1
|
Benler S, Koonin EV. Recruitment of Mobile Genetic Elements for Diverse Cellular Functions in Prokaryotes. Front Mol Biosci 2022; 9:821197. [PMID: 35402511 PMCID: PMC8987985 DOI: 10.3389/fmolb.2022.821197] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
Prokaryotic genomes are replete with mobile genetic elements (MGE) that span a continuum of replication autonomy. On numerous occasions during microbial evolution, diverse MGE lose their autonomy altogether but, rather than being quickly purged from the host genome, assume a new function that benefits the host, rendering the immobilized MGE subject to purifying selection, and resulting in its vertical inheritance. This mini-review highlights the diversity of the repurposed (exapted) MGE as well as the plethora of cellular functions that they perform. The principal contribution of the exaptation of MGE and their components is to the prokaryotic functional systems involved in biological conflicts, and in particular, defense against viruses and other MGE. This evolutionary entanglement between MGE and defense systems appears to stem both from mechanistic similarities and from similar evolutionary predicaments whereby both MGEs and defense systems tend to incur fitness costs to the hosts and thereby evolve mechanisms for survival including horizontal mobility, causing host addiction, and exaptation for functions beneficial to the host. The examples discussed demonstrate that the identity of an MGE, overall mobility and relationship with the host cell (mutualistic, symbiotic, commensal, or parasitic) are all factors that affect exaptation.
Collapse
Affiliation(s)
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
2
|
Abstract
Species of the floating, freshwater fern Azolla form a well-characterized symbiotic association with the non-culturable cyanobacterium Nostoc azollae, which fixes nitrogen for the plant. However, several cyanobacterial strains have over the years been isolated and cultured from Azolla from all over the world. The genomes of 10 of these strains were sequenced and compared with each other, with other symbiotic cyanobacterial strains, and with similar strains that were not isolated from a symbiotic association. The 10 strains fell into three distinct groups: six strains were nearly identical to the non-symbiotic strain, Nostoc (Anabaena) variabilis ATCC 29413; three were similar to the symbiotic strain, Nostoc punctiforme, and one, Nostoc sp. 2RC, was most similar to non-symbiotic strains of Nostoc linckia. However, Nostoc sp. 2RC was unusual because it has three sets of nitrogenase genes; it has complete gene clusters for two distinct Mo-nitrogenases and an alternative V-nitrogenase. Genes for Mo-nitrogenase, sugar transport, chemotaxis and pili characterized all the symbiotic strains. Several of the strains infected the liverwort Blasia, including N. variabilis ATCC 29413, which did not originate from Azolla but rather from a sewage pond. However, only Nostoc sp. 2RC, which produced highly motile hormogonia, was capable of high-frequency infection of Blasia. Thus, some of these strains, which grow readily in the laboratory, may be useful in establishing novel symbiotic associations with other plants.
Collapse
Affiliation(s)
- Brenda S. Pratte
- Department of Biology, University of Missouri–St. Louis, One University Blvd, St. Louis, MO 63121, USA
| | - Teresa Thiel
- Department of Biology, University of Missouri–St. Louis, One University Blvd, St. Louis, MO 63121, USA
- *Correspondence: Teresa Thiel,
| |
Collapse
|
3
|
Mageeney CM, Lau BY, Wagner JM, Hudson CM, Schoeniger JS, Krishnakumar R, Williams KP. New candidates for regulated gene integrity revealed through precise mapping of integrative genetic elements. Nucleic Acids Res 2020; 48:4052-4065. [PMID: 32182341 PMCID: PMC7192596 DOI: 10.1093/nar/gkaa156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Integrative genetic elements (IGEs) are mobile multigene DNA units that integrate into and excise from host bacterial genomes. Each IGE usually targets a specific site within a conserved host gene, integrating in a manner that preserves target gene function. However, a small number of bacterial genes are known to be inactivated upon IGE integration and reactivated upon excision, regulating phenotypes of virulence, mutation rate, and terminal differentiation in multicellular bacteria. The list of regulated gene integrity (RGI) cases has been slow-growing because IGEs have been challenging to precisely and comprehensively locate in genomes. We present software (TIGER) that maps IGEs with unprecedented precision and without attB site bias. TIGER uses a comparative genomic, ping-pong BLAST approach, based on the principle that the IGE integration module (i.e. its int-attP region) is cohesive. The resultant IGEs from 2168 genomes, along with integrase phylogenetic analysis and gene inactivation tests, revealed 19 new cases of genes whose integrity is regulated by IGEs (including dut, eccCa1, gntT, hrpB, merA, ompN, prkA, tqsA, traG, yifB, yfaT and ynfE), as well as recovering previously known cases (in sigK, spsM, comK, mlrA and hlb genes). It also recovered known clades of site-promiscuous integrases and identified possible new ones.
Collapse
Affiliation(s)
- Catherine M Mageeney
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Britney Y Lau
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Julian M Wagner
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Corey M Hudson
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Joseph S Schoeniger
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Raga Krishnakumar
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| | - Kelly P Williams
- Sandia National Laboratories, Systems Biology Department, Livermore, CA 94551-0969, USA
| |
Collapse
|
4
|
Österholm J, Popin RV, Fewer DP, Sivonen K. Phylogenomic Analysis of Secondary Metabolism in the Toxic Cyanobacterial Genera Anabaena, Dolichospermum and Aphanizomenon. Toxins (Basel) 2020; 12:E248. [PMID: 32290496 PMCID: PMC7232259 DOI: 10.3390/toxins12040248] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/20/2023] Open
Abstract
Cyanobacteria produce an array of toxins that pose serious health risks to humans and animals. The closely related diazotrophic genera, Anabaena, Dolichospermum, and Aphanizomenon, frequently form poisonous blooms in lakes and brackish waters around the world. These genera form a complex now termed the Anabaena, Dolichospermum, and Aphanizomenon (ADA) clade and produce a greater array of toxins than any other cyanobacteria group. However, taxonomic confusion masks the distribution of toxin biosynthetic pathways in cyanobacteria. Here we obtained 11 new draft genomes to improve the understanding of toxin production in these genera. Comparison of secondary metabolite pathways in all available 31 genomes for these three genera suggests that the ability to produce microcystin, anatoxin-a, and saxitoxin is associated with specific subgroups. Each toxin gene cluster was concentrated or even limited to a certain subgroup within the ADA clade. Our results indicate that members of the ADA clade encode a variety of secondary metabolites following the phylogenetic clustering of constituent species. The newly sequenced members of the ADA clade show that phylogenetic separation of planktonic Dolichospermum and benthic Anabaena is not complete. This underscores the importance of taxonomic revision of Anabaena, Dolichospermum, and Aphanizomenon genera to reflect current phylogenomic understanding.
Collapse
Affiliation(s)
| | | | | | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (J.Ö.); (R.V.P.); (D.P.F.)
| |
Collapse
|
5
|
Cell membrane fatty acid and pigment composition of the psychrotolerant cyanobacterium Nodularia spumigena CHS1 isolated from Hopar glacier, Pakistan. Extremophiles 2019; 24:135-145. [PMID: 31655895 DOI: 10.1007/s00792-019-01141-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
In the present study, cyanobacterium isolate CHS1 isolated from Hopar glacier, Pakistan, was analyzed for the first time for cell membrane fatty acids and production of pigments. Sequencing of the 16-23S intergenetic region confirmed identification of the isolate CHS1 as Nodularia spumigena. All chlorophyll and carotenoid pigments were quantified using high-performance liquid chromatography and experiments to test tolerance against a range of physico-chemical conditions were conducted. Likewise, the fatty acid profile of the cell membrane CHS1 was analyzed using gas chromatography and mass spectroscopy. The cyanobacterium isolate CHS1 demonstrated tolerance to 8 g/L% NaCl, 35°C and pH 5-9. The characteristic polyunsaturated fatty acid (PUFA) of isolate CHS1, C18:4, was observed in fatty acid methyl esters (FAMEs) extracted from the cell membrane. CHS1 was capable of producing saturated fatty acids (SFA) (e.g., C16:0), monounsaturated fatty acids (MUFA) (e.g., C18:1) and polyunsaturated fatty acids (e.g., C20:5) in the cell membrane. In this study, we hypothesize that one mechanism of cold adaptation displayed by isolate CHS1 is the accumulation of high amounts of PUFA in the cell membrane.
Collapse
|
6
|
Hou S, Brenes-Álvarez M, Reimann V, Alkhnbashi OS, Backofen R, Muro-Pastor AM, Hess WR. CRISPR-Cas systems in multicellular cyanobacteria. RNA Biol 2019; 16:518-529. [PMID: 29995583 PMCID: PMC6546389 DOI: 10.1080/15476286.2018.1493330] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/01/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023] Open
Abstract
Novel CRISPR-Cas systems possess substantial potential for genome editing and manipulation of gene expression. The types and numbers of CRISPR-Cas systems vary substantially between different organisms. Some filamentous cyanobacteria harbor > 40 different putative CRISPR repeat-spacer cassettes, while the number of cas gene instances is much lower. Here we addressed the types and diversity of CRISPR-Cas systems and of CRISPR-like repeat-spacer arrays in 171 publicly available genomes of multicellular cyanobacteria. The number of 1328 repeat-spacer arrays exceeded the total of 391 encoded Cas1 proteins suggesting a tendency for fragmentation or the involvement of alternative adaptation factors. The model cyanobacterium Anabaena sp. PCC 7120 contains only three cas1 genes but hosts three Class 1, possibly one Class 2 and five orphan repeat-spacer arrays, all of which exhibit crRNA-typical expression patterns suggesting active transcription, maturation and incorporation into CRISPR complexes. The CRISPR-Cas system within the element interrupting the Anabaena sp. PCC 7120 fdxN gene, as well as analogous arrangements in other strains, occupy the genetic elements that become excised during the differentiation-related programmed site-specific recombination. This fact indicates the propensity of these elements for the integration of CRISPR-cas systems and points to a previously not recognized connection. The gene all3613 resembling a possible Class 2 effector protein is linked to a short repeat-spacer array and a single tRNA gene, similar to its homologs in other cyanobacteria. The diversity and presence of numerous CRISPR-Cas systems in DNA elements that are programmed for homologous recombination make filamentous cyanobacteria a prolific resource for their study. Abbreviations: Cas: CRISPR associated sequences; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; C2c: Class 2 candidate; SDR: small dispersed repeat; TSS: transcriptional start site; UTR: untranslated region.
Collapse
Affiliation(s)
- Shengwei Hou
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Viktoria Reimann
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Omer S. Alkhnbashi
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Alicia M. Muro-Pastor
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies,University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
The Swinholide Biosynthesis Gene Cluster from a Terrestrial Cyanobacterium, Nostoc sp. Strain UHCC 0450. Appl Environ Microbiol 2018; 84:AEM.02321-17. [PMID: 29150506 PMCID: PMC5772238 DOI: 10.1128/aem.02321-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/03/2017] [Indexed: 12/02/2022] Open
Abstract
Swinholides are 42-carbon ring polyketides with a 2-fold axis of symmetry. They are potent cytotoxins that disrupt the actin cytoskeleton. Swinholides were discovered from the marine sponge Theonella sp. and were long suspected to be produced by symbiotic bacteria. Misakinolide, a structural variant of swinholide, was recently demonstrated to be the product of a symbiotic heterotrophic proteobacterium. Here, we report the production of swinholide A by an axenic strain of the terrestrial cyanobacterium Nostoc sp. strain UHCC 0450. We located the 85-kb trans-AT polyketide synthase (PKS) swinholide biosynthesis gene cluster from a draft genome of Nostoc sp. UHCC 0450. The swinholide and misakinolide biosynthesis gene clusters share an almost identical order of catalytic domains, with 85% nucleotide sequence identity, and they group together in phylogenetic analysis. Our results resolve speculation around the true producer of swinholides and demonstrate that bacteria belonging to two distantly related phyla both produce structural variants of the same natural product. In addition, we described a biosynthesis cluster from Anabaena sp. strain UHCC 0451 for the synthesis of the cytotoxic and antifungal scytophycin. All of these biosynthesis gene clusters were closely related to each other and created a group of cytotoxic macrolide compounds produced by trans-AT PKSs of cyanobacteria and proteobacteria. IMPORTANCE Many of the drugs in use today originate from natural products. New candidate compounds for drug development are needed due to increased drug resistance. An increased knowledge of the biosynthesis of bioactive compounds can be used to aid chemical synthesis to produce novel drugs. Here, we show that a terrestrial axenic culture of Nostoc cyanobacterium produces swinholides, which have been previously found only from marine sponge or samples related to them. Swinholides are polyketides with a 2-fold axis of symmetry, and they are potent cytotoxins that disrupt the actin cytoskeleton. We describe the biosynthesis gene clusters of swinholide from Nostoc cyanobacteria, as well as the related cytotoxic and antifungal scytophycin from Anabaena cyanobacteria, and we study the evolution of their trans-AT polyketide synthases. Interestingly, swinholide is closely related to misakinolide produced by a symbiotic heterotrophic proteobacterium, demonstrating that bacteria belonging to two distantly related phyla and different habitats can produce similar natural products.
Collapse
|
8
|
Trivedi U, Kaushik S, Kunjadia P, Saravanan M, Nagaraja V, Archana G, Nareshkumar G. Functional expression and purification of Anabaena PCC 7120 XisA protein. Protein Expr Purif 2015; 118:64-9. [PMID: 26434536 DOI: 10.1016/j.pep.2015.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/07/2015] [Accepted: 09/28/2015] [Indexed: 10/23/2022]
Abstract
Anabaena PCC 7120 xisA gene product mediates the site-specific excision of 11,278 bp nifD element in heterocysts formed under nitrogen starvation conditions. Although XisA protein possesses both site-specific recombinase and endonuclease activities, till date neither xisA transcript nor XisA protein has been detected. Gene encoding XisA protein was isolated from plasmid pMX25 and overexpressed in Escherichia coli BL21 DE3 yielding 7.7 mg enzyme per L of growth culture in soluble fraction. His-tagged XisA was purified using Ni-NTA affinity chromatography with 95% recovery. The purified XisA showed a single band on SDS-PAGE with molecular mass of 52 kDa. Identity of XisA was confirmed by MALDI-TOF analysis and functionality of enzyme was confirmed using restriction digestion. A PCR based method was developed to monitor excision by XisA, which displayed near 100% activity in E. coli within 1 h at 37 (°)C on LB under static condition.
Collapse
Affiliation(s)
- Ujwal Trivedi
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Shubham Kaushik
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Prashant Kunjadia
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Matheshwaran Saravanan
- Department of Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore, 560012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, CV Raman Avenue, Bangalore, 560012, India
| | - Gattupalli Archana
- Department of Microbiology and Biotechnology Centre, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India
| | - Gattupalli Nareshkumar
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, 390 002, India.
| |
Collapse
|
9
|
Thiel T, Pratte BS. Regulation of Three Nitrogenase Gene Clusters in the Cyanobacterium Anabaena variabilis ATCC 29413. Life (Basel) 2014; 4:944-67. [PMID: 25513762 PMCID: PMC4284476 DOI: 10.3390/life4040944] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022] Open
Abstract
The filamentous cyanobacterium Anabaena variabilis ATCC 29413 fixes nitrogen under aerobic conditions in specialized cells called heterocysts that form in response to an environmental deficiency in combined nitrogen. Nitrogen fixation is mediated by the enzyme nitrogenase, which is very sensitive to oxygen. Heterocysts are microxic cells that allow nitrogenase to function in a filament comprised primarily of vegetative cells that produce oxygen by photosynthesis. A. variabilis is unique among well-characterized cyanobacteria in that it has three nitrogenase gene clusters that encode different nitrogenases, which function under different environmental conditions. The nif1 genes encode a Mo-nitrogenase that functions only in heterocysts, even in filaments grown anaerobically. The nif2 genes encode a different Mo-nitrogenase that functions in vegetative cells, but only in filaments grown under anoxic conditions. An alternative V-nitrogenase is encoded by vnf genes that are expressed only in heterocysts in an environment that is deficient in Mo. Thus, these three nitrogenases are expressed differentially in response to environmental conditions. The entire nif1 gene cluster, comprising at least 15 genes, is primarily under the control of the promoter for the first gene, nifB1. Transcriptional control of many of the downstream nif1 genes occurs by a combination of weak promoters within the coding regions of some downstream genes and by RNA processing, which is associated with increased transcript stability. The vnf genes show a similar pattern of transcriptional and post-transcriptional control of expression suggesting that the complex pattern of regulation of the nif1 cluster is conserved in other cyanobacterial nitrogenase gene clusters.
Collapse
Affiliation(s)
- Teresa Thiel
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA.
| | - Brenda S Pratte
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA.
| |
Collapse
|
10
|
Mishra AK, Shukla E, Singh SS. Phylogenetic comparison among the heterocystous cyanobacteria based on a polyphasic approach. PROTOPLASMA 2013; 250:77-94. [PMID: 22307204 DOI: 10.1007/s00709-012-0375-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
Phylogenetic comparison has been done among the selected heterocystous cyanobacteria belonging to the sections IV and V. The hierarchical cluster analysis based on antibiotics sensitivity showed a distant relationship between the members of Nostocales and Stigonematales. Thus, multiple antibiotic resistance pattern used as marker provide easy, fast, and reliable method for strain discrimination and genetic variability. However, morphological, physiological (both based on principal component analysis) and biochemical analysis grouped true branching cyanobacteria along with the members of section IV. Molecular analysis based on 16S rRNA gene sequences revealed that Hapalosiphon welwitschii and Westiellopsis sp. were grouped in cluster I whereas Scytonema bohnerii, a false branching genera showed a close proximity with Calothrix brevissima in cluster II. Cluster III of clade 2 included Nostoc calcicola and Anabaena oryzae which proved the heterogeneity at the generic level. Cluster IV the largest group of clade 2 based on 16S rRNA gene sequences includes six strains of the genera Nostoc, Anabaena, and Cylindrospermum showing ambiguous evolutionary relationship. In cluster IV, Anabaena sp. and Anabaena doliolum were phylogenetically linked by sharing 99% sequence similarity. Probably, they were of the same genetic makeup but appear differently under the diverse physiological conditions. Section IV showed polyphyletic origin whereas section V showed monophyletic origin. Results suggested that either morphological or physiological or biochemical or molecular attribute is not sufficient to provide true diversity and phylogeny of the cyanobacteria at the generic level and thus, a polyphasic approach would be more appropriate and reliable.
Collapse
Affiliation(s)
- Arun Kumar Mishra
- Laboratory of Microbial genetics, Department of Botany, Banaras Hindu University, Varanasi 221005, India.
| | | | | |
Collapse
|
11
|
Global transcription profiles of the nitrogen stress response resulting in heterocyst or hormogonium development in Nostoc punctiforme. J Bacteriol 2011; 193:6874-86. [PMID: 22001509 DOI: 10.1128/jb.05999-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Nostoc punctiforme differentiates from vegetative cells into three distinct cell types, heterocysts, hormogonia, and akinetes, in response to different stimuli. Cultures growing with ammonium can be induced to form hormogonia or heterocysts upon removal of the combined nitrogen. A DNA microarray consisting of 94% of the open reading frames predicted from the 9.059-Mb N. punctiforme genome was used to generate a global transcription data set consisting of seven time points over a 24-h period of nitrogen deprivation, which results in heterocyst formation. This data set was compared to a similarly generated data set of nitrogen-starved N. punctiforme resulting in hormogonium formation that had previously been published (E. L. Campbell, H. Christman, and J. C. Meeks, J. Bacteriol. 190:7382-7391, 2008). The transition from vegetative cells to either heterocysts or hormogonia resulted in rapid and sustained expression of genes required for utilization of alternate nitrogen sources. Overall, 1,036 and 1,762 genes were found to be differentially transcribed during the heterocyst and hormogonium time courses, respectively, as analyzed with the Bayesian user-friendly software for analyzing time series microarray experiments (BATS). Successive transcription of heterocyst regulatory, structural, and functional genes occurred over the 24 h required to form a functional heterocyst. During hormogonium differentiation, some heterocyst structural and functional genes were upregulated, while the heterocyst master regulator hetR was downregulated. There are commonalities in differential expression between cells bound for differentiation into heterocysts or hormogonia, yet the two paths are distinguished by their developmentally specific transcription profiles.
Collapse
|
12
|
Anatoxin-a synthetase gene cluster of the cyanobacterium Anabaena sp. strain 37 and molecular methods to detect potential producers. Appl Environ Microbiol 2011; 77:7271-8. [PMID: 21873484 DOI: 10.1128/aem.06022-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial mass occurrences are common in fresh and brackish waters. They pose a threat to water users due to toxins frequently produced by the cyanobacterial species present. Anatoxin-a and homoanatoxin-a are neurotoxins synthesized by various cyanobacteria, e.g., Anabaena, Oscillatoria, and Aphanizomenon. The biosynthesis of these toxins and the genes involved in anatoxin production were recently described for Oscillatoria sp. strain PCC 6506 (A. Méjean et al., J. Am. Chem. Soc. 131:7512-7513, 2009). In this study, we identified the anatoxin synthetase gene cluster (anaA to anaG and orf1; 29 kb) in Anabaena sp. strain 37. The gene (81.6% to 89.2%) and amino acid (78.8% to 86.9%) sequences were highly similar to those of Oscillatoria sp. PCC 6506, while the organization of the genes differed. Molecular detection methods for potential anatoxin-a and homoanatoxin-a producers of the genera Anabaena, Aphanizomenon, and Oscillatoria were developed by designing primers to recognize the anaC gene. Anabaena and Oscillatoria anaC genes were specifically identified in several cyanobacterial strains by PCR. Restriction fragment length polymorphism (RFLP) analysis of the anaC amplicons enabled simultaneous identification of three producer genera: Anabaena, Oscillatoria, and Aphanizomenon. The molecular methods developed in this study revealed the presence of both Anabaena and Oscillatoria as potential anatoxin producers in Finnish fresh waters and the Baltic Sea; they could be applied for surveys of these neurotoxin producers in other aquatic environments.
Collapse
|
13
|
Henson BJ, Hartman L, Watson LE, Barnum SR. Evolution and variation of the nifD and hupL elements in the heterocystous cyanobacteria. Int J Syst Evol Microbiol 2011; 61:2938-2949. [PMID: 21278412 DOI: 10.1099/ijs.0.028340-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In heterocystous cyanobacteria, heterocyst differentiation is accompanied by developmentally regulated DNA rearrangements that occur within the nifD and hupL genes, referred to as the nifD and hupL elements. These elements are segments of DNA that are embedded within the coding region of each gene and range from 4 to 24 kb in length. The nifD and hupL elements are independently excised from the genome during the later stages of differentiation by the site-specific recombinases, XisA and XisC, respectively, which are encoded within the elements themselves. Here we examine the variation and evolution of the nifD and hupL elements by comparing full-length nifD and hupL element sequences and by phylogenetic analysis of xisA and xisC gene sequences. There is considerable variation in the size and composition of the nifD and hupL elements, however, conserved regions are also present within representatives of each element. The data suggest that the nifD and hupL elements have undergone a complex pattern of insertions, deletions, translocations and sequence divergence over the course of evolution, but that conserved regions remain.
Collapse
Affiliation(s)
- Brian J Henson
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, USA
| | | | | | | |
Collapse
|
14
|
Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K. Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). ACTA ACUST UNITED AC 2010; 17:265-73. [PMID: 20338518 DOI: 10.1016/j.chembiol.2010.01.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 11/25/2022]
Abstract
Anabaenopeptins are a diverse family of cyclic hexapeptide protease inhibitors produced by cyanobacteria that contain a conserved ureido bond and D-Lys moiety. Here we demonstrate that anabaenopeptins are assembled on a nonribosomal peptide synthetase enzyme complex encoded by a 32 kb apt gene cluster in the cyanobacterium Anabaena sp. strain 90. Surprisingly, the gene cluster encoded two alternative starter modules organized in separate bimodular proteins. The starter modules display high substrate specificity for L-Arg/L-Lys and L-Tyr, respectively, and allow the specific biosynthesis of different anabaenopeptin variants. The two starter modules were found also in other Anabaena strains. However, just a single module was present in the anabaenopeptin gene clusters of Nostoc and Nodularia, respectively. The organization of the apt gene cluster in Anabaena represents an exception to the established colinearity rule of linear non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Leo Rouhiainen
- Department of Food and Environmental Sciences, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
15
|
RNA processing of nitrogenase transcripts in the cyanobacterium Anabaena variabilis. J Bacteriol 2010; 192:3311-20. [PMID: 20435734 DOI: 10.1128/jb.00278-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the regulation of nitrogenase genes in cyanobacteria. Transcription of the nifH1 and vnfH genes, encoding dinitrogenase reductases for the heterocyst-specific Mo-nitrogenase and the alternative V-nitrogenase, respectively, was studied by using a lacZ reporter. Despite evidence for a transcription start site just upstream of nifH1 and vnfH, promoter fragments that included these start sites did not drive the transcription of lacZ and, for nifH1, did not drive the expression of nifHDK1. Further analysis using larger regions upstream of nifH1 indicated that a promoter within nifU1 and a promoter upstream of nifB1 both contributed to expression of nifHDK1, with the nifB1 promoter contributing to most of the expression. Similarly, while the region upstream of vnfH, containing the putative transcription start site, did not drive expression of lacZ, the region that included the promoter for the upstream gene, ava4055, did. Characterization of the previously reported nifH1 and vnfH transcriptional start sites by 5'RACE (5' rapid amplification of cDNA ends) revealed that these 5' ends resulted from processing of larger transcripts rather than by de novo transcription initiation. The 5' positions of both the vnfH and nifH1 transcripts lie at the base of a stem-loop structure that may serve to stabilize the nifHDK1 and vnfH specific transcripts compared to the transcripts for other genes in the operons providing the proper stoichiometry for the Nif proteins for nitrogenase synthesis.
Collapse
|
16
|
Abstract
Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function together to accommodate the oxygen-sensitive process of nitrogen fixation. This article focuses on recent research on heterocyst development, including morphogenesis, transport of molecules between cells in a filament, differential gene expression, and pattern formation.
Collapse
Affiliation(s)
- Krithika Kumar
- Department of Biology, Texas A&M University, College Station, 77843, USA
| | | | | |
Collapse
|
17
|
Fewer DP, Jokela J, Rouhiainen L, Wahlsten M, Koskenniemi K, Stal LJ, Sivonen K. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacteriumNodularia spumigena. Mol Microbiol 2009; 73:924-37. [DOI: 10.1111/j.1365-2958.2009.06816.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Karunakaran R, Mehta O, Kunjadia P, Apte S, Nareshkumar G. Excision of Anabaena PCC 7120 nifD element in Escherichia coli: Growth kinetics and RecA regulated xisA expression and DNA rearrangement. BIORESOURCE TECHNOLOGY 2008; 99:4551-8. [PMID: 17765537 DOI: 10.1016/j.biortech.2007.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 05/29/2007] [Accepted: 07/06/2007] [Indexed: 05/17/2023]
Abstract
Anabaena PCC 7120 nifHDK operon is interrupted by an 11 kb DNA element which is excised during the development of heterocysts by Excisase A, encoded by the xisA gene residing on the element. The excision is a site-specific recombination event that occurs at the 11 base pair direct repeats flanking the element. Earlier work showed the excision of the 11 kb element in Escherichia coli at a frequency 0.3%. We report here the excision of this element at 1.1% and 1.98% in E. coli DH5alpha, and 1.9% and 10.9% in E. coli JM 101 when grown on Luria broth and minimal media, respectively. Excision of nifD element in isogenic recA(-) (RK1) and recA+ (RK2) E. coli JM101 P1 transductants, showed similar results to that of E. coli JM101 and DH5alpha, respectively. A plasmid pMX32, carrying a xisA defective 11kb element, showed no excision in E. coli RK2 strain. In contrast to Anabaena PCC 7120, excision of nifD element did not increase in E. coli DH5alpha grown in iron-deficient conditions. A PxisA::lacZ transcriptional fusion, used to detect the expression of elusive xisA gene, showed maximal beta-galactosidase activity in the stationary phase. The results suggest that the excision event in E. coli may involve additional factors, such as RecA and that the physiological status can influence the excision of nifD element.
Collapse
Affiliation(s)
- R Karunakaran
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, MS University of Baroda, Vadodara 390 002, India
| | | | | | | | | |
Collapse
|
19
|
Henson BJ, Pennington LE, Watson LE, Barnum SR. Excision of the nifD element in the heterocystous cyanobacteria. Arch Microbiol 2008; 189:357-66. [PMID: 18283436 DOI: 10.1007/s00203-007-0326-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 10/17/2007] [Accepted: 11/02/2007] [Indexed: 11/30/2022]
Abstract
Heterocyst differentiation in cyanobacteria is accompanied by developmentally regulated DNA rearrangements that occur within the nifD, fdxN, and hupL genes. These genetic elements are excised from the genome by site-specific recombination during the latter stages of differentiation. The nifD element is excised by the recombinase, XisA, located within the element. Our objective was to examine the XisA-mediated excision of the nifD element. To accomplish this, we observed the ability of XisA to excise substrate plasmids that contained the flanking regions of the nifD element in an E. coli host. Using PCR directed mutagenesis, nucleotides in the nifD element flanking regions in substrate plasmids were altered and the effect on recombination was determined. Results indicate that only certain nucleotides within and surrounding the direct repeats are involved in excision. In some nucleotide positions, the presence of a purine versus a pyrimidine greatly affected recombination. Our results also indicated that the site of excision and branch migration occurs in a 6 bp region within the direct repeats.
Collapse
Affiliation(s)
- B J Henson
- Graduate School of Public Health, Department of Human Genetics, University of Pittsburgh, 315 Paran Hall, 130 De Soto St, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
20
|
Sihvonen LM, Lyra C, Fewer DP, Rajaniemi-Wacklin P, Lehtimäki JM, Wahlsten M, Sivonen K. Strains of the cyanobacterial genera Calothrix and Rivularia isolated from the Baltic Sea display cryptic diversity and are distantly related to Gloeotrichia and Tolypothrix. FEMS Microbiol Ecol 2007; 61:74-84. [PMID: 17466025 DOI: 10.1111/j.1574-6941.2007.00321.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Strains of the cyanobacterial genus Calothrix display pronounced tapering filaments. These cyanobacteria are benthic, have a worldwide distribution and are among the most easily recognizable cyanobacterial genera. However, it is not clear whether cyanobacterial strains assigned to the genus Calothrix constitute a natural monophyletic group. We sequenced 16S rRNA genes from 42 cyanobacterial cultures and environmental samples belonging to the genus Calothrix, and the morphologically similar genera Rivularia, Gloeotrichia and Tolypothrix. Phylogenetic analysis of the 16S rRNA gene identified large sequence diversity among the Calothrix morphotype strains. Our results demonstrate that Calothrix, Gloeotrichia and Tolypothrix do not form a monophyletic group but instead display a high level of genetic diversity. The evolutionary distances between cyanobacteria, morphologically identified as Calothrix, suggest that they belong to at least five different genera. Our results also suggest that the genus Gloeotrichia is distantly related to the genus Calothrix. We found correlations between genetic grouping and morphology in redundancy analysis. However, morphology alone was not sufficiently reliable to distinguish strains from different 16S rRNA gene clusters. The high level of diversity that we observed confirms the hypothesis that the Rivulariaceae are species rich.
Collapse
Affiliation(s)
- Leila M Sihvonen
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
21
|
Shi L, Li JH, Cheng Y, Wang L, Chen WL, Zhang CC. Two genes encoding protein kinases of the HstK family are involved in synthesis of the minor heterocyst-specific glycolipid in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2007; 189:5075-81. [PMID: 17513480 PMCID: PMC1951881 DOI: 10.1128/jb.00323-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 can fix N(2) under oxic conditions, and the activity of nitrogen fixation occurs exclusively in heterocysts, cells differentiated from vegetative cells in response to a limitation of a combined-nitrogen source in the growth medium. At the late stages of heterocyst differentiation, an envelope layer composed of two glycolipids is formed to limit the entry of oxygen so that the oxygen-sensitive nitrogenase can function. The genome of Anabaena sp. strain PCC 7120 possesses a family of 13 genes (the hstK family), all encoding proteins with a putative Ser/Thr kinase domain at their N termini and a His-kinase domain at their C termini. In this study, we showed that the double mutant D4.3 strain, in which two members of this gene family, pkn44 (all1625) and pkn30 (all3691), were both inactivated, failed to fix N(2) in the presence of oxygen (Fox(-)). In an environment without oxygen, a low level of nitrogenase activity was detectable (Fix(+)). Heterocyst development in the mutant D4.3 was delayed by 24 h and arrested at a relatively early stage without the formation of the glycolipid layer (Hgl(-)). Only the minor species of the two heterocyst-specific glycolipids (HGLs) was missing in the mutant. We propose that DevH, a putative transcription factor, coordinates the synthesis of both HGLs, while Pkn44/Pkn30 and the previously characterized PrpJ may represent two distinct regulatory pathways involved in the synthesis of the minor HGL and the major HGL, respectively.
Collapse
Affiliation(s)
- Lei Shi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Suzuki T, Yoshimura H, Ehira S, Ikeuchi M, Ohmori M. AnCrpA, a cAMP receptor protein, regulates nif-related gene expression in the cyanobacterium Anabaena sp. strain PCC 7120 grown with nitrate. FEBS Lett 2006; 581:21-8. [PMID: 17173896 DOI: 10.1016/j.febslet.2006.11.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 11/08/2006] [Accepted: 11/23/2006] [Indexed: 10/23/2022]
Abstract
Target genes for a cAMP receptor protein, AnCrpA, were screened using an Anabaena oligonucleotide microarray and real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis. Several gene expressions, including some involved in nitrogen fixation, were downregulated in the ancrpA disruptant when cells were grown with nitrate. Electrophoretic mobility shift assays (EMSAs) revealed that AnCrpA bound to the 5' upstream region of nifB, all1439, hesA, all5347, hglE and coxBII in the presence of cAMP, and all of them are related with nitrogen fixation. A possible AnCrpA-binding site in the 5' upstream region of nifB was predicted using hidden Markov model (HMM) software based on the result of in vitro selection of AnCrpA-binding sequences, and the binding was confirmed by EMSA. Thus, AnCrpA regulates the expressions of gene clusters related to nitrogen fixation in the presence of nitrate.
Collapse
Affiliation(s)
- Takayuki Suzuki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
23
|
Carrasco CD, Holliday SD, Hansel A, Lindblad P, Golden JW. Heterocyst-specific excision of the Anabaena sp. strain PCC 7120 hupL element requires xisC. J Bacteriol 2005; 187:6031-8. [PMID: 16109944 PMCID: PMC1196164 DOI: 10.1128/jb.187.17.6031-6038.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In nitrogen-limiting conditions, approximately 10% of the vegetative cells in filaments of the cyanobacterium Anabaena (Nostoc) sp. strain PCC 7120 differentiate into nitrogen-fixing heterocysts. During the late stages of heterocyst differentiation, three DNA elements, each embedded within an open reading frame, are programmed to excise from the chromosome by site-specific recombination. The DNA elements are named after the genes that they interrupt: nifD, fdxN, and hupL. The nifD and fdxN elements each contain a gene, xisA or xisF, respectively, that encodes the site-specific recombinase required for programmed excision of the element. Here, we show that the xisC gene (alr0677), which is present at one end of the 9,435-bp hupL element, is required for excision of the hupL element. A strain in which the xisC gene was inactivated showed no detectable excision of the hupL element. hupL encodes the large subunit of uptake hydrogenase. The xisC mutant forms heterocysts and grows diazotrophically, but unlike the wild type, it evolved hydrogen gas under nitrogen-fixing conditions. Overexpression of xisC from a plasmid in a wild-type background caused a low level of hupL rearrangement even in nitrogen-replete conditions. Expression of xisC in Escherichia coli was sufficient to produce rearrangement of an artificial substrate plasmid bearing the hupL element recombination sites. Sequence analysis indicated that XisC is a divergent member of the phage integrase family of recombinases. Site-directed mutagenesis of xisC showed that the XisC recombinase has functional similarity to the phage integrase family.
Collapse
Affiliation(s)
- Claudio D Carrasco
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843-3258, USA
| | | | | | | | | |
Collapse
|
24
|
Ramírez ME, Hebbar PB, Zhou R, Wolk CP, Curtis SE. Anabaena sp. strain PCC 7120 gene devH is required for synthesis of the heterocyst glycolipid layer. J Bacteriol 2005; 187:2326-31. [PMID: 15774875 PMCID: PMC1065212 DOI: 10.1128/jb.187.7.2326-2331.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to deprivation for fixed nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 provides a microoxic intracellular environment for nitrogen fixation through the differentiation of semiregularly spaced vegetative cells into specialized cells called heterocysts. The devH gene is induced during heterocyst development and encodes a product with characteristics of a trans-acting regulatory protein. A devH mutant forms morphologically distinguishable heterocysts but is Fox(-), incapable of nitrogen fixation in the presence of oxygen. We demonstrate that rearrangements of nitrogen fixation genes take place normally in the devH mutant and that it is Fix(+), i.e., has nitrogenase activity under anoxic conditions. The Fox(-) phenotype was shown by ultrastructural studies to be associated with the absence of the glycolipid layer of the heterocyst envelope. The expression of glycolipid biosynthetic genes in the mutant is greatly reduced, and heterocyst glycolipids are undetectable.
Collapse
Affiliation(s)
- Martha E Ramírez
- Department of Genetics, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA
| | | | | | | | | |
Collapse
|
25
|
Olmedo-Verd E, Flores E, Herrero A, Muro-Pastor AM. HetR-dependent and -independent expression of heterocyst-related genes in an Anabaena strain overproducing the NtcA transcription factor. J Bacteriol 2005; 187:1985-91. [PMID: 15743946 PMCID: PMC1064053 DOI: 10.1128/jb.187.6.1985-1991.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120 depends on both the global nitrogen control transcription factor NtcA and the cell differentiation regulatory protein HetR, with expression of ntcA and hetR being dependent on each other. In this study we constructed strains that constitutively express the ntcA gene leading to high levels of NtcA protein irrespective of the nitrogen source, and we analyzed the effects of such NtcA levels on heterocyst differentiation. In the NtcA-overproducing strain, heterocyst differentiation, induction of NtcA-dependent heterocyst development genes or operons such as devBCA or the cox2 operon, and NtcA-dependent excision of the 11-kb nifD-intervening element only took place under nitrogen deficiency. Although functional heterocysts were produced in response to nitrogen step-down, the NtcA overproducing strain could not grow diazotrophically. Overexpression of ntcA in a hetR background promoted expression of devBCA in response to ammonium withdrawal and excision of the 11-kb element even in the presence of combined nitrogen. Our results show that some NtcA-dependent heterocyst-related genes can be expressed independently of HetR.
Collapse
Affiliation(s)
- Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Seville, Spain
| | | | | | | |
Collapse
|
26
|
Henson BJ, Watson LE, Barnum SR. Characterization of a 4 kb variant of the nifD element in Anabaena sp. strain ATCC 33047. Curr Microbiol 2005; 50:129-32. [PMID: 15883871 DOI: 10.1007/s00284-004-4338-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 05/27/2004] [Indexed: 10/25/2022]
Abstract
Heterocyst differentiation in some cyanobacteria is accompanied by a programmed DNA rearrangement within the nitrogen fixation gene nifD. The nifD element is excised from within nifD during the latter stages of heterocyst differentiation by site-specific recombination. There is considerable variation in those nifD elements examined thus far, with Nostoc sp. Strain PCC 7120 and Anabaena variabilis having 11 kb elements, and Nostoc punctiforme having a 24 kb element. Here we characterize a 4 kb nifD element in Anabaena sp. Strain ATCC 33047, and compare it with the other sequenced nifD elements. While there is considerable variation in both the size (ranging from 4 kb to 24 kb) and composition of the nifD elements examined thus far, there are regions that are conserved in all. These conserved regions include the flanking 3' and 5' regions, the xisA gene, and a small open reading frame known as ORF2 in Nostoc sp. Strain PCC 7120.
Collapse
Affiliation(s)
- Brian J Henson
- Department of Botany, Miami University, Oxford, OH, 45056, USA
| | | | | |
Collapse
|
27
|
Herrero A, Muro-Pastor AM, Valladares A, Flores E. Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 2004; 28:469-87. [PMID: 15374662 DOI: 10.1016/j.femsre.2004.04.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 12/31/2003] [Accepted: 04/04/2004] [Indexed: 10/26/2022] Open
Abstract
Some filamentous cyanobacteria can undergo a variety of cellular differentiation processes that permit their better adaptation to certain environmental conditions. These processes include the differentiation of hormogonia, short filaments aimed at the dispersal of the organism in the environment, of akinetes, cells resistant to various stress conditions, and of heterocysts, cells specialized in the fixation of atmospheric nitrogen in oxic environments. NtcA is a transcriptional regulator that operates global nitrogen control in cyanobacteria by activating (and in some cases repressing) many genes involved in nitrogen assimilation. NtcA is required for the triggering of heterocyst differentiation and for subsequent steps of its development and function. This requirement is based on the role of NtcA as an activator of the expression of hetR and other multiple genes at specific steps of the differentiation process. The products of these genes effect development as well as the distinct metabolism of the mature heterocyst. The different features found in the NtcA-dependent promoters, together with the cellular level of active NtcA protein, should have a role in the determination of the hierarchy of gene activation during the process of heterocyst differentiation.
Collapse
Affiliation(s)
- Antonia Herrero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas, Centro de Investigaciones Científicas Isla de la Cartuja, Universidad de Sevilla, Avda. Américo Vespucio s/n, E-41092 Seville, Spain.
| | | | | | | |
Collapse
|
28
|
Haraldsen JD, Sonenshein AL. Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene. Mol Microbiol 2003; 48:811-21. [PMID: 12694623 DOI: 10.1046/j.1365-2958.2003.03471.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 14.6 kb prophage-like insertion, termed skinCd, was found to interrupt the sigK gene, which encodes an RNA polymerase sigma factor essential for sporulation, in six strains of Clostridium difficile. Until now, Bacillus subtilis was the only spore-former shown to carry such an insertion, and the presence of the insertion is not required for efficient sporulation in this organism. The B. subtilis and C. difficile skin elements proved to be divergent in sequence, inserted at different sites within the sigK gene and in opposite orientations. The skinCd element was excised from the chromosome specifically during sporulation, forming a circular molecule. Two natural isolates of C. difficile lacked the skinCd element and were defective in sporulation. When a merodiploid strain was created that carries both interrupted and uninterrupted versions of the sigK gene, the cells became Spo-, showing that the uninterrupted gene is dominant and inhibits sporulation. C. difficile sigK genes, whether skinCd+ or skinCd-, lack the N-terminal pro-sequence found in all other sigK genes studied to date. Thus, regulated excision of skinCd appears to be a critical mechanism for achieving proper temporal activation of sigmaK.
Collapse
Affiliation(s)
- Jeralyn D Haraldsen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | | |
Collapse
|
29
|
Meeks JC, Elhai J. Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 2002; 66:94-121; table of contents. [PMID: 11875129 PMCID: PMC120779 DOI: 10.1128/mmbr.66.1.94-121.2002] [Citation(s) in RCA: 313] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain filamentous nitrogen-fixing cyanobacteria generate signals that direct their own multicellular development. They also respond to signals from plants that initiate or modulate differentiation, leading to the establishment of a symbiotic association. An objective of this review is to describe the mechanisms by which free-living cyanobacteria regulate their development and then to consider how plants may exploit cyanobacterial physiology to achieve stable symbioses. Cyanobacteria that are capable of forming plant symbioses can differentiate into motile filaments called hormogonia and into specialized nitrogen-fixing cells called heterocysts. Plant signals exert both positive and negative regulatory control on hormogonium differentiation. Heterocyst differentiation is a highly regulated process, resulting in a regularly spaced pattern of heterocysts in the filament. The evidence is most consistent with the pattern arising in two stages. First, nitrogen limitation triggers a nonrandomly spaced cluster of cells (perhaps at a critical stage of their cell cycle) to initiate differentiation. Interactions between an inhibitory peptide exported by the differentiating cells and an activator protein within them causes one cell within each cluster to fully differentiate, yielding a single mature heterocyst. In symbiosis with plants, heterocyst frequencies are increased 3- to 10-fold because, we propose, either differentiation is initiated at an increased number of sites or resolution of differentiating clusters is incomplete. The physiology of symbiotically associated cyanobacteria raises the prospect that heterocyst differentiation proceeds independently of the nitrogen status of a cell and depends instead on signals produced by the plant partner.
Collapse
Affiliation(s)
- John C Meeks
- Section of Microbiology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
30
|
Tamagnini P, Axelsson R, Lindberg P, Oxelfelt F, Wünschiers R, Lindblad P. Hydrogenases and hydrogen metabolism of cyanobacteria. Microbiol Mol Biol Rev 2002; 66:1-20, table of contents. [PMID: 11875125 PMCID: PMC120778 DOI: 10.1128/mmbr.66.1.1-20.2002] [Citation(s) in RCA: 375] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria may possess several enzymes that are directly involved in dihydrogen metabolism: nitrogenase(s) catalyzing the production of hydrogen concomitantly with the reduction of dinitrogen to ammonia, an uptake hydrogenase (encoded by hupSL) catalyzing the consumption of hydrogen produced by the nitrogenase, and a bidirectional hydrogenase (encoded by hoxFUYH) which has the capacity to both take up and produce hydrogen. This review summarizes our knowledge about cyanobacterial hydrogenases, focusing on recent progress since the first molecular information was published in 1995. It presents the molecular knowledge about cyanobacterial hupSL and hoxFUYH, their corresponding gene products, and their accessory genes before finishing with an applied aspect--the use of cyanobacteria in a biological, renewable production of the future energy carrier molecular hydrogen. In addition to scientific publications, information from three cyanobacterial genomes, the unicellular Synechocystis strain PCC 6803 and the filamentous heterocystous Anabaena strain PCC 7120 and Nostoc punctiforme (PCC 73102/ATCC 29133) is included.
Collapse
Affiliation(s)
- Paula Tamagnini
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Rikard Axelsson
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Pia Lindberg
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Fredrik Oxelfelt
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Röbbe Wünschiers
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Peter Lindblad
- Department of Botany, Institute for Molecular and Cell Biology, University of Porto, 4150-180 Porto, Portugal, Department of Physiological Botany, EBC, Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
31
|
Laamanen MJ, Gugger MF, Lehtimäki JM, Haukka K, Sivonen K. Diversity of toxic and nontoxic nodularia isolates (cyanobacteria) and filaments from the Baltic Sea. Appl Environ Microbiol 2001; 67:4638-47. [PMID: 11571167 PMCID: PMC93214 DOI: 10.1128/aem.67.10.4638-4647.2001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria of the genus Nodularia form toxic blooms in brackish waters worldwide. In addition, Nodularia spp. are found in benthic, periphytic, and soil habitats. The majority of the planktic isolates produce a pentapeptide hepatotoxin nodularin. We examined the morphologic, toxicologic, and molecular characters of 18 nodularin-producing and nontoxic Nodularia strains to find appropriate markers for distinguishing the toxic strains from the nontoxic ones in field samples. After classical taxonomy, the examined strains were identified as Nodularia sp., Nodularia spumigena, N. baltica, N. harveyana, and N. sphaerocarpa. Morphologic characters were ambiguous in terms of distinguishing between the toxic and the nontoxic strains. DNA sequences from the short 16S-23S rRNA internally transcribed spacer (ITS1-S) and from the phycocyanin operon intergenic spacer and its flanking regions (PC-IGS) were different for the toxic and the nontoxic strains. Phylogenetic analysis of the ITS1-S and PC-IGS sequences from strains identified as N. spumigena, and N. baltica, and N. litorea indicated that the division of the planktic Nodularia into the three species is not supported by the ITS1-S and PC-IGS sequences. However, the ITS1-S and PC-IGS sequences supported the separation of strains designated N. harveyana and N. sphaerocarpa from one another and the planktic strains. HaeIII digestion of PCR amplified PC-IGS regions of all examined 186 Nodularia filaments collected from the Baltic Sea produced a digestion pattern similar to that found in toxic isolates. Our results suggest that only one planktic Nodularia species is present in the Baltic Sea plankton and that it is nodularin producing.
Collapse
Affiliation(s)
- M J Laamanen
- Department of Applied Chemistry and Microbiology, University of Helsinki, 00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
32
|
Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R. An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. PHOTOSYNTHESIS RESEARCH 2001; 70:85-106. [PMID: 16228364 DOI: 10.1023/a:1013840025518] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nostoc punctiforme is a filamentous cyanobacterium with extensive phenotypic characteristics and a relatively large genome, approaching 10 Mb. The phenotypic characteristics include a photoautotrophic, diazotrophic mode of growth, but N. punctiforme is also facultatively heterotrophic; its vegetative cells have multiple developmental alternatives, including terminal differentiation into nitrogen-fixing heterocysts and transient differentiation into spore-like akinetes or motile filaments called hormogonia; and N. punctiforme has broad symbiotic competence with fungi and terrestrial plants, including bryophytes, gymnosperms and an angiosperm. The shotgun-sequencing phase of the N. punctiforme strain ATCC 29133 genome has been completed by the Joint Genome Institute. Annotation of an 8.9 Mb database yielded 7432 open reading frames, 45% of which encode proteins with known or probable known function and 29% of which are unique to N. punctiforme. Comparative analysis of the sequence indicates a genome that is highly plastic and in a state of flux, with numerous insertion sequences and multilocus repeats, as well as genes encoding transposases and DNA modification enzymes. The sequence also reveals the presence of genes encoding putative proteins that collectively define almost all characteristics of cyanobacteria as a group. N. punctiforme has an extensive potential to sense and respond to environmental signals as reflected by the presence of more than 400 genes encoding sensor protein kinases, response regulators and other transcriptional factors. The signal transduction systems and any of the large number of unique genes may play essential roles in the cell differentiation and symbiotic interaction properties of N. punctiforme.
Collapse
Affiliation(s)
- J C Meeks
- Section of Microbiology, University of California, Davis, CA, 95616, USA,
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
When deprived of combined nitrogen, many filamentous cyanobacteria develop a one-dimensional pattern of specialised nitrogen-fixing cells, known as heterocysts. Recent years have seen the identification and characterisation of some of the key genes and proteins involved in heterocyst development and spacing, including the positive regulator HetR and the diffusible inhibitor PatS.
Collapse
Affiliation(s)
- D G Adams
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
34
|
Rouhiainen L, Paulin L, Suomalainen S, Hyytiäinen H, Buikema W, Haselkorn R, Sivonen K. Genes encoding synthetases of cyclic depsipeptides, anabaenopeptilides, in Anabaena strain 90. Mol Microbiol 2000; 37:156-67. [PMID: 10931313 DOI: 10.1046/j.1365-2958.2000.01982.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anabaena strain 90 produces three hepatotoxic heptapeptides (microcystins), two seven-residue depsipeptides called anabaenopeptilide 90A and 90B, and three six-residue peptides called anabaenopeptins. The anabaenopeptilides belong to a group of cyanobacterial depsipeptides that share the structure of a six-amino-acid ring with a side-chain. Despite their similarity to known cyclic peptide toxins, no function has been assigned to the anabaenopeptilides. Degenerate oligonucleotide primers based on the conserved amino acid sequences of other peptide synthetases were used to amplify DNA from Anabaena 90, and the resulting polymerase chain reaction (PCR) products were used to identify a peptide synthetase gene cluster. Four genes encoding putative anabaenopeptilide synthetase domains were characterized. Three genes, apdA, apdB and apdD, contain two, four and one module, respectively, encoding a total of seven modules for activation and peptide bond formation of seven L-amino acids. Modules five and six also carry methyltransferase-like domains. Before the first module, there is a region similar in amino acid sequence to formyltransferases. A fourth gene (apdC), between modules six and seven, is similar in sequence to halogenase genes. Thus, the order of domains is co-linear with the positions of amino acid residues in the finished peptide. A mutant of Anabaena 90 was made by inserting a chloramphenicol resistance gene into the apdA gene. DNA amplification by PCR confirmed the insertion. Mass spectrometry analysis showed that anabaenopeptilides are not made in the mutant strain, but other peptides, such as microcystins and anabaenopeptins, are still produced by the mutant.
Collapse
Affiliation(s)
- L Rouhiainen
- Department of Applied Chemistry and Microbiology and Institute of Biotechnology, PO Box 56, Biocenter Viikki, FIN-00014 Helsinki University, Finland
| | | | | | | | | | | | | |
Collapse
|
35
|
Iteman I, Rippka R, Tandeau de Marsac N, Herdman M. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 6):1275-1286. [PMID: 10846207 DOI: 10.1099/00221287-146-6-1275] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PCR amplification of the internal transcribed spacer (ITS) between the 16S rRNA and 23S rRNA genes of the cyanobacterium NOSTOC: PCC 7120 gave three products. Two represented true ITS regions of different sizes, while the third was a heteroduplex. The longer spacer (ITS-L) contained 512 nucleotides and carried tRNA(Ile) and tRNA(Ala) genes, separated by a large stem-loop structure (V2) composed of short tandemly repeated repetitive sequences. Both tRNA genes, and the 5' half of the intervening stem, were absent from the shorter spacer (ITS-S), of length 283 nucleotides, which was otherwise almost completely identical to ITS-L. The two spacer regions of NOSTOC: PCC 7120 were aligned to published ITS sequences of cyanobacteria, the cyanelle of Cyanophora paradoxa and Escherichia coli. Although the ITS regions of cyanobacteria vary in length from 283 to 545 nucleotides and contain either both tRNA(Ile) and tRNA(Ala) genes, only the tRNA(Ile) gene, or neither, there is no correlation between ITS size and coding capacity for tRNAs. Putative secondary structures were determined for the deduced transcripts of the rrn operons of several cyanobacteria and were compared to that of E. coli. Highly conserved motifs important for folding and for maturation of the rRNA transcripts were identified, and regions homologous to bacterial antiterminators (box B-box A) were located. The conserved and variable regions of the cyanobacterial ITS are potential targets of PCR primers and oligonucleotide probes for detection and identification of cyanobacteria at different taxonomic levels.
