP, is 525 bp long, potentially encoding a 19.1-kDa protein precursor that contains a typical membrane lipoprotein leader sequence. Generation of single mutations in each of the three remaining complete open reading frames by marker exchange also resulted in a nonpiliated phenotype. Expression of this gene region by the T7 expression system in Escherichia coli resulted in four polypeptides of approximately 39, 26, 23, and 18 kDa, in agreement with the sizes of the open reading frames. The three genes upstream of pilP were designated pilM (39 kDa), pilN (23 kDa), and pilO (26 kDa). The processing of the PilP precursor into its mature form was shown to be inhibited by globomycin, a specific inhibitor of signal peptidase II. The gene region identified shows a high degree of homology to a gene region reported to be required for Pseudomonas aeruginosa type IV pilus production.
Collapse
Affiliation(s)
- E Roine
- Department of Biosciences, University of Helsinki, Finland
| | | | | | | |
Collapse
|
39
|
Liao X, Charlebois I, Ouellet C, Morency MJ, Dewar K, Lightfoot J, Foster J, Siehnel R, Schweizer H, Lam JS, Hancock REW, Levesque RC. Physical mapping of 32 genetic markers on the Pseudomonas aeruginosa PAO1 chromosome. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 1):79-86. [PMID: 8581173 DOI: 10.1099/13500872-142-1-79] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Pseudomonas aeruginosa chromosome was fractionated with the enzymes SpeI and DpnI, and genomic fragments were separated by PFGE and used for mapping a collection of 40 genes. This permitted the localization of 8 genes previously mapped and of 32 genes which had not been mapped. We showed that a careful search of databases and identification of sequences that were homologous to known genes could be used to design and synthesize DNA probes for the mapping of P. aeruginosa homologues by Southern hybridization with genomic fragments, resulting in definition of the locations of the aro-2, dapB, envA, mexA, groEL, oprH, oprM, oprP, ponA, rpoB and rpoH genetic markers. In addition, a combination of distinct DNA sources were utilized as radioactively labelled probes, including specific restriction fragments of the cloned genes (glpD, opdE, oprH, oprO, oprP, phoS), DNA fragments prepared by PCR, and single-stranded DNA prepared from phagemid libraries that had been randomly sequenced. We used a PCR approach to clone fragments of the putative yhhF, sucC, sucD, cypH, pbpB, murE, pbpC, soxR, ftsA, ftsZ and envA genes. Random sequencing of P. aeruginosa DNA from phagemid libraries and database searching permitted the cloning of sequences from the acoA, catR, hemD, pheS, proS, oprD, pyo and rpsB gene homologues. The described genomic methods permit the rapid mapping of the P. aeruginosa genome without linkage analysis.
Collapse
MESH Headings
- Base Sequence
- Chromosomes, Bacterial/genetics
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Complementary/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Electrophoresis, Gel, Pulsed-Field
- Gene Expression
- Genes, Bacterial
- Genetic Markers
- Molecular Sequence Data
- Oligonucleotide Probes
- Polymerase Chain Reaction
- Pseudomonas aeruginosa/genetics
- Restriction Mapping
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Xiaowen Liao
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver BC, Canada V6T 1Z3
| | - Isabelle Charlebois
- Microbiologie Moléculaire et Génie des Protéines, Département de Microbiologie, Faculté de Médecine, Pavillon Charles-Eugène-Marchand, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | - Catherine Ouellet
- Microbiologie Moléculaire et Génie des Protéines, Département de Microbiologie, Faculté de Médecine, Pavillon Charles-Eugène-Marchand, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | - Marie-Josée Morency
- Microbiologie Moléculaire et Génie des Protéines, Département de Microbiologie, Faculté de Médecine, Pavillon Charles-Eugène-Marchand, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | - Ken Dewar
- Microbiologie Moléculaire et Génie des Protéines, Département de Microbiologie, Faculté de Médecine, Pavillon Charles-Eugène-Marchand, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | - Jeff Lightfoot
- Microbiologie Moléculaire et Génie des Protéines, Département de Microbiologie, Faculté de Médecine, Pavillon Charles-Eugène-Marchand, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | - Jennifer Foster
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard Siehnel
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver BC, Canada V6T 1Z3
| | - Herbert Schweizer
- Department of Medical Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Joseph S Lam
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Robert E W Hancock
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver BC, Canada V6T 1Z3
| | - Roger C Levesque
- Microbiologie Moléculaire et Génie des Protéines, Département de Microbiologie, Faculté de Médecine, Pavillon Charles-Eugène-Marchand, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| |
Collapse
|
40
|
Rowland SL, Errington J, Wake RG. The Bacillus subtilis cell-division 135-137 degrees region contains an essential orf with significant similarity to murB and a dispensable sbp gene. Gene 1995; 164:113-6. [PMID: 7590298 DOI: 10.1016/0378-1119(95)00467-k] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sequence similarity analysis has revealed that orf2, in the cell division 135-137 degrees region of the Bacillus subtilis (Bs) chromosome, is the probable homolog of Escherichia coli murB (encoding a reductase involved in peptidoglycan synthesis). The amino-acid sequences of the two protein products show 24% identity (47% overall similarity), with several regions of higher similarity which may represent functional domains of the proteins. Attempts to insertionally inactivate orf2 were unsuccessful, strongly suggesting that it is an essential Bs gene. A small gene found in the same region as orf2, sbp (encoding the 'small basic protein'), was shown to be non-essential in Bs.
Collapse
Affiliation(s)
- S L Rowland
- Department of Biochemistry, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
41
|
Doherty HM, Adams DG. Cloning and sequence of ftsZ and flanking regions from the cyanobacterium Anabaena PCC 7120. Gene 1995; 163:93-6. [PMID: 7557485 DOI: 10.1016/0378-1119(95)00416-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using degenerate oligodeoxyribonucleotide primers based on conserved regions of the cell-division protein FtsZ, a 220-bp fragment of DNA was amplified by the polymerase chain reaction from Anabaena PCC 7120 (Ana). This fragment, which showed significant homology with Escherichia coli ftsZ, was used as a probe to isolate a 15-kb genomic clone containing ftsZ from an Ana DNA library. Sequence analysis revealed an open reading frame (ORF) encoding a protein of 379 amino acids, with 49% identity with E. coli FtsZ. Upstream of Ana ftsZ is a small, unidentified ORF, transcribed in the same direction. An ORF lying downstream of the ftsZ coding region and transcribed in the opposite orientation, shows homology with bacterial glutathione synthetase-encoding genes. Single copies of ftsZ have been identified in Ana and two other cyanobacteria. Multiple transcripts hybridising to ftsZ were detected by Northern hybridisation.
Collapse
Affiliation(s)
- H M Doherty
- Department of Microbiology, University of Leeds, UK
| | | |
Collapse
|
42
|
Zhang CC, Huguenin S, Friry A. Analysis of genes encoding the cell division protein FtsZ and a glutathione synthetase homologue in the cyanobacterium Anabaena sp. PCC 7120. Res Microbiol 1995; 146:445-55. [PMID: 8525061 DOI: 10.1016/0923-2508(96)80290-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Heterocysts, cells specialized in nitrogen fixation in Anabaena sp. PCC 7120, lose the potential for cell division once fully differentiated. This suggests that cell division activity is differentially regulated in heterocysts and vegetative cells. FtsZ has been shown to play a crucial role in bacterial cell division. Two degenerate oligonucleotide primers were designed to detect, by polymerase chain reaction (PCR), an ftsZ homologue from the heterocystous cyanobacterium Anabaena sp. PCC 7120. A PCR-amplified DNA fragment was cloned and used as a probe to isolate the entire ftsZ gene of Anabaena sp. PCC 7120. The deduced amino acid sequence shares strong similarities with other FtsZ proteins, suggesting remarkable conservation of the FtsZ protein during evolution. An ORF downstream of ftsZ, which would be transcribed in the opposite direction compared to ftsZ, could encode a polypeptide with significant sequence similarity to the glutathione synthetase from Escherichia coli. Inactivation experiments in vivo for both ftsZ and the glutathione synthetase gene did not yield any double recombinants either in the presence or in the absence of combined nitrogen, suggesting that both genes are essential for cell growth under these conditions.
Collapse
Affiliation(s)
- C C Zhang
- Ecole Supérieure de Biotechnologie de Strasbourg, Université Louis Pasteur de Strasbourg, Illkirch, France
| | | | | |
Collapse
|
43
|
Wu LJ, Lewis PJ, Allmansberger R, Hauser PM, Errington J. A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. Genes Dev 1995; 9:1316-26. [PMID: 7797072 DOI: 10.1101/gad.9.11.1316] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spore formation in Bacillus subtilis begins with an asymmetric cell division that superficially resembles the division of vegetative cells. Mutations in the spoIIIE gene of B. subtilis partially block partitioning of one chromosome into the smaller (prespore) compartment of the sporulating cell. Point mutations that specifically block prespore chromosome partitioning affect a carboxy-terminal domain of SpoIIIE that shows significant sequence similarity to the DNA transfer (Tra) proteins of several conjugative plasmids of Streptomyces. In wild-type sporulating cells, the prespore chromosome passes through an intermediate stage resembling the state in which spoIIIE mutant cells are blocked. The prespore chromosome is then transferred progressively through the newly formed spore septum. We propose that translocation of the prespore chromosome occurs by a mechanism that is functionally related to the conjugative transfer of plasmid DNA.
Collapse
Affiliation(s)
- L J Wu
- Sir William Dunn School of Pathology, University of Oxford, UK
| | | | | | | | | |
Collapse
|
44
|
Martin PR, Watson AA, McCaul TF, Mattick JS. Characterization of a five-gene cluster required for the biogenesis of type 4 fimbriae in Pseudomonas aeruginosa. Mol Microbiol 1995; 16:497-508. [PMID: 7565110 DOI: 10.1111/j.1365-2958.1995.tb02414.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa produces type 4 fimbriae which promote adhesion to epithelial cells and are associated with a form of surface translocation called twitching motility. Transposon mutagenesis was used to identify loci required for fimbrial assembly or function by screening for mutants that lack the spreading colony morphology characteristic of twitching motility. Six mutants were isolated that contain transposon insertions upstream of the previously characterized gene pilQ. This region contains four genes: pilM-P, which encode proteins with predicted sizes of 37.9, 22.2, 22.8 and 19.0 kDa, respectively. pilM-P appear to form an operon and to be expressed from a promoter in the intergenic region between pilM and the divergently transcribed upstream gene ponA. PilM-P were found to be required for fimbrial biogenesis by complementation studies using twitching motility and sensitivity to fimbrial-specific phage as indicators of the presence of functional fimbriae. This was confirmed by electron microscopy. PilO and PilP did not have homologues in the sequence databases, but the predicted PilN amino acid sequence displayed similarity to XpsL from Xanthamonas campestris, a protein required for protein secretion. PilP contained a hydrophobic leader sequence characteristic of lipoproteins, while PilN and PilO have long internal hydrophobic domains which may serve to localize them to the cytoplasmic membrane. PilM has shared sequence motifs with the cell division protein FtsA from Bacillus subtilis and Escherichia coli, as well as the rod-shape-determining protein MreB from E. coli. These motifs are also conserved in eukaryotic actin, in which they are involved in forming an ATPase domain. Deletion mutants of pilM and pilQ displayed a dominant negative phenotype when transformed into wild-type cells, suggesting that these genes encode proteins involved in multimeric structures.
Collapse
Affiliation(s)
- P R Martin
- Centre for Molecular and Cellular Biology, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
45
|
|
46
|
McCormick JR, Su EP, Driks A, Losick R. Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ. Mol Microbiol 1994; 14:243-54. [PMID: 7830569 DOI: 10.1111/j.1365-2958.1994.tb01285.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A homologue of the bacterial cell division gene ftsZ was cloned from the filamentous bacterium Streptomyces coelicolor. The gene was located on the physical map of the chromosome at about '11 o'clock' (in the vicinity of glkA, hisA and trpB). Surprisingly, a null mutant in which the 399-codon ftsZ open reading frame was largely deleted was viable, even though the mutant was blocked in septum formation. This indicates that cell division may not be essential for the growth and viability of S. coelicolor. The ftsZ mutant was able to produce aerial hyphae but was unable to produce spores, a finding consistent with the idea that ftsZ is required in order for aerial hyphae to undergo septation into the uninucleoid cells that differentiate into spores.
