1
|
Daly MJ. The scientific revolution that unraveled the astonishing DNA repair capacity of the Deinococcaceae: 40 years on. Can J Microbiol 2023; 69:369-386. [PMID: 37267626 DOI: 10.1139/cjm-2023-0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The family Deinococcaceae exhibits exceptional radiation resistance and possesses all the necessary traits for surviving in radiation-exposed environments. Their survival strategy involves the coupling of metabolic and DNA repair functions, resulting in an extraordinarily efficient homologous repair of DNA double-strand breaks (DSBs) caused by radiation or desiccation. The keys to their survival lie in the hyperaccumulation of manganous (Mn2+)-metabolite antioxidants that protect their DNA repair proteins under extreme oxidative stress and the persistent structural linkage by Holliday junctions of their multiple genome copies per cell that facilitates DSB repair. This coupling of metabolic and DNA repair functions has made polyploid Deinococcus bacteria a useful tool in environmental biotechnology, radiobiology, aging, and planetary protection. The review highlights the groundbreaking contributions of the late Robert G.E. Murray to the field of Deinococcus research and the emergent paradigm-shifting discoveries that revolutionized our understanding of radiation survivability and oxidative stress defense, demonstrating that the proteome, rather than the genome, is the primary target responsible for survivability. These discoveries have led to the commercial development of irradiated vaccines using Deinococcus Mn-peptide antioxidants and have significant implications for various fields.
Collapse
Affiliation(s)
- Michael J Daly
- Uniformed Services University of the Health Sciences (USUHS), School of Medicine, Department of Pathology, Bethesda, MD 20814-4799, USA
- Committee on Planetary Protection (CoPP), National Academies of Sciences, Washington, DC 20001, USA
| |
Collapse
|
2
|
Misra CS, Pandey N, Appukuttan D, Rath D. Effective gene silencing using type I-E CRISPR system in the multiploid, radiation-resistant bacterium Deinococcus radiodurans. Microbiol Spectr 2023; 11:e0520422. [PMID: 37671884 PMCID: PMC10581213 DOI: 10.1128/spectrum.05204-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/09/2023] [Indexed: 09/07/2023] Open
Abstract
The extremely radiation-resistant bacterium, Deinococcus radiodurans, is a microbe of importance, both, for studying stress tolerance mechanisms and as a chassis for industrial biotechnology. However, the molecular tools available for use in this organism continue to be limiting, with its multiploid genome presenting an additional challenge. In view of this, the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas tools provide a large repertoire of applications for gene manipulation. We show the utility of the type I-E Cascade system for knocking down gene expression in this organism. A single-vector system was designed for the expression of the Cascade components as well as the crRNA. The type I-E Cascade system was better tolerated than the type II-A dCas9 system in D. radiodurans. An assayable acid phosphatase gene, phoN integrated into the genome of this organism could be knocked down to 10% of its activity using the Cascade system. Cascade-based knockdown of ssb, a gene important for radiation resistance resulted in poor recovery post-irradiation. Targeting the Radiation and Desiccation Response Motif (RDRM), upstream of the ssb, prevented de-repression of its expression upon radiation exposure. In addition to this, multi-locus targeting was demonstrated on the deinococcal genome, by knocking down both phoN and ssb expression simultaneously. The programmable CRISPR interference tool developed in this study will facilitate the study of essential genes, hypothetical genes, and cis-elements involved in radiation response as well as enable metabolic engineering in this organism. Further, the tool can be extended for implementing high-throughput approaches in such studies. IMPORTANCE Deinococcus radiodurans is a microbe that exhibits a very high degree of radiation resistance. In addition, it is also identified as an organism of industrial importance. We report the development of a gene-knockdown system in this organism by engineering a type I-E clustered regularly interspaced short palindromic repeat (CRISPR)-Cascade system. We used this system to silence an assayable acid phosphatase gene, phoN to 10% of its activity. The study further shows the application of the Cascade system to target an essential gene ssb, that caused poor recovery from radiation. We demonstrate the utility of CRISPR-Cascade to study the role of a regulatory cis-element in radiation response as well as for multi-gene silencing. This easy-to-implement CRISPR interference system would provide an effective tool for better understanding of complex phenomena such as radiation response in D. radiodurans and may also enhance the potential of this microbe for industrial application.
Collapse
Affiliation(s)
- Chitra S. Misra
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Neha Pandey
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Life Sciences, Mumbai University, Mumbai, Maharashtra, India
| | - Deepti Appukuttan
- Chemical Engineering Department, IIT Bombay, Mumbai, Maharashtra, India
| | - Devashish Rath
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Brumwell SL, Van Belois KD, Giguere DJ, Edgell DR, Karas BJ. Conjugation-Based Genome Engineering in Deinococcus radiodurans. ACS Synth Biol 2022; 11:1068-1076. [PMID: 35254818 PMCID: PMC8939323 DOI: 10.1021/acssynbio.1c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deinococcus radiodurans has become an attractive microbial platform for the study of extremophile biology and industrial bioproduction. To improve the genomic manipulation and tractability of this species, the development of tools for whole genome engineering and design is necessary. Here, we report the development of a simple and robust conjugation-based DNA transfer method from E. coli to D. radiodurans, allowing for the introduction of stable, replicating plasmids expressing antibiotic resistance markers. Using this method with nonreplicating plasmids, we developed a protocol for creating sequential gene deletions in D. radiodurans by targeting restriction-modification genes. Importantly, we demonstrated a conjugation-based method for cloning the large (178 kb), high G+C content MP1 megaplasmid from D. radiodurans in E. coli. The conjugation-based tools described here will facilitate the development of D. radiodurans strains with synthetic genomes for biological studies and industrial applications.
Collapse
Affiliation(s)
- Stephanie L Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Katherine D Van Belois
- Department of Biology, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Daniel J Giguere
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
4
|
Discovery and Characterization of Native Deinococcus radiodurans Promoters for Tunable Gene Expression. Appl Environ Microbiol 2019; 85:AEM.01356-19. [PMID: 31471304 DOI: 10.1128/aem.01356-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/26/2019] [Indexed: 01/28/2023] Open
Abstract
The potential utilization of extremophiles as a robust chassis for metabolic engineering applications has prompted interest in the use of Deinococcus radiodurans for bioremediation efforts, but current applications are limited by the lack of availability of genetic tools, such as promoters. In this study, we used a combined computational and experimental approach to identify and screen 30 predicted promoters for expression in D. radiodurans using a fluorescent reporter assay. The top eight candidates were further characterized, compared to currently available promoters, and optimized for engineering through minimization for use in D. radiodurans Of these top eight, two promoter regions, PDR_1261 and PrpmB, were stronger and more consistent than the most widely used promoter sequence in D. radiodurans, PgroES Furthermore, half of the top eight promoters could be minimized by at least 20% (to obtain final sequences that are approximately 24 to 177 bp), and several of the putative promoters either showed activity in Escherichia coli or were D. radiodurans specific, broadening the use of the promoters for various applications. Overall, this work introduces a suite of novel, well-characterized promoters for protein production and metabolic engineering in D. radiodurans IMPORTANCE The tolerance of the extremophile, Deinococcus radiodurans, to numerous oxidative stresses makes it ideal for bioremediation applications, but many of the tools necessary for metabolic engineering are lacking in this organism compared to model bacteria. Although native and engineered promoters have been used to drive gene expression for protein production in D. radiodurans, very few have been well characterized. Informed by bioinformatics, this study expands the repertoire of well-characterized promoters for D. radiodurans via thorough characterization of eight putative promoters with various strengths. These results will help facilitate tunable gene expression, since these promoters demonstrate strong and consistent performance compared to the current standard, PgroES This study also provides a methodology for high-throughput promoter identification and characterization using fluorescence in D. radiodurans The promoters identified in this study will facilitate metabolic engineering of D. radiodurans and enable its use in biotechnological applications ranging from bioremediation to synthesis of commodity chemicals.
Collapse
|
5
|
Villa JK, Amador P, Janovsky J, Bhuyan A, Saldanha R, Lamkin TJ, Contreras LM. A Genome-Wide Search for Ionizing-Radiation-Responsive Elements in Deinococcus radiodurans Reveals a Regulatory Role for the DNA Gyrase Subunit A Gene's 5' Untranslated Region in the Radiation and Desiccation Response. Appl Environ Microbiol 2017; 83:e00039-17. [PMID: 28411225 PMCID: PMC5452802 DOI: 10.1128/aem.00039-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022] Open
Abstract
Tight regulation of gene expression is important for the survival of Deinococcus radiodurans, a model bacterium of extreme stress resistance. Few studies have examined the use of regulatory RNAs as a possible contributing mechanism to ionizing radiation (IR) resistance, despite their proffered efficient and dynamic gene expression regulation under IR stress. This work presents a transcriptome-based approach for the identification of stress-responsive regulatory 5' untranslated region (5'-UTR) elements in D. radiodurans R1 that can be broadly applied to other bacteria. Using this platform and an in vivo fluorescence screen, we uncovered the presence of a radiation-responsive regulatory motif in the 5' UTR of the DNA gyrase subunit A gene. Additional screens under H2O2-induced oxidative stress revealed the specificity of the response of this element to IR stress. Further examination of the sequence revealed a regulatory motif of the radiation and desiccation response (RDR) in the 5' UTR that is necessary for the recovery of D. radiodurans from high doses of IR. Furthermore, we suggest that it is the preservation of predicted RNA structure, in addition to DNA sequence consensus of the motif, that permits this important regulatory ability.IMPORTANCEDeinococcus radiodurans is an extremely stress-resistant bacterium capable of tolerating up to 3,000 times more ionizing radiation than human cells. As an integral part of the stress response mechanism of this organism, we suspect that it maintains stringent control of gene expression. However, understanding of its regulatory pathways remains incomplete to date. Untranslated RNA elements have been demonstrated to play crucial roles in gene regulation throughout bacteria. In this work, we focus on searching for and characterizing responsive RNA elements under radiation stress and propose that multiple levels of gene regulation work simultaneously to enable this organism to efficiently recover from exposure to ionizing radiation. The model we propose serves as a generic template to investigate similar mechanisms of gene regulation under stress that have likely evolved in other bacterial species.
Collapse
Affiliation(s)
- Jordan K Villa
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Paul Amador
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Justin Janovsky
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Arijit Bhuyan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas,USA
| | | | - Thomas J Lamkin
- Air Force Research Laboratory/XPRA Wright-Patterson AFB, Ohio, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas,USA
| |
Collapse
|
6
|
Agapov AA, Kulbachinskiy AV. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans. BIOCHEMISTRY (MOSCOW) 2016; 80:1201-16. [PMID: 26567564 DOI: 10.1134/s0006297915100016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.
Collapse
Affiliation(s)
- A A Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
7
|
Mundus J, Flyvbjerg KF, Kirpekar F. Identification of the methyltransferase targeting C2499 in Deinococcus radiodurans 23S ribosomal RNA. Extremophiles 2016; 20:91-9. [PMID: 26590840 PMCID: PMC4690841 DOI: 10.1007/s00792-015-0800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/29/2015] [Indexed: 01/11/2023]
Abstract
The bacterium Deinococcus radiodurans-like all other organisms-introduces nucleotide modifications into its ribosomal RNA. We have previously found that the bacterium contains a Carbon-5 methylation on cytidine 2499 of its 23S ribosomal RNA, which is so far the only modified version of cytidine 2499 reported. Using homology search, we identified the open reading frame DR_0049 as the primary candidate gene for the methyltransferase that modifies cytidine 2499. Mass spectrometric analysis demonstrated that recombinantly expressed DR0049 protein methylates E. coli cytidine 2499 both in vitro and in vivo. We also inactivated the DR_0049 gene in D. radiodurans through insertion of a chloramphenicol resistance cassette. This resulted in complete absence of the cytidine 2499 methylation, which all together demonstrates that DR_0049 encodes the methyltransferase producing m(5)C2499 in D. radiodurans 23S rRNA. Growth experiments disclosed that inactivation of DR_0049 is associated with a severe growth defect, but available ribosome structures show that cytidine 2499 is positioned very similar in D. radiodurans harbouring the modification and E. coli without the modification. Hence there is no obvious structure-based explanation for the requirement for the C2499 posttranscriptional modification in D. radiodurans.
Collapse
Affiliation(s)
- Julie Mundus
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Karen Freund Flyvbjerg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
8
|
Gerber E, Bernard R, Castang S, Chabot N, Coze F, Dreux-Zigha A, Hauser E, Hivin P, Joseph P, Lazarelli C, Letellier G, Olive J, Leonetti JP. Deinococcus as new chassis for industrial biotechnology: biology, physiology and tools. J Appl Microbiol 2015; 119:1-10. [PMID: 25809882 PMCID: PMC4682472 DOI: 10.1111/jam.12808] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
Abstract
Deinococcus spp are among the most radiation-resistant micro-organisms that have been discovered. They show remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation and oxidizing agents. Traditionally, Escherichia coli and Saccharomyces cerevisiae have been the two platforms of choice for engineering micro-organisms for biotechnological applications, because they are well understood and easy to work with. However, in recent years, researchers have begun using Deinococcus spp in biotechnologies and bioremediation due to their specific ability to grow and express novel engineered functions. More recently, the sequencing of several Deinococcus spp and comparative genomic analysis have provided new insight into the potential of this genus. Features such as the accumulation of genes encoding cell cleaning systems that eliminate organic and inorganic cell toxic components are widespread among Deinococcus spp. Other features such as the ability to degrade and metabolize sugars and polymeric sugars make Deinococcus spp. an attractive alternative for use in industrial biotechnology.
Collapse
Affiliation(s)
- E Gerber
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - R Bernard
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - S Castang
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - N Chabot
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - F Coze
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - A Dreux-Zigha
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - E Hauser
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - P Hivin
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - P Joseph
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - C Lazarelli
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - G Letellier
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - J Olive
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| | - J-P Leonetti
- Deinove, Cap Sigma/ZAC Euromédecine IIGrabels, France
| |
Collapse
|
9
|
Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. SUSTAINABILITY 2015. [DOI: 10.3390/su7022189] [Citation(s) in RCA: 364] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Luan H, Meng N, Fu J, Chen X, Xu X, Feng Q, Jiang H, Dai J, Yuan X, Lu Y, Roberts AA, Luo X, Chen M, Xu S, Li J, Hamilton CJ, Fang C, Wang J. Genome-wide transcriptome and antioxidant analyses on gamma-irradiated phases of deinococcus radiodurans R1. PLoS One 2014; 9:e85649. [PMID: 24465634 PMCID: PMC3900439 DOI: 10.1371/journal.pone.0085649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/29/2013] [Indexed: 11/18/2022] Open
Abstract
Adaptation of D. radiodurans cells to extreme irradiation environments requires dynamic interactions between gene expression and metabolic regulatory networks, but studies typically address only a single layer of regulation during the recovery period after irradiation. Dynamic transcriptome analysis of D. radiodurans cells using strand-specific RNA sequencing (ssRNA-seq), combined with LC-MS based metabolite analysis, allowed an estimate of the immediate expression pattern of genes and antioxidants in response to irradiation. Transcriptome dynamics were examined in cells by ssRNA-seq covering its predicted genes. Of the 144 non-coding RNAs that were annotated, 49 of these were transfer RNAs and 95 were putative novel antisense RNAs. Genes differentially expressed during irradiation and recovery included those involved in DNA repair, degradation of damaged proteins and tricarboxylic acid (TCA) cycle metabolism. The knockout mutant crtB (phytoene synthase gene) was unable to produce carotenoids, and exhibited a decreased survival rate after irradiation, suggesting a role for these pigments in radiation resistance. Network components identified in this study, including repair and metabolic genes and antioxidants, provided new insights into the complex mechanism of radiation resistance in D. radiodurans.
Collapse
Affiliation(s)
- Hemi Luan
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Nan Meng
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Jin Fu
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Xiaomin Chen
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Xun Xu
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Qiang Feng
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Hui Jiang
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Jun Dai
- College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Fermentation Engineering, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan, China
| | - Xune Yuan
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Yanping Lu
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Alexandra A. Roberts
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Xiao Luo
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Maoshan Chen
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Shengtao Xu
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Jun Li
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
| | - Chris J. Hamilton
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Chengxiang Fang
- College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (CF); (JW)
| | - Jun Wang
- Department of Science and Technology, BGI-Shenzhen, Shenzhen, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail: (CF); (JW)
| |
Collapse
|
11
|
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to repair massive DNA damage efficiently and accurately. It is extremely resistant to many DNA-damaging agents, including ionizing radiation and UV radiation (100 to 295 nm), desiccation, and mitomycin C, which induce oxidative damage not only to DNA but also to all cellular macromolecules via the production of reactive oxygen species. The extreme resilience of D. radiodurans to oxidative stress is imparted synergistically by an efficient protection of proteins against oxidative stress and an efficient DNA repair mechanism, enhanced by functional redundancies in both systems. D. radiodurans assets for the prevention of and recovery from oxidative stress are extensively reviewed here. Radiation- and desiccation-resistant bacteria such as D. radiodurans have substantially lower protein oxidation levels than do sensitive bacteria but have similar yields of DNA double-strand breaks. These findings challenge the concept of DNA as the primary target of radiation toxicity while advancing protein damage, and the protection of proteins against oxidative damage, as a new paradigm of radiation toxicity and survival. The protection of DNA repair and other proteins against oxidative damage is imparted by enzymatic and nonenzymatic antioxidant defense systems dominated by divalent manganese complexes. Given that oxidative stress caused by the accumulation of reactive oxygen species is associated with aging and cancer, a comprehensive outlook on D. radiodurans strategies of combating oxidative stress may open new avenues for antiaging and anticancer treatments. The study of the antioxidation protection in D. radiodurans is therefore of considerable potential interest for medicine and public health.
Collapse
|
12
|
Treangen TJ, Abraham AL, Touchon M, Rocha EPC. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol Rev 2009; 33:539-71. [PMID: 19396957 DOI: 10.1111/j.1574-6976.2009.00169.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repeats are causes and consequences of genome plasticity. Repeats are created by intrachromosomal recombination or horizontal transfer. They are targeted by recombination processes leading to amplifications, deletions and rearrangements of genetic material. The identification and analysis of repeats in nearly 700 genomes of bacteria and archaea is facilitated by the existence of sequence data and adequate bioinformatic tools. These have revealed the immense diversity of repeats in genomes, from those created by selfish elements to the ones used for protection against selfish elements, from those arising from transient gene amplifications to the ones leading to stable duplications. Experimental works have shown that some repeats do not carry any adaptive value, while others allow functional diversification and increased expression. All repeats carry some potential to disorganize and destabilize genomes. Because recombination and selection for repeats vary between genomes, the number and types of repeats are also quite diverse and in line with ecological variables, such as host-dependent associations or population sizes, and with genetic variables, such as the recombination machinery. From an evolutionary point of view, repeats represent both opportunities and problems. We describe how repeats are created and how they can be found in genomes. We then focus on the functional and genomic consequences of repeats that dictate their fate.
Collapse
|
13
|
Zhang L, Yang Q, Luo X, Fang C, Zhang Q, Tang Y. Knockout of crtB or crtI gene blocks the carotenoid biosynthetic pathway in Deinococcus radiodurans R1 and influences its resistance to oxidative DNA-damaging agents due to change of free radicals scavenging ability. Arch Microbiol 2007; 188:411-9. [PMID: 17541775 DOI: 10.1007/s00203-007-0262-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 05/07/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
Deinococcus radiodurans R1, a red-pigmented strain of the extremely radioresistant genus Deinococcus, contains a major carotenoid namely deinoxanthin. The high resistance of this organism against the lethal actions of DNA-damaging agents including ionizing radiation and ultraviolet light (UV) has been widely reported. However, the possible antioxidant role of carotenoids in this strain has not been completely elucidated. In this study, we constructed two colorless mutants by knockout of crtB and crtI genes, respectively. Comparative analysis of the two colorless mutants and the wild type showed that the two colorless mutants were more sensitive to ionizing radiation, UV, and hydrogen peroxide, but not to mitomycin-C (MMC). With electron spin resonance (ESR) and spin trapping techniques, we observed that hydroxyl radical signals occurred in the suspensions of UV irradiated Deinococcus radiodurans cells and the intensity of signals was influenced by carotenoids levels. We further showed that the carotenoid extract from the wild type could obviously scavenge superoxide anions generated by the irradiated riboflavin/EDTA system. These results suggest that carotenoids in D. radiodurans R1 function as free radical scavengers to protect this organism against the deleterious effects of oxidative DNA-damaging agents.
Collapse
Affiliation(s)
- Lei Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Lecointe F, Coste G, Sommer S, Bailone A. Vectors for regulated gene expression in the radioresistant bacterium Deinococcus radiodurans. Gene 2004; 336:25-35. [PMID: 15225873 DOI: 10.1016/j.gene.2004.04.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 04/02/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022]
Abstract
Deinococcus radiodurans possesses an exceptional capacity to withstand the lethal and mutagenic effects of most form of DNA damage and has received considerable interest for use in both fundamental and applied research. Here we describe vectors that allow regulated expression of Deinococcal genes for functional analysis. The vectors contain the IPTG-regulated Spac system (Pspac promoter and lacI repressor gene), originally designed for Bacillus subtilis, that we have adapted to be functional in D. radiodurans. We show that the Spac system can control the expression of a lacZ reporter gene over two orders of magnitude depending on the inducer concentration and the copy number of the lacI regulatory gene. Furthermore, we demonstrate that the Spac system can be used to regulate the synthesis of a critical repair protein, such as RecA, resulting in a conditional mitomycin-resistant cell phenotype. We have also developed tools for the construction of conditional mutants where the expression of the target gene is regulated by an inducible promoter. The utility of these conditional gene inactivation systems is exemplified by the conditional lethal phenotype of a mutant expressing gyrA from the Pspac promoter.
Collapse
Affiliation(s)
- François Lecointe
- Institut de Génétique et Microbiologie, UMR 8621, Bât. 409, Université Paris-Sud, F-91405 Orsay, France
| | | | | | | |
Collapse
|
15
|
Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ. Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 2003; 69:4575-82. [PMID: 12902245 PMCID: PMC169113 DOI: 10.1128/aem.69.8.4575-4582.2003] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes. We report that D. geothermalis is transformable with plasmids designed for D. radiodurans and have generated a Hg(II)-resistant D. geothermalis strain capable of reducing Hg(II) at elevated temperatures and in the presence of 50 Gy/h. Additionally, D. geothermalis is capable of reducing Fe(III)-nitrilotriacetic acid, U(VI), and Cr(VI). These characteristics support the prospective development of this thermophilic radiophile for bioremediation of radioactive mixed waste environments with temperatures as high as 55 degrees C.
Collapse
Affiliation(s)
- Hassan Brim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | |
Collapse
|
16
|
Makarova KS, Aravind L, Wolf YI, Tatusov RL, Minton KW, Koonin EV, Daly MJ. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev 2001; 65:44-79. [PMID: 11238985 PMCID: PMC99018 DOI: 10.1128/mmbr.65.1.44-79.2001] [Citation(s) in RCA: 486] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Deinococcus radiodurans shows remarkable resistance to a range of damage caused by ionizing radiation, desiccation, UV radiation, oxidizing agents, and electrophilic mutagens. D. radiodurans is best known for its extreme resistance to ionizing radiation; not only can it grow continuously in the presence of chronic radiation (6 kilorads/h), but also it can survive acute exposures to gamma radiation exceeding 1,500 kilorads without dying or undergoing induced mutation. These characteristics were the impetus for sequencing the genome of D. radiodurans and the ongoing development of its use for bioremediation of radioactive wastes. Although it is known that these multiple resistance phenotypes stem from efficient DNA repair processes, the mechanisms underlying these extraordinary repair capabilities remain poorly understood. In this work we present an extensive comparative sequence analysis of the Deinococcus genome. Deinococcus is the first representative with a completely sequenced genome from a distinct bacterial lineage of extremophiles, the Thermus-Deinococcus group. Phylogenetic tree analysis, combined with the identification of several synapomorphies between Thermus and Deinococcus, supports the hypothesis that it is an ancient group with no clear affinities to any of the other known bacterial lineages. Distinctive features of the Deinococcus genome as well as features shared with other free-living bacteria were revealed by comparison of its proteome to the collection of clusters of orthologous groups of proteins. Analysis of paralogs in Deinococcus has revealed several unique protein families. In addition, specific expansions of several other families including phosphatases, proteases, acyltransferases, and Nudix family pyrophosphohydrolases were detected. Genes that potentially affect DNA repair and recombination and stress responses were investigated in detail. Some proteins appear to have been horizontally transferred from eukaryotes and are not present in other bacteria. For example, three proteins homologous to plant desiccation resistance proteins were identified, and these are particularly interesting because of the correlation between desiccation and radiation resistance. Compared to other bacteria, the D. radiodurans genome is enriched in repetitive sequences, namely, IS-like transposons and small intergenic repeats. In combination, these observations suggest that several different biological mechanisms contribute to the multiple DNA repair-dependent phenotypes of this organism.
Collapse
Affiliation(s)
- K S Makarova
- Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799,USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Venkateswaran A, McFarlan SC, Ghosal D, Minton KW, Vasilenko A, Makarova K, Wackett LP, Daly MJ. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl Environ Microbiol 2000; 66:2620-6. [PMID: 10831446 PMCID: PMC110589 DOI: 10.1128/aem.66.6.2620-2626.2000] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Immense volumes of radioactive wastes, which were generated during nuclear weapons production, were disposed of directly in the ground during the Cold War, a period when national security priorities often surmounted concerns over the environment. The bacterium Deinococcus radiodurans is the most radiation-resistant organism known and is currently being engineered for remediation of the toxic metal and organic components of these environmental wastes. Understanding the biotic potential of D. radiodurans and its global physiological integrity in nutritionally restricted radioactive environments is important in development of this organism for in situ bioremediation. We have previously shown that D. radiodurans can grow on rich medium in the presence of continuous radiation (6,000 rads/h) without lethality. In this study we developed a chemically defined minimal medium that can be used to analyze growth of this organism in the presence and in the absence of continuous radiation; whereas cell growth was not affected in the absence of radiation, cells did not grow and were killed in the presence of continuous radiation. Under nutrient-limiting conditions, DNA repair was found to be limited by the metabolic capabilities of D. radiodurans and not by any nutritionally induced defect in genetic repair. The results of our growth studies and analysis of the complete D. radiodurans genomic sequence support the hypothesis that there are several defects in D. radiodurans global metabolic regulation that limit carbon, nitrogen, and DNA metabolism. We identified key nutritional constituents that restore growth of D. radiodurans in nutritionally limiting radioactive environments.
Collapse
Affiliation(s)
- A Venkateswaran
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Seventy million cubic meters of ground and three trillion liters of groundwater have been contaminated by leaking radioactive waste generated in the United States during the Cold War. A cleanup technology is being developed based on the radiation-resistant bacterium Deinococcus radiodurans, which is being engineered to express bioremediating functions.
Collapse
Affiliation(s)
- M J Daly
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| |
Collapse
|
19
|
Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ. Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 2000; 66:2006-11. [PMID: 10788374 PMCID: PMC101447 DOI: 10.1128/aem.66.5.2006-2011.2000] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus radiodurans is an exceptionally radiation-resistant microorganism capable of surviving acute exposures to ionizing radiation doses of 15,000 Gy and previously described as having a strictly aerobic respiratory metabolism. Under strict anaerobic conditions, D. radiodurans R1 reduced Fe(III)-nitrilotriacetic acid coupled to the oxidation of lactate to CO(2) and acetate but was unable to link this process to growth. D. radiodurans reduced the humic acid analog anthraquinone-2,6-disulfonate (AQDS) to its dihydroquinone form, AH(2)DS, which subsequently transferred electrons to the Fe(III) oxides hydrous ferric oxide and goethite via a previously described electron shuttle mechanism. D. radiodurans reduced the solid-phase Fe(III) oxides in the presence of either 0.1 mM AQDS or leonardite humic acids (2 mg ml(-1)) but not in their absence. D. radiodurans also reduced U(VI) and Tc(VII) in the presence of AQDS. In contrast, Cr(VI) was directly reduced in anaerobic cultures with lactate although the rate of reduction was higher in the presence of AQDS. The results are the first evidence that D. radiodurans can reduce Fe(III) coupled to the oxidation of lactate or other organic compounds. Also, D. radiodurans, in combination with humic acids or synthetic electron shuttle agents, can reduce U and Tc and thus has potential applications for remediation of metal- and radionuclide-contaminated sites where ionizing radiation or other DNA-damaging agents may restrict the activity of more sensitive organisms.
Collapse
Affiliation(s)
- J K Fredrickson
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | |
Collapse
|
20
|
Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ. Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 2000; 18:85-90. [PMID: 10625398 DOI: 10.1038/71986] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have developed a radiation resistant bacterium for the treatment of mixed radioactive wastes containing ionic mercury. The high cost of remediating radioactive waste sites from nuclear weapons production has stimulated the development of bioremediation strategies using Deinococcus radiodurans, the most radiation resistant organism known. As a frequent constituent of these sites is the highly toxic ionic mercury (Hg) (II), we have generated several D. radiodurans strains expressing the cloned Hg (II) resistance gene (merA) from Escherichia coli strain BL308. We designed four different expression vectors for this purpose, and compared the relative advantages of each. The strains were shown to grow in the presence of both radiation and ionic mercury at concentrations well above those found in radioactive waste sites, and to effectively reduce Hg (II) to the less toxic volatile elemental mercury. We also demonstrated that different gene clusters could be used to engineer D. radiodurans for treatment of mixed radioactive wastes by developing a strain to detoxify both mercury and toluene. These expression systems could provide models to guide future D. radiodurans engineering efforts aimed at integrating several remediation functions into a single host.
Collapse
Affiliation(s)
- H Brim
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Makarova KS, Wolf YI, White O, Minton K, Daly MJ. Short repeats and IS elements in the extremely radiation-resistant bacterium Deinococcus radiodurans and comparison to other bacterial species. Res Microbiol 1999; 150:711-24. [PMID: 10673009 DOI: 10.1016/s0923-2508(99)00121-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Computer analysis of the complete genome of Deinococcus radiodurans R1 has shown that the number of insertion sequences (ISs) and small noncoding repeats (SNRs) it contains is very high, and comparable with those of Escherichia coli. IS elements and several families of SNRs are described, together with their possible function in the D. radiodurans genome.
Collapse
Affiliation(s)
- K S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | | | |
Collapse
|
22
|
Markillie LM, Varnum SM, Hradecky P, Wong KK. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 1999; 181:666-9. [PMID: 9882685 PMCID: PMC93425 DOI: 10.1128/jb.181.2.666-669.1999] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deinococcus radiodurans R1 is extremely resistant to both oxidative stress and ionizing radiation. A simple and general targeted mutagenesis method was developed to generate catalase (katA) and superoxide dismutase (sodA) mutants. Both mutants were shown to be more sensitive to ionizing radiation than the wild type.
Collapse
Affiliation(s)
- L M Markillie
- Pacific Northwest National Laboratory, Molecular Biosciences, Richland, Washington 99352, USA
| | | | | | | |
Collapse
|
23
|
Lange CC, Wackett LP, Minton KW, Daly MJ. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 1998; 16:929-33. [PMID: 9788348 DOI: 10.1038/nbt1098-929] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thousands of waste sites around the world contain mixtures of toxic chlorinated solvents, hydrocarbon solvents, and radionuclides. Because of the inherent danger and expense of cleaning up such wastes by physicochemical methods, other methods are being pursued for cleanup of those sites. One alternative is to engineer radiation-resistant microbes that degrade or transform such wastes to less hazardous mixtures. We describe the construction and characterization of recombinant Deinococcus radiodurans, the most radiation-resistant organism known, expressing toluene dioxygenase (TDO). Cloning of the tod genes (which encode the multicomponent TDO) into the chromosome of this bacterium imparted to the strain the ability to oxidize toluene, chlorobenzene, 3,4-dichloro-1-butene, and indole. The recombinant strain was capable of growth and functional synthesis of TDO in the highly irradiating environment (60 Gy/h) of a 137Cs irradiator, where 5x10(8)cells/ml degraded 125 nmol/ml of chlorobenzene in 150 min. D. radiodurans strains were also tolerant to the solvent effects of toluene and trichloroethylene at levels exceeding those of many radioactive waste sites. These data support the prospective use of engineered D. radiodurans for bioremediation of mixed wastes containing both radionuclides and organic solvents.
Collapse
Affiliation(s)
- C C Lange
- Department of Biochemistry, Molecular Biology and Biophysics, Biological Process Technology Institute, University of Minnesota, St. Paul 55108, USA
| | | | | | | |
Collapse
|
24
|
Agostini HJ, Carroll JD, Minton KW. Identification and characterization of uvrA, a DNA repair gene of Deinococcus radiodurans. J Bacteriol 1996; 178:6759-65. [PMID: 8955293 PMCID: PMC178572 DOI: 10.1128/jb.178.23.6759-6765.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deinococcus radiodurans is extraordinarily resistant to DNA damage, because of its unusually efficient DNA repair processes. The mtcA+ and mtcB+ genes of D. radiodurans, both implicated in excision repair, have been cloned and sequenced, showing that they are a single gene, highly homologous to the uvrA+ genes of other bacteria. The Escherichia coli uvrA+ gene was expressed in mtcA and mtcB strains, and it produced a high degree of complementation of the repair defect in these strains, suggesting that the UvrA protein of D. radiodurans is necessary but not sufficient to produce extreme DNA damage resistance. Upstream of the uvrA+ gene are two large open reading frames, both of which are directionally divergent from the uvrA+ gene. Evidence is presented that the proximal of these open reading frames may be irrB+.
Collapse
Affiliation(s)
- H J Agostini
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
25
|
Daly MJ, Minton KW. An alternative pathway of recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 1996; 178:4461-71. [PMID: 8755873 PMCID: PMC178212 DOI: 10.1128/jb.178.15.4461-4471.1996] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Deinococcus radiodurans R1 and other members of this genus are able to repair and survive extreme DNA damage induced by ionizing radiation and many other DNA-damaging agents. The ability of R1 to repair completely > 100 double-strand breaks in its chromosome without lethality or mutagenesis is recA dependent. However, during the first 1.5 h after irradiation, recA+ and recA cells show similar increases in the average size of chromosomal fragments. In recA+ cells, DNA continues to enlarge to wild-type size within 29 h. However, in recA cells, no DNA repair is observed following the first 1.5 h postirradiation. This recA-independent effect was studied further, using two slightly different Escherichia coli plasmids forming adjacent duplication insertions in the chromosome, providing repetitive sequences suitable for circularization by non-recA-dependent pathways following irradiation. After exposure to 1.75 Mrad (17,500 Gy), circular derivatives of the integration units were detected in both recA+ and recA cells. These DNA circles were formed in the first 1.5 h postirradiation, several hours before the onset of detectable recA-dependent homologous recombination. By comparison, D. radiodurans strains containing the same E. coli plasmids as nonrepetitive direct insertions did not form circular derivatives of the integration units before or after irradiation in recA+ or recA cells. The circular derivatives of the tandemly integrated plasmids were formed before the onset of recA-dependent repair and have structures consistent with the hypothesis that DNA repair occurring immediately postirradiation is by a recA-independent single-strand annealing reaction and may be a preparatory step for further DNA repair in wild-type D. radiodurans.
Collapse
Affiliation(s)
- M J Daly
- F.E. Hébert Medical School, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | |
Collapse
|
26
|
Abstract
Deinococcus (formerly Micrococcus) radiodurans is remarkable for its extraordinary resistance to ionizing and UV irradiation and many other agents that damage DNA. This organism can repair > 100 double-strand breaks per chromosome induced by ionizing radiation without lethality or mutagenesis. We have previously observed that expression of D. radiodurans recA in Escherichia coli appears lethal. We now find that the RecA protein of D. radiodurans is ot detectable in D. radiodurans except in the setting of DNA damage and that termination of its synthesis is associated with the onset of deinococcal growth. The synthesis of Shigella flexneri RecA (protein sequence identical to that of E. coli RecA) in recA-defective D. radiodurans is described. Despite a large accumulation of the S. flexneri RecA in D. radiodurans, there is no complementation of any D. radiodurans recA phenotype, including DNA damage sensitivity, inhibition of natural transformation, or inability to support a plasmid that requires RecA for replication. To ensure that the cloned S. flexneri recA gene was not inactivated, it was rescued from D. radiodurans and was shown to function normally in E. coli. We conclude that neither D. radiodurans nor S. flexneri RecA is functional in the other species, nor are the kinetics of induction and suppression similar to each other, indicating a difference between these two proteins in their modes of action.
Collapse
Affiliation(s)
- J D Carroll
- Department of Pathology, F. E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | |
Collapse
|
27
|
Daly MJ, Minton KW. Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J Bacteriol 1995; 177:5495-505. [PMID: 7559335 PMCID: PMC177357 DOI: 10.1128/jb.177.19.5495-5505.1995] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Deinococcus radiodurans and other members of the genus Deinococcus are remarkable for their extreme resistance to ionizing radiation and many other agents that damage DNA. We have recently shown that recombinational processes participate in interplasmidic repair following in vivo irradiation. We now present direct studies on interchromosomal recombination among chromosomes irradiated in vivo during stationary phase (four chromosomes per cell). Following an exposure to 1.75 Mrad (the dose required to achieve a survival of 37%, which degrades the cells' four chromosomes into about 500 fragments), we determined that there may be as many as 175 crossovers per chromosome (700 crossovers per nucleoid) undergoing repair. In addition, these studies suggest that many of the crossovers occurring during repair are nonreciprocal.
Collapse
Affiliation(s)
- M J Daly
- Department of Pathology, F. E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | |
Collapse
|
28
|
Daly MJ, Ling O, Minton KW. Interplasmidic recombination following irradiation of the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 1994; 176:7506-15. [PMID: 8002574 PMCID: PMC197207 DOI: 10.1128/jb.176.24.7506-7515.1994] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Deinococcus radiodurans R1 and other members of the eubacterial family Deinococcaceae are extremely resistant to ionizing radiation and many other agents that damage DNA. For example, after irradiation, D. radiodurans can repair > 100 DNA double-strand breaks per chromosome without lethality or mutagenesis, while most other organisms can survive no more than 2 or 3 double-strand breaks. The unusual resistance of D. radiodurans is recA dependent, but the repair pathway(s) is not understood. Recently, we described how a plasmid present in D. radiodurans (plasmid copy number, approximately 6 per cell; chromosome copy number, approximately 4 per cell) during high-dose irradiation undergoes extreme damage like the chromosome and is retained by the cell without selection and fully repaired with the same efficiency as the chromosome. In the current work, we have investigated the repair of two similar plasmids within the same cell. These two plasmids were designed to provide both restriction fragment polymorphisms and a drug selection indicator of recombination. This study presents a novel system of analysis of in vivo damage and recombinational repair, exploiting the unique ability of D. radiodurans to survive extraordinarily high levels of DNA damage. We report that homologous recombination among plasmids following irradiation is extensive. For example, 2% of Tcs plasmids become Tcr as a result of productive recombination within a 929-bp region of the plasmids after repair. Our results suggest that each plasmid may participate in as many as 6.7 recombinational events during repair, a value that extrapolates to > 700 events per chromosome undergoing repair simultaneously. These results indicate that the study of plasmid recombination within D. radiodurans may serve as an accurate model system for simultaneously occurring repair in the chromosome.
Collapse
Affiliation(s)
- M J Daly
- Department of Pathology, F. E. Hébert School of Medicine, Uniformed Services, University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | | |
Collapse
|
29
|
Fuchs P, Agostini H, Minton KW. Defective transformation of chromosomal markers in DNA polymerase I mutants of the radioresistant bacterium Deinococcus radiodurans. Mutat Res 1994; 309:175-84. [PMID: 7520974 DOI: 10.1016/0027-5107(94)90090-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The transformation efficiency of six independently selected chromosomal markers (four for rifampicin resistance and two for acriflavine resistance) was found to be reduced by about 3 logs in a Deinococcus radiodurans strain that was isogenic with wild type except for an insertional mutation in the pol gene that eliminated DNA polymerase I activity (strain 6R1A). D. radiodurans strains UV17 and 303, previously obtained by chemical mutagenesis, were determined to be partially deficient in DNA Pol I activity as assessed in a permeabilized cell system. Both UV17 and 303 demonstrated intermediate transforming efficiencies that correlated with their levels of residual polymerase activity. The transformation efficiency of strain 6R1A could be greatly restored by expression of cloned E. coli DNA Pol I, but not to wild-type levels. Plasmid transfer and chromosomal duplication insertion were not substantially affected by lack of DNA Pol I activity. D. radiodurans is known to possess extraordinarily efficient repair pathways for DNA damage, and is refractory to DNA damage-induced mutagenesis caused by numerous agents, including several that cause base mispairing. We suggest that D. radiodurans may differ from other naturally transformable bacteria in that DNA Pol I is needed to efficiently convert most drug-resistance markers. This unusual mechanism may be required to accomplish chromosomal conversion prior to correction of donor DNA by this organism's efficient repair pathways.
Collapse
Affiliation(s)
- P Fuchs
- Department of Pathology, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | | | | |
Collapse
|
30
|
Daly MJ, Ouyang L, Fuchs P, Minton KW. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol 1994; 176:3508-17. [PMID: 8206827 PMCID: PMC205538 DOI: 10.1128/jb.176.12.3508-3517.1994] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Deinococcus radiodurans R1 and other members of this genus share extraordinary resistance to the lethal and mutagenic effects of ionizing radiation. We have recently identified a RecA homolog in strain R1 and have shown that mutation of the corresponding gene causes marked radiosensitivity. We show here that following high-level exposure to gamma irradiation (1.75 megarads, the dose required to yield 37% of CFU for plateau-phase wild-type R1), the wild-type strain repairs > 150 double-strand breaks per chromosome, whereas a recA-defective mutant (rec30) repairs very few or none. A heterologous Escherichia coli-D. radiodurans shuttle plasmid (pMD68) was constructed and found to be retained in surviving D. radiodurans R1 and rec30 following any radiation exposure up to the highest dose tested, 3 megarads. Plasmid repair was monitored in vivo following irradiation with 1.75 megarads in both R1/pMD68 and rec30/pMD68. Immediately after irradiation, plasmids from both strains contained numerous breaks and failed to transform E. coli. While irradiation with 1.75 megarads was lethal to rec30 cultures, a small amount of supercoiled plasmid was regenerated, but it lacked the ability to transform E. coli. In contrast, wild-type cultures showed a cell division arrest of about 10 h, followed by exponential growth. Supercoiled plasmid was regenerated at normal levels, and it readily transformed E. coli. These studies show that D. radiodurans retains a heterologous plasmid following irradiation and repairs it with the same high efficiency as its chromosomal DNA, while the repair defect in rec30 prevents repair of the plasmid. Taken together, the results of this study suggest that plasmid DNA damaged in vivo in D. radiodurans is repaired by recA-dependent mechanisms similar to those employed in the repair of chromosomal DNA.
Collapse
Affiliation(s)
- M J Daly
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | | | | |
Collapse
|
31
|
Gutman PD, Fuchs P, Minton KW. Restoration of the DNA damage resistance of Deinococcus radiodurans DNA polymerase mutants by Escherichia coli DNA polymerase I and Klenow fragment. Mutat Res 1994; 314:87-97. [PMID: 7504195 DOI: 10.1016/0921-8777(94)90064-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Deinococcus radiodurans and other species of this genus share extreme resistance to ionizing radiation and many other agents that damage DNA. D. radiodurans mutant strains defective in a deinococcal DNA polymerase that is homologous with E. coli DNA polymerase I are highly sensitive to DNA damage. In the current work we have inquired whether E. coli DNA Pol I can substitute for D. radiodurans Pol in partially or fully restoring to pol- D. radiodurans mutants the extreme DNA damage-resistance typical of this organism. The E. coli polA gene or a 5'-truncated polA gene that encodes the Klenow fragment were introduced and expressed in two different D. radiodurans pol- mutants: Strain 303, which is a chemically mutagenized derivative, and strain 6R1A, which is isogenic with wild-type D. radiodurans except for an insertional mutation within the pol gene. Expression of E. coli polA in both of these mutants fully restored wild-type resistance to ionizing- and UV254-radiation and mitomycin-C exposure. Expression of the Klenow fragment-encoding gene restored wild-type resistance to D. radiodurans strain 303, but only partial resistance to strain 6R1A. The observation that E. coli DNA Pol I is as effective as D. radiodurans Pol in restoring damage resistance, indicates that D. radiodurans DNA Pol per se does not have special properties that are essential or prerequisite for expression of the extreme resistance of D. radiodurans.
Collapse
Affiliation(s)
- P D Gutman
- Department of Pathology, F. E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | | | | |
Collapse
|
32
|
Grimsley JK, Masters CI, Clark EP, Minton KW. Analysis by pulsed-field gel electrophoresis of DNA double-strand breakage and repair in Deinococcus radiodurans and a radiosensitive mutant. Int J Radiat Biol 1991; 60:613-26. [PMID: 1680142 DOI: 10.1080/09553009114552441] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Double-strand break (dsb) induction and rejoining after ionizing radiation was analysed in Deinococcus radiodurans and a radiosensitive mutant by pulsed-field gel electrophoresis. Following 2 kGy, migration of genomic DNA (not restriction cleaved) from the plug into the gel was extensive, but was not observed after 90 min postirradiation recovery. By this time D. radiodurans chromosomes were intact, as demonstrated by restoration of the Not I restriction cleavage pattern of 11 bands, which we found to be the characteristic pattern in unirradiated cells. Following the higher exposure of 4 kGy, dsb rejoining took approximately 180 min, twice as long as required following the 2 kGy exposure. Restoration of dsb in the radiosensitive mutant strain 112, which appears to be defective in recombination, was markedly retarded at both 2 and 4 kGy. The Not I restriction fragments of wild-type D. radiodurans and the radiosensitive mutant were identical, totaling 3.58 Mbp, equivalent to 2.36 x 10(9) daltons per chromosome.
Collapse
Affiliation(s)
- J K Grimsley
- Department of Radiation Biochemistry, Armed Forces Radiobiology Research Institute, Bethesda, MD 20814-5145
| | | | | | | |
Collapse
|
33
|
Masters CI, Smith MD, Gutman PD, Minton KW. Heterozygosity and instability of amplified chromosomal insertions in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 1991; 173:6110-7. [PMID: 1655698 PMCID: PMC208358 DOI: 10.1128/jb.173.19.6110-6117.1991] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Natural transformation, duplication insertion, and plasmid transformation in Deinococcus radiodurans, a bacterium that contains 4 to 10 chromosomes per cell, were studied. Duplication insertions were often heterozygous, with some chromosomes containing highly amplified insertions and others containing no insertions. Large amplified regions were apparently deleted by intrachromosomal recombination, generating as by-products extrachromosomal circles consisting of multiple tandem repeats of the amplified sequence. The circles were of heterogenous integer sizes, containing as many as 10 or more amplification units. Two strains that are defective in natural transformation and sensitive to DNA-damaging agents were further characterized. Both strains were defective in duplication insertion. While on strain was normal for plasmid transformation, the other was totally defective in this regard, suggesting that plasmid transfer in D. radiodurans may require recombinational functions.
Collapse
Affiliation(s)
- C I Masters
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | | | | |
Collapse
|
34
|
Masters CI, Moseley BE, Minton KW. AP endonuclease and uracil DNA glycosylase activities in Deinococcus radiodurans. Mutat Res 1991; 254:263-72. [PMID: 1711152 DOI: 10.1016/0921-8777(91)90065-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An endonuclease specific for apurinic/apyrimidinic (AP) sites was identified and purified from extracts of Deinococcus radiodurans. The enzyme is 34.5 kD, has no activity towards normal, alkylated, uracil-containing, or UV-irradiated DNA, and is active in the presence of EDTA. The addition of up to 10 mM Mg2+ or Mn2+ did not affect activity, but higher concentrations were inhibitory. There is no associated exonuclease activity, either in the presence or absence of divalent cation. Optimal reaction conditions were 150 mM NaCl and pH 7.5. A uracil DNA glycosylase was also detected, active in the presence of EDTA, selectively removing uracil from DNA without generating other byproducts. The optimal reaction conditions were 50 mM NaCl and pH 7.5. Implications for base excision repair in D. radiodurans are discussed.
Collapse
Affiliation(s)
- C I Masters
- Department of Pathology, F.E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | | | | |
Collapse
|
35
|
Gutman PD, Yao HL, Minton KW. Partial complementation of the UV sensitivity of Deinococcus radiodurans excision repair mutants by the cloned denV gene of bacteriophage T4. Mutat Res 1991; 254:207-15. [PMID: 1711150 DOI: 10.1016/0921-8777(91)90058-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deinococcus radiodurans has 2 endonucleases that incise UV-irradiated DNA. UV endonuclease-alpha and UV endonuclease-beta, that are believed to functionally overlap. Both endonucleases must be mutationally inactivated to yield an incisionless, markedly UV-sensitive phenotype. denV, the bacteriophage T4 gene encoding pyrimidine dimer-DNA glycosylase (PD-glycosylase), was introduced and expressed via duplication insertion in D. radiodurans wild-type, and single and double UV endonuclease mutants. The strain deficient in UV endonuclease-alpha has wild-type UV resistance, and the expression of PD-glycosylase exerted no survival effect on this strain or wild-type. Expression of denV increased survival of both the markedly UV-sensitive double mutant and the moderately UV-sensitive strain deficient only in UV endonuclease-beta. In endonuclease-beta-deficient cells phenotypic complementation by denV was almost complete in restoring UV resistance to wild-type levels. These results suggest that UV endonuclease-alpha (which is present in the endonuclease-beta-deficient cells) does not recognize one or more types of cyclobutane dimer incised by the PD-glycosylase or UV endonuclease-beta.
Collapse
Affiliation(s)
- P D Gutman
- Department of Pathology, F.E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | | | | |
Collapse
|
36
|
Lennon E, Gutman PD, Yao HL, Minton KW. A highly conserved repeated chromosomal sequence in the radioresistant bacterium Deinococcus radiodurans SARK. J Bacteriol 1991; 173:2137-40. [PMID: 1705931 PMCID: PMC207754 DOI: 10.1128/jb.173.6.2137-2140.1991] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A DNA fragment containing a portion of a DNA damage-inducible gene from Deinococcus radiodurans SARK hybridized to numerous fragments of SARK genomic DNA because of a highly conserved repetitive chromosomal element. The element is of variable length, ranging from 150 to 192 bp, depending on the absence or presence of one or two 21-bp sequences located internally. A putative translational start site of the damage-inducible gene is within the reiterated element. The element contains dyad symmetries that suggest modes of transcriptional and/or translational control.
Collapse
Affiliation(s)
- E Lennon
- Department of Pathology, F. E. Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | | | | | |
Collapse
|
37
|
Abstract
We previously reported that the Escherichia coli drug-resistance determinants aphA (kanamycin-resistance) and cat (chloramphenicol-resistance) could be introduced to Deinococcus radiodurans by transformation methods that produce duplication insertion. However, both determinants appeared to require dramatic chromosomal amplification for expression of resistance. Additional studies described here, confirming this requirement for extensive amplification, led us to the use of promoter-probe plasmids in which the E. coli promoter has been deleted, leaving only coding sequences for the marker gene. We find that the insertion of D. radiodurans sequences immediately upstream from the promoterless drug-resistance determinant produces drug-resistant transformants without significant chromosomal amplification. Furthermore, a series of stable E. coli-D. radiodurans shuttle plasmids was devised by inserting fragments of D. radiodurans plasmid pUE10 in an E. coli plasmid directly upstream from a promoterless cat gene. These constructions replicated in D. radiodurans by virtue of the pUE10 replicon and expressed the cat determinant because of D. radiodurans promoter sequences in the pUE10 fragment. Of three such constructions, none expressed the cat gene in E. coli. Similar results were obtained using a promoterless tet gene. Translational fusions were made between D. radiodurans genes and E. coli 5'-truncated lacZ. Three fusions that produced high levels of beta Gal in D. radiodurans were introduced into E. coli, but beta Gal was produced in only one. The results demonstrate that the E. coli genes cat, tet and lacZ can be efficiently expressed in D. radiodurans if a D. radiodurans promoter is provided, and that D. radiodurans promoters often do not function as promoters in E. coli.
Collapse
Affiliation(s)
- M D Smith
- Department of Pathology, F.E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | | | | | | | | |
Collapse
|
38
|
Lennon E, Minton KW. Gene fusions with lacZ by duplication insertion in the radioresistant bacterium Deinococcus radiodurans. J Bacteriol 1990; 172:2955-61. [PMID: 2160933 PMCID: PMC209094 DOI: 10.1128/jb.172.6.2955-2961.1990] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Deinococcus radiodurans is the most-studied species of a eubacterial family characterized by extreme resistance to DNA damage. We have focused on developing molecular biological techniques to investigate the genetics of this organism. We report construction of lacZ gene fusions by a method involving both in vitro splicing and the natural transformation of D. radiodurans. Numerous fusion strains were identified by expression of beta-galactosidase. Among these fusion strains, several were inducible by exposure to the DNA-damaging agent mitomycin C, and four of the inducible fusion constructs were cloned in Escherichia coli. Hybridization studies indicate that one of the damage-inducible genes contains a sequence reiterated throughout the D. radiodurans chromosome. Survival measurements show that two of the fusion strains have increased sensitivity to mitomycin C, suggesting that the fusions within these strains inactivate repair functions.
Collapse
Affiliation(s)
- E Lennon
- Department of Pathology, F. E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799
| | | |
Collapse
|
39
|
Smith MD, Abrahamson R, Minton KW. Shuttle plasmids constructed by the transformation of an Escherichia coli cloning vector into two Deinococcus radiodurans plasmids. Plasmid 1989; 22:132-42. [PMID: 2695951 DOI: 10.1016/0147-619x(89)90022-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An Escherichia coli plasmid that confers kanamycin resistance (Kmr) was inserted into the large Deinococcus radiodurans cryptic plasmids pUE10 and pUE11, yielding pS28 and pS19. The method of insertion involved both in vitro splicing and the natural transformation of D. radiodurans and yielded full-length clones in E. coli of pUE10 and pUE11. Both pS28 and pS19 replicated and expressed Kmr in E. coli and D. radiodurans. In both pS28 and pS19, D. radiodurans plasmid sequences were immediately upstream from the Kmr determinant. Transformation experiments suggested that Kmr expression in D. radiodurans was initiated in upstream D. radiodurans sequences. Restriction maps of pS28 and pS19 showed that each plasmid contained three MraI sites. Both pS28 and pS19 transformed the MraI-producing D. radiodurans strain R1 at low frequencies. D. radiodurans strain Sark, which naturally contains pUE10 and pUE11, was transformed by pS28 and pS19 at much higher frequencies. A Sark derivative that was cured for pUE10 was isolated by screening Sark/pS28 subisolates for loss of kanamycin resistance.
Collapse
Affiliation(s)
- M D Smith
- Department of Pathology, F. E. Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | | | | |
Collapse
|