1
|
Newton R, Amstutz J, Patrick JE. Biofilm formation by Bacillus subtilis is altered in the presence of pesticides. Access Microbiol 2021; 2:acmi000175. [PMID: 33490870 PMCID: PMC7818241 DOI: 10.1099/acmi.0.000175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/21/2020] [Indexed: 11/18/2022] Open
Abstract
Bacillus subtilis uses swarming motility and biofilm formation to colonize plant roots and form a symbiotic relationship with the plant. Swarming motility and biofilm formation are group behaviours made possible through the use of chemical messengers. We investigated whether chemicals applied to plants would interfere with the swarming motility and biofilm-forming capabilities of B. subtilis in vitro. We hypothesized that pesticides could act as chemical signals that influence bacterial behaviour; this research investigates whether swarming motility and biofilm formation of B. subtilis is affected by the application of the commercial pesticides with the active ingredients of neem oil, pyrethrin, or malathion. The results indicate that all three pesticides inhibit biofilm formation. Swarming motility is not affected by the application of pyrethrin or malathion, but swarm expansion and pattern is altered in the presence of neem oil. Future studies to investigate the mechanism by which pesticides alter biofilm formation are warranted.
Collapse
Affiliation(s)
- Rachael Newton
- Truman State University, 100 E Normal Kirksville, MO 63501, USA
| | | | - Joyce E Patrick
- Truman State University, 100 E Normal Kirksville, MO 63501, USA
| |
Collapse
|
2
|
Key elements and regulation strategies of NRPSs for biosynthesis of lipopeptides by Bacillus. Appl Microbiol Biotechnol 2020; 104:8077-8087. [DOI: 10.1007/s00253-020-10801-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/08/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
|
3
|
Wang X, Chen Z, Feng H, Chen X, Wei L. Genetic variants of the oppA gene are involved in metabolic regulation of surfactin in Bacillus subtilis. Microb Cell Fact 2019; 18:141. [PMID: 31426791 PMCID: PMC6699124 DOI: 10.1186/s12934-019-1176-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 07/30/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus subtilis 916 has been identified as an effective biocontrol agent against Rhizoctonia solani, the causal pathogen of rice sheath blight, under greenhouse and field conditions. HPLC analysis showed that surfactin, a member of the lipopeptide family produced by B. subtilis, was the major antimicrobial substance. RESULTS Previously, we obtained a mutant strain of B. subtilis 916, Bs-H74, which produced significantly more surfactin than the wild type and presented 10% stronger inhibitory activity against R. solani. To explore the molecular mechanism underlying the higher surfