1
|
Suryawanshi N, Eswari JS. New Insights of Carbon Catabolite Repression and Kinetics Modeling for the Growth of
Thermomyces lanuginosus. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nisha Suryawanshi
- Department of Biotechnology National Institute of Technology GE road Raipur Raipur 492010 CG India
| | - Jujjawarapu Satya Eswari
- Department of Biotechnology National Institute of Technology GE road Raipur Raipur 492010 CG India
| |
Collapse
|
2
|
Mandal V, Adhikary R, Maiti PK, Mandal S, Mandal V. Morpho-biochemical and molecular characterization of two new strains of Aspergillus fumigatus nHF-01 and A. fumigatus PPR-01 producing broad-spectrum antimicrobial compounds. Braz J Microbiol 2021; 52:905-917. [PMID: 33715141 DOI: 10.1007/s42770-021-00439-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
The main objective of the study is to characterize two new strains of Aspergillus fumigatus through morphometric, biochemical, molecular methods, and to evaluate their antimicrobial potentiality. The micro-morphotaxonomy, growth, and metabolic behavior of the strains, nHF-01 and PPR-01, were studied in different growth conditions and compared with standard strain. The molecular characterization was done by sequencing the ncrDNA ITS1-5.8S-ITS2 and D1-D2 domains of the nc 28S rDNA region and compared with a secondary structure-based phylogenetic tree. The secretory antimicrobials and pigments were characterized by TLC, UV-Vis, and FT-IR spectroscopy. Both the strains showed distinct growth patterns in different nutritional media and could assimilate a wide range of carbohydrates with distinctive biochemical properties. The molecular characterization revealed the strains, nHF-01 and PPR-01, as Aspergillus fumigatus (GenBank Accession No. MN190286 and MN190284, respectively). It was observed that the strain nHF-01 produces red to brownish pigments having mild antimicrobial activity while the strain PPR-01 does not represent such transformations. The extractable compounds had a significant antimicrobial potentiality against the human pathogenic bacteria. From this analysis, it can be concluded that the nHF-01 and PPR-01 strains are distinct from other A. fumigatus by their unique characters. Large-scale production and detailed molecular elucidation of the antimicrobial compounds may lead to the discovery of new antimicrobial compounds from these strains.
Collapse
Affiliation(s)
- Vivekananda Mandal
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, P.O. - Mokdumpur, Malda, WB, 732 103, India
| | - Rajsekhar Adhikary
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, P.O. - Mokdumpur, Malda, WB, 732 103, India
| | - Pulak Kumar Maiti
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India
| | - Sukhendu Mandal
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India
| | - Vivekananda Mandal
- Plant and Microbial Physiology and Biochemistry Laboratory, Department of Botany, University of Gour Banga, P.O. - Mokdumpur, Malda, WB, 732 103, India.
| |
Collapse
|
3
|
Yamada R, Yamauchi A, Kashihara T, Ogino H. Evaluation of lipid production from xylose and glucose/xylose mixed sugar in various oleaginous yeasts and improvement of lipid production by UV mutagenesis. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
4
|
Effects of saline-alkaline stress on benzo[a]pyrene biotransformation and ligninolytic enzyme expression by Bjerkandera adusta SM46. World J Microbiol Biotechnol 2016; 32:39. [PMID: 26867600 DOI: 10.1007/s11274-015-2001-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/16/2015] [Indexed: 12/24/2022]
Abstract
Benzo[a]pyrene (BaP) accumulates in marine organisms and contaminated coastal areas. The biotreatment of waste water using saline-alkaline-tolerant white rot fungi (WRF) represents a promising method for removing BaP under saline-alkaline conditions based on WRF's ability to produce ligninolytic enzymes. In a pre-screening for degradation of polycyclic aromatic hydrocarbons of 82 fungal strains using Remazol brilliant blue R, Bjerkandera adusta SM46 exhibited the highest tolerance to saline-alkaline stress. Moreover, a B. adusta culture grown in BaP-containing liquid medium exhibited resistance to salinities up to 20 g l(-1). These conditions did not inhibit fungal growth or the expression of manganese peroxidase (MnP) or lignin peroxidase (LiP). The degradation rate also became higher as salinity increased to 20 g l(-1). Fungal growth and enzyme expression were inhibited at a salinity of 35 g l(-1). These inhibitory effects directly decreased the degradation rate (>24%). The presence of MnSO4 as an inducer improved the degradation rate and enzyme expression. MnP and LiP activity also increased by seven- and fivefold, respectively. SM46 degraded BaP (38-89% over 30 days) in an acidic environment (pH 4.5) and under saline-alkaline stress conditions (pH 8.2). Investigating the metabolites produced revealed BaP-1,6-dione as the main product, indicating the important role of ligninolytic enzymes in initializing BaP cleavage. The other metabolites detected, naphthalene acetic acid, hydroxybenzoic acid, benzoic acid, and catechol, may have been ring fission products. The wide range of activities observed suggests that B. adusta SM46 is a potential agent for biodegrading BaP under saline conditions.
Collapse
|
5
|
Singh B, Poças-Fonseca MJ, Johri BN, Satyanarayana T. Thermophilic molds: Biology and applications. Crit Rev Microbiol 2016; 42:985-1006. [DOI: 10.3109/1040841x.2015.1122572] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Homo-d-lactic acid production from mixed sugars using xylose-assimilating operon-integrated Lactobacillus plantarum. Appl Microbiol Biotechnol 2011; 92:67-76. [DOI: 10.1007/s00253-011-3356-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/19/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
|
7
|
Kim JH, Block DE, Mills DA. Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl Microbiol Biotechnol 2010; 88:1077-85. [PMID: 20838789 PMCID: PMC2956055 DOI: 10.1007/s00253-010-2839-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 08/09/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
Abstract
Lignocellulosic biomass is an attractive carbon source for bio-based fuel and chemical production; however, its compositional heterogeneity hinders its commercial use. Since most microbes possess carbon catabolite repression (CCR), mixed sugars derived from the lignocellulose are consumed sequentially, reducing the efficacy of the overall process. To overcome this barrier, microbes that exhibit the simultaneous consumption of mixed sugars have been isolated and/or developed and evaluated for the lignocellulosic biomass utilization. Specific strains of Escherichia coli, Saccharomyces cerevisiae, and Zymomonas mobilis have been engineered for simultaneous glucose and xylose utilization via mutagenesis or introduction of a xylose metabolic pathway. Other microbes, such as Lactobacillus brevis, Lactobacillus buchneri, and Candida shehatae possess a relaxed CCR mechanism, showing simultaneous consumption of glucose and xylose. By exploiting CCR-negative phenotypes, various integrated processes have been developed that incorporate both enzyme hydrolysis of lignocellulosic material and mixed sugar fermentation, thereby enabling greater productivity and fermentation efficacy.
Collapse
Affiliation(s)
- Jae-Han Kim
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - David E. Block
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
- Department of Chemical Engineering and Materials Science, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - David A. Mills
- Robert Mondavi Institute for Wine and Food Science, Department of Viticulture and Enology, University of California, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|
8
|
Kim JH, Shoemaker SP, Mills DA. Relaxed control of sugar utilization in Lactobacillus brevis. Microbiology (Reading) 2009; 155:1351-1359. [DOI: 10.1099/mic.0.024653-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prioritization of sugar consumption is a common theme in bacterial growth and a problem for complete utilization of five and six carbon sugars derived from lignocellulose. Growth studies show that Lactobacillus brevis simultaneously consumes numerous carbon sources and appears to lack normal hierarchical control of carbohydrate utilization. Analysis of several independent L. brevis isolates indicated that co-utilization of xylose and glucose is a common trait for this species. Moreover, carbohydrates that can be used as a single carbon source are simultaneously utilized with glucose. Analysis of the proteome of L. brevis cells grown on glucose, xylose or a glucose/xylose mixture revealed the constitutive expression of the enzymes of the heterofermentative pathway. In addition, fermentative mass balances between mixed sugar inputs and end-products indicated that both glucose and xylose are simultaneously metabolized through the heterofermentative pathway. Proteomic and mRNA analyses revealed that genes in the xyl operon were expressed in the cells grown on xylose or on glucose/xylose mixtures but not in those grown on glucose alone. However, the expression level of XylA and XylB proteins in cells grown on a glucose/xylose mixture was reduced 2.7-fold from that observed in cells grown solely on xylose. These results suggest that regulation of xylose utilization in L. brevis is not stringently controlled as seen in other lactic acid bacteria, where carbon catabolite repression operates to prioritize carbohydrate utilization more rigorously.