Collapse
MESH Headings
- Anabaena/genetics
- Base Sequence
- Conserved Sequence
- Cyanobacteria/genetics
- DNA Primers/genetics
- DNA, Bacterial/genetics
- Escherichia coli/genetics
- Eukaryota/genetics
- Genes, Bacterial
- Molecular Sequence Data
- Nucleic Acid Conformation
- Polymerase Chain Reaction
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Isabelle Iteman
- Unité de Physiologie Microbienne (CNRS URA 1129), Département de Biochimie et Génétique Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France1
| | - Rosmarie Rippka
- Unité de Physiologie Microbienne (CNRS URA 1129), Département de Biochimie et Génétique Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France1
| | - Nicole Tandeau de Marsac
- Unité de Physiologie Microbienne (CNRS URA 1129), Département de Biochimie et Génétique Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France1
| | - Michael Herdman
- Unité de Physiologie Microbienne (CNRS URA 1129), Département de Biochimie et Génétique Moléculaire, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France1
| |
Collapse
|
36
|
Neilan BA, Dittmann E, Rouhiainen L, Bass RA, Schaub V, Sivonen K, Börner T. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J Bacteriol 1999; 181:4089-97. [PMID: 10383979 PMCID: PMC93901 DOI: 10.1128/jb.181.13.4089-4097.1999] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonribosomal peptide synthesis is achieved in prokaryotes and lower eukaryotes by the thiotemplate function of large, modular enzyme complexes known collectively as peptide synthetases. These and other multifunctional enzyme complexes, such as polyketide synthases, are of interest due to their use in unnatural-product or combinatorial biosynthesis (R. McDaniel, S. Ebert-Khosla, D. A. Hopwood, and C. Khosla, Science 262:1546-1557, 1993; T. Stachelhaus, A. Schneider, and M. A. Marahiel, Science 269:69-72, 1995). Most nonribosomal peptides from microorganisms are classified as secondary metabolites; that is, they rarely have a role in primary metabolism, growth, or reproduction but have evolved to somehow benefit the producing organisms. Cyanobacteria produce a myriad array of secondary metabolites, including alkaloids, polyketides, and nonribosomal peptides, some of which are potent toxins. This paper addresses the molecular genetic basis of nonribosomal peptide synthesis in diverse species of cyanobacteria. Amplification of peptide synthetase genes was achieved by use of degenerate primers directed to conserved functional motifs of these modular enzyme complexes. Specific detection of the gene cluster encoding the biosynthetic pathway of the cyanobacterial toxin microcystin was shown for both cultured and uncultured samples. Blot hybridizations, DNA amplifications, sequencing, and evolutionary analysis revealed a broad distribution of peptide synthetase gene orthologues in cyanobacteria. The results demonstrate a molecular approach to assessing preexpression microbial functional diversity in uncultured cyanobacteria. The nonribosomal peptide biosynthetic pathways detected may lead to the discovery and engineering of novel antibiotics, immunosuppressants, or antiviral agents.
Collapse
Affiliation(s)
- B A Neilan
- School of Microbiology and Immunology, The University of New South Wales, Sydney 2052, New South Wales, Australia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Heterocystous cyanobacteria grow as multicellular organisms with a distinct one-dimensional developmental pattern of single nitrogen-fixing heterocysts separated by approximately ten vegetative cells. Several genes have been identified that are required for heterocyst development and pattern formation. A key regulator, HetR, has been recently shown to be aserine-type protease.
Collapse
Affiliation(s)
- J W Golden
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, USA.
| | | |
Collapse
|
38
|
Jiang F, Mannervik B, Bergman B. Evidence for redox regulation of the transcription factor NtcA, acting both as an activator and a repressor, in the cyanobacterium Anabaena PCC 7120. Biochem J 1997; 327 ( Pt 2):513-7. [PMID: 9359424 PMCID: PMC1218824 DOI: 10.1042/bj3270513] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
NtcA has been identified as a nitrogen-responsive regulatory protein required for nitrogen assimilation and heterocyst differentiation in cyanobacteria. It is proposed that NtcA functions through the formation of DNA-protein complexes with its specific target sequence within the promoter regions of the regulated genes. In vitro, NtcA of Anabaena PCC 7120 binds to upstream regions of the genes whose products are involved in nitrogen assimilation, but also to the upstream region of rbcLS (carbon-fixation gene), xisA (encoding a site-specific recombinase expressed during heterocyst differentiation) and ntcA (encoding NtcA itself). However, the mechanism by which NtcA serves as a critical regulator for such diverse processes is not understood. With the use of electrophoretic mobility shift assays, NtcA from Anabaena PCC 7120 was here shown to interact with the promoter sequence of the gor gene, encoding glutathione reductase, thereby providing a novel example of NtcA's acting as a repressor, previously found only for the rbcLS gene. Furthermore we demonstrate that the binding of DNA by NtcA is regulated in vitro by a redox-dependent mechanism involving cysteine residues of the NtcA protein. These findings suggest that NtcA is a transcriptional regulator that responds not only to the nitrogen status but also to the cellular redox status, a function that might be particularly significant during heterocyst differentiation.
Collapse
Affiliation(s)
- F Jiang
- Department of Biochemistry, Uppsala University, Biomedical Center, Box 576, S-751 23 Uppsala, Sweden
| | | | | |
Collapse
|
39
|
Thiel T, Lyons EM, Erker JC. Characterization of genes for a second Mo-dependent nitrogenase in the cyanobacterium Anabaena variabilis. J Bacteriol 1997; 179:5222-5. [PMID: 9260968 PMCID: PMC179384 DOI: 10.1128/jb.179.16.5222-5225.1997] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anabaena variabilis ATCC 29413 is a filamentous heterocystous cyanobacterium that fixes nitrogen under a variety of environmental conditions. Under aerobic growth conditions, nitrogen fixation depends upon differentiation of heterocysts and expression of either a Mo-dependent nitrogenase or a V-dependent nitrogenase in those specialized cells. Under anaerobic conditions, a second Mo-dependent nitrogenase gene cluster, nifII, was expressed in vegetative cells long before heterocysts formed. A strain carrying a mutant gene in the nifII cluster did not fix nitrogen under anaerobic conditions until after heterocysts differentiated. The nifII cluster was similar in organization to the nifI cluster that is expressed in heterocysts and that includes nifBSUHDKENXW as well as three open reading frames that are conserved in both cyanobacterial nif clusters.
Collapse
Affiliation(s)
- T Thiel
- Department of Biology, University of Missouri-St. Louis, 63121, USA.
| | | | | |
Collapse
|
40
|
Masepohl B, Görlitz K, Monnerjahn U, Moslerand B, Böhme H. The ferredoxin-encoding fdxN gene of the filamentous cyanobacterium Anabaena variabilis ATCC 29413 is not essential for nitrogen fixation. THE NEW PHYTOLOGIST 1997; 136:419-423. [PMID: 33863005 DOI: 10.1046/j.1469-8137.1997.00771.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In contrast to that of Anabaena sp. PCC7120, the fdxN gene in Anabaena variabilis ATCC 29413 is not interrupted by a 55-kb DNA element, making this strain more suitable for genetic analysis of fdxN independent of the developmentally regulated excision during heterocyst formation. As a basis for mutational analysis, the fdxN gene of A. variabilis was cloned and sequenced. The deduced FdxN protein sequence was highly homologous to the Anabaena 7120 fdxN gene product including eight cysteine residues that are known to be conserved among ferredoxins containing two [4Fe-4S] clusters. The fdxN gene of A. variabilis was disrupted by insertion of an interposon within the fdxN coding region resulting in mutant strain KG29. Diazotrophic growth and in vivo nitrogenase activity of KG29 were similar to those of the wild-type, indicating that FdxN was not essential for N2 fixation in A. variabilis.
Collapse
Affiliation(s)
- Bernd Masepohl
- Botanisches Institut der Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Kirsten Görlitz
- Botanisches Institut der Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Ursula Monnerjahn
- Botanisches Institut der Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Britta Moslerand
- Botanisches Institut der Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Herbert Böhme
- Botanisches Institut der Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
41
|
A model for cell type-specific differential gene expression during heterocyst development and the constitution of aerobic nitrogen fixation ability inAnabaena sp. strain PCC 7120. J Biosci 1996. [DOI: 10.1007/bf02703097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Ramasubramanian TS, Pu F, Golden JW. Isolation of the Anabaena sp. strain PCC 7120 sigA gene in a transcriptional-interference selection. J Bacteriol 1995; 177:6676-8. [PMID: 7592451 PMCID: PMC177526 DOI: 10.1128/jb.177.22.6676-6678.1995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A transcriptional-interference selection was performed to identify genes of Anabaena sp. strain PCC 7120 that encode DNA-binding proteins able to bind to the rbcL promoter. Unexpectedly, the selection yielded the previously identified sigA gene, which encodes the principal sigma factor. Protein extracts from Escherichia coli containing the sigA gene bound the rbcL promoter fragment in mobility shift assays, and competition experiments indicated binding to rbcL and glnA but not xisA or nifH upstream regions.
Collapse
Affiliation(s)
- T S Ramasubramanian
- Department of Biology, Texas A&M University, College Station 77843-3258, USA
| | | | | |
Collapse
|
43
|
Rouhiainen L, Sivonen K, Buikema WJ, Haselkorn R. Characterization of toxin-producing cyanobacteria by using an oligonucleotide probe containing a tandemly repeated heptamer. J Bacteriol 1995; 177:6021-6. [PMID: 7592362 PMCID: PMC177437 DOI: 10.1128/jb.177.20.6021-6026.1995] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cyanobacteria produce toxins that kill animals. The two main classes of cyanobacterial toxins are cyclic peptides that cause liver damage and alkaloids that block nerve transmission. Many toxin-producing strains from Finnish lakes were brought into axenic culture, and their toxins were characterized. Restriction fragment length polymorphism analysis, probing with a short tandemly repeated DNA sequence found at many locations in the chromosome of Anabaena sp. strain PCC 7120, distinguishes hepatotoxic Anabaena isolates from neurotoxin-producing strains and from Nostoc spp.
Collapse
Affiliation(s)
- L Rouhiainen
- Department of Applied Chemistry and Microbiology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
44
|
Thiel T, Lyons EM, Erker JC, Ernst A. A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci U S A 1995; 92:9358-62. [PMID: 7568132 PMCID: PMC40984 DOI: 10.1073/pnas.92.20.9358] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In many filamentous cyanobacteria nitrogen fixation occurs in differentiated cells called heterocysts. Filamentous strains that do not form heterocysts may fix nitrogen in vegetative cells, primarily under anaerobic conditions. We describe here two functional Mo-dependent nitrogenases in a single organism, the cyanobacterium Anabaena variabilis. Using a lacZ reporter with a fluorescent beta-galactoside substrate for in situ localization of gene expression, we have shown that the two clusters of nif genes are expressed independently. One nitrogenase functions only in heterocysts under either aerobic or anaerobic growth conditions, whereas the second nitrogenase functions only under anaerobic conditions in vegetative cells and heterocysts. Differences between the two nif clusters suggest that the nitrogenase that is expressed in heterocysts is developmentally regulated while the other is regulated by environmental factors.
Collapse
Affiliation(s)
- T Thiel
- Department of Biology, University of Missouri-St. Louis 63121, USA
| | | | | | | |
Collapse
|
45
|
Losick R. Differentiation and Cell Fate in a Simple Organism. Bioscience 1995. [DOI: 10.2307/1312720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
46
|
Carrasco CD, Buettner JA, Golden JW. Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci U S A 1995; 92:791-5. [PMID: 7846053 PMCID: PMC42706 DOI: 10.1073/pnas.92.3.791] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Programmed DNA rearrangements that occur during cellular differentiation are uncommon and have been described in only two prokaryotic organisms. Here, we identify the developmentally regulated rearrangement of a hydrogenase gene in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. Heterocysts are terminally differentiated cells specialized for nitrogen fixation. Late during heterocyst differentiation, a 10.5-kb DNA element is excised from within the hupL gene by site-specific recombination between 16-bp direct repeats that flank the element. The predicted HupL polypeptide is homologous to the large subunit of [NiFe] uptake hydrogenases. hupL is expressed similarly to the nitrogen-fixation genes; hupL message was detected only during the late stages of heterocyst development. An open reading frame, named xisC, identified near one end of the hupL DNA element is presumed to encode the element's site-specific recombinase. The predicted XisC polypeptide is homologous with the Anabaena sp. strain PCC 7120 site-specific recombinase XisA. Neither XisC nor XisA shows sequence similarity to other proteins, suggesting that they represent a different class of site-specific recombinase.
Collapse
MESH Headings
- Amino Acid Sequence
- Anabaena/genetics
- Anabaena/growth & development
- Bacterial Proteins/chemistry
- Bacterial Proteins/genetics
- Base Sequence
- Cloning, Molecular
- DNA Nucleotidyltransferases/genetics
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Developmental
- Gene Rearrangement
- Genes, Bacterial/genetics
- Integrases
- Molecular Sequence Data
- Oxidoreductases
- RNA, Messenger/biosynthesis
- Recombinases
- Recombination, Genetic/genetics
- Restriction Mapping
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- C D Carrasco
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | | | |
Collapse
|
47
|
Apte SK, Prabhavathi N. Rearrangements of nitrogen fixation (nif) genes in the heterocystous cyanobacteria. J Biosci 1994. [DOI: 10.1007/bf02703204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
48
|
Li LA, Tabita FR. Transcription control of ribulose bisphosphate carboxylase/oxygenase activase and adjacent genes in Anabaena species. J Bacteriol 1994; 176:6697-706. [PMID: 7961423 PMCID: PMC197027 DOI: 10.1128/jb.176.21.6697-6706.1994] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gene encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activase (rca) was uniformly localized downstream from the genes encoding the large and small subunits of RubisCO (rbcL and rbcS) in three strains of Anabaena species. However, two open reading frames (ORF1 and ORF2), situated between rbcS and rca in Anabaena sp. strain CA, were not found in the intergenic region of Anabaena variabilis and Anabaena sp. strain PCC 7120. During autotrophic growth of Anabaena cells, rca and rbc transcripts accumulated in the light and diminished in the dark; light-dependent expression of these genes was not affected by the nitrogen source and the concentration of exogenous CO2 supplied to the cells. When grown on fructose, rca- and rbc-specific transcripts accumulated in A. variabilis regardless of whether the cells were illuminated. Transcript levels, however, were much lower in dark-grown heterotrophic cultures than in photoheterotrophic cultures. In photoheterotrophic cultures, the expression of the rca and rbc genes was similar to that in cultures grown with CO2 as the sole source of carbon. Although the rbcL-rbcS and rca genes are linked and are in the same transcriptional orientation in Anabaena strains, hybridization of rbc and rca to distinct transcripts suggested that these genes are not cotranscribed, consistent with the results of primer extension and secondary structure analysis of the nucleotide sequence. Transcription from ORF1 and ORF2 was not detected under the conditions examined, and the function of these putative genes remains unknown.
Collapse
Affiliation(s)
- L A Li
- Department of Microbiology, Ohio State University, Columbus 43210-1192
| | | |
Collapse
|
49
|
Wei TF, Ramasubramanian TS, Golden JW. Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development. J Bacteriol 1994; 176:4473-82. [PMID: 7913926 PMCID: PMC196265 DOI: 10.1128/jb.176.15.4473-4482.1994] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Anabaena sp. strain PCC 7120 ntcA (bifA) gene encodes a sequence-specific DNA-binding protein, NtcA (BifA, VF1) that interacts with the upstream region of several genes, including glnA, xisA, rbcL, and nifH. We have constructed a ntcA null mutant by interrupting the gene with an omega Spr-Smr cassette. The ntcA mutant was not able to grow with nitrate or atmospheric dinitrogen as the sole nitrogen source but could be grown on medium containing ammonium. The ntcA mutant was unable to form heterocysts and did not rearrange the nifD or fdxN elements after induction on a medium lacking combined nitrogen. Northern (RNA) analysis of ntcA in the wild-type strain during nitrogen stepdown showed a peak of ntcA message at an early stage (12 h) of heterocyst induction. Complementation of the ntcA mutant with a DNA fragment containing the ntcA gene and 251 bp of upstream sequence on a shuttle vector restored a wild-type phenotype; however, a similar construction containing 87 bp of upstream sequence only partially restored the phenotype. Northern analysis of RNA samples isolated from ammonium-grown cultures of the ntcA mutant showed reduced amounts of glnA message and the absence of a 1.7-kb transcript. In the wild type, the 1.7-kb transcript represents the majority of glnA transcripts after nitrogen stepdown. The ntcA mutant showed a normal pattern of rbcLS messages under these growth conditions.
Collapse
Affiliation(s)
- T F Wei
- Department of Biology, Texas A&M University, College Station 77843-3258
| | | | | |
Collapse
|
50
|
Ramasubramanian TS, Wei TF, Golden JW. Two Anabaena sp. strain PCC 7120 DNA-binding factors interact with vegetative cell- and heterocyst-specific genes. J Bacteriol 1994; 176:1214-23. [PMID: 8113160 PMCID: PMC205182 DOI: 10.1128/jb.176.5.1214-1223.1994] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The DNA-binding factor BifA (previously called VF1) binds upstream of the developmentally regulated site-specific recombinase gene xisA in the cyanobacterium Anabaena sp. strain PCC 7120. Besides binding xisA, BifA also binds the glnA, rbcL, and nifH promoter regions. DNase I footprint analysis of BifA binding to glnA showed a protected region -125 to -148 bp upstream of the translation start site. The binding site is between the major glnA transcription start site used in vegetative cells (RNAII) and the major transcription start site used under nitrogen-deficient conditions (RNAI). The two BifA-binding sites on the rbcL promoter were localized to a 24-bp region from +12 to -12 nucleotides and to a 12-bp region from -43 to -54 nucleotides with respect to the transcription start site. Comparison of the BifA binding sites on the glnA, xisA, and rbcL upstream regions revealed the consensus recognition sequence TGT(N9 or 10) ACA. We have identified a second DNA-binding activity (factor 2) that interacts with rbcL and xisA upstream regions. Factor 2 can be resolved from BifA by heparin-Sepharose chromatography and was present in a bifA mutant. Analysis of partially purified vegetative cell and heterocyst extracts showed that whereas BifA was present in both cell types, factor 2 was present only in vegetative cells. DNase I footprint analysis of factor 2 binding to rbcL showed protection of a 63-bp region between positions -15 and -77 with respect to the transcription start site. The factor 2 binding site on xisA was localized to a 68-bp region that showed considerable overlap with the BifA binding sites.
Collapse
|