Collapse
Affiliation(s)
- J R McCormick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | |
Collapse
|
47
|
Harry EJ, Partridge SR, Weiss AS, Wake RG. Conservation of the 168 divIB gene in Bacillus subtilis W23 and B. licheniformis, and evidence for homology to ftsQ of Escherichia coli. Gene X 1994; 147:85-9. [PMID: 8088553 DOI: 10.1016/0378-1119(94)90043-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The chromosomal regions of Bacillus subtilis (Bs) W23 and Bacillus licheniformis (Bl), which span the sequence encoding the homolog of the division initiation gene, divIB, of Bs168 were cloned and sequenced. The high level of conservation of the amino acid (aa) sequence of the DivIB protein (99 and 68% identity for BsW23 and Bl, respectively) was consistent with a significant role for this protein in the cell cycle of the two species. The hydropathy profile for DivIB of Bl was almost identical to that of Bs168 and consistent with a membrane location, as previously established for the latter. The higher than average level of identity (87%) of the 31-aa N-terminal cytoplasmic domain of DivIB between Bs168 and Bl raised the possibility of a special role for this domain. Database analyses using the Bl DivIB sequence and similarity analyses also strongly suggested that DivIB, of Bl and Bs, is a homolog of FtsQ of Escherichia coli. The flanking sequences extending into the unidentified orfs both upstream and downstream from divIB were highly conserved between Bs168 and Bl at both the nucleotide and aa levels. It was confirmed that orf4 of Bs168 is dispensable.
Collapse
Affiliation(s)
- E J Harry
- Department of Biochemistry, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
48
|
Dharmatilake AJ, Kendrick KE. Expression of the division-controlling gene ftsZ during growth and sporulation of the filamentous bacterium Streptomyces griseus. Gene 1994; 147:21-8. [PMID: 8088545 DOI: 10.1016/0378-1119(94)90034-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The branched, filamentous cells of Streptomyces form two different types of septum: those found infrequently in vegetative mycelia and those that form the boundaries of developing spores. To begin to understand the role of cell septation events in the Streptomyces life cycle, we have isolated the ftsZ locus from Streptomyces griseus, an organism that undergoes sporulation on solid surfaces and in liquid culture. The nucleotide sequence of the cloned DNA indicates that ftsZ in S. griseus lies within a region containing other genes likely to be involved in cell division and cell wall biogenesis. A gene (ORF1) showing significant similarity to ftsQ maps a short distance upstream from ftsZ, but there is no evidence for an ftsA homologue between ftsZ and ORF1. Transcription analysis suggests that ftsZ is expressed during both vegetative growth and sporulation. Immunoblots of soluble protein preparations from vegetative and sporulating mycelia indicate that FtsZ is present at similar levels during growth and differentiation. There appears to be only one ftsZ gene in S. griseus. We interpret these results to indicate that any temporal regulation of FtsZ that may be necessary for the enhanced synthesis of septa during sporulation of S. griseus is likely to occur predominantly at the level of activity rather than synthesis.
Collapse
Affiliation(s)
- A J Dharmatilake
- Department of Microbiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
49
|
RayChaudhuri D, Park J. A point mutation converts Escherichia coli FtsZ septation GTPase to an ATPase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31600-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
50
|
Abstract
FtsZ is an essential cell division protein that is localized to the leading edge of the bacterial septum in a cytokinetic ring. It contains the tubulin signature motif and is a GTP binding protein with a GTPase activity. Further comparison of FtsZ with eukaryotic tubulins revealed some additional sequence similarities, perhaps indicating a similar GTP binding site. Examination of FtsZ incubated in vitro by electron microscopy revealed a guanine nucleotide-dependent assembly into protein filaments, supporting the hypothesis that the FtsZ ring is formed through self-assembly. FtsZ3, which is unable to bind GTP, does not polymerize, whereas FtsZ2, which binds GTP but is deficient in GTP hydrolysis, is capable of polymerization.
Collapse
Affiliation(s)
- A Mukherjee
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City 66103
| | | |
Collapse
|