Collapse
Affiliation(s)
- Jae-Han Kim
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | - Sharon P. Shoemaker
- California Institute of Food and Agricultural Research, University of California, Davis, CA 95616, USA
| | - David A. Mills
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Guimarães LHS, Somera AF, Terenzi HF, Polizeli MDLTDM, Jorge JA. Production of β-fructofuranosidases by Aspergillus niveus using agroindustrial residues as carbon sources: Characterization of an intracellular enzyme accumulated in the presence of glucose. Process Biochem 2009. [DOI: 10.1016/j.procbio.2008.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Abstract
Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending up to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and overexpressed in heterologous fungi, and pure crystalline proteins have been obtained for elucidation of the mechanisms of their intrinsic thermostability and catalysis. By contrast, the thermal stability of the few intracellular enzymes that have been purified is comparable to or, in some cases, lower than that of enzymes from the mesophilic fungi. Although rigorous data are lacking, it appears that eukaryotic thermophily involves several mechanisms of stabilization of enzymes or optimization of their activity, with different mechanisms operating for different enzymes.
Collapse
Affiliation(s)
- R Maheshwari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India.
| | | | | |
Collapse
|
11
|
Bharadwaj G, Maheshwari R. A comparison of thermal characteristics and kinetic parameters of trehalases from a thermophilic and a mesophilic fungus. FEMS Microbiol Lett 1999; 181:187-93. [PMID: 10564806 DOI: 10.1111/j.1574-6968.1999.tb08843.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Trehalases from a thermophilic fungus Thermomyces lanuginosus (M(r) 145 kDa) and a mesophilic fungus Neurospora crassa (M(r) 437 kDa) were purified to compare their thermal characteristics and kinetic constants. Both trehalases were maximally active at 50 degrees C, had an acidic pH optimum and were glycoproteins (20% and 43%, w/w, carbohydrate content for T. lanuginosus and N. crassa, respectively). At their temperature optimum, their K(m) was similar (0.57 and 0.52 mM trehalose, for T. lanuginosus and N. crassa, respectively) but the V(max) of N. crassa enzyme was nine times higher than of T. lanuginosus enzyme. The catalytic efficiency, k(cat)/K(m), for N. crassa trehalase was one order of magnitude higher (6.2 x 10(6) M(-1) s(-1)) than of T. lanuginosus trehalase (4 x 10(5) M(-1) s(-1)). At their T(opt) (50 degrees C), trehalase from both sources exhibited similar thermostability (t(1/2)6 h). The energy of activation, E(a), for T. lanuginosus trehalase was 15.12 kcal mol(-1) and for N. crassa trehalase it was 9.62 kcal mol(-1). The activation energy for thermal inactivation for the N. crassa enzyme (92 kcal mol(-1)) was two-fold higher than for the T. lanuginosus enzyme (46 kcal mol(-1)). The present study shows that the trehalase of N. crassa is not only more stable but also a better catalyst than the T. lanuginosus enzyme.
Collapse
Affiliation(s)
- G Bharadwaj
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
12
|
Chaudhuri A, Bharadwaj G, Maheshwari R. An unusual pattern of invertase activity development in the thermophilic fungus Thermomyces lanuginosus. FEMS Microbiol Lett 1999; 177:39-45. [PMID: 10475745 DOI: 10.1111/j.1574-6968.1999.tb13711.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In the thermophilic fungus Thermomyces lanuginosus, invertase displays an unusual pattern of development: the induced activity begins to diminish even before any substantial quantity of sucrose has been utilized or an appreciable amount of biomass has been produced. Despite this pattern of invertase activity, neither the growth rate nor the final mycelial yield is affected adversely. T. lanuginosus invertase is a thiol protein and the enzyme is active when specific sulfhydryl group(s) is in the reduced state. Measurements of reduced coenzyme and glutathione pools in sucrose-growth mycelia excluded oxidative stress as the primary reason for the observed decline in invertase activity. Rather, this unusual pattern of invertase is considered to be due to its localization in the hyphal tips. At the early stage of growth, the number of hyphal tips per unit mass of mycelium is maximum, whereas at later times their numbers do not increase in proportion to the biomass. As a result invertase activity shows an apparent inverse relationship with biomass. The enzyme activity disappears when the inducing carbon source is consumed and growth is completed.
Collapse
Affiliation(s)
- A Chaudhuri
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
13
|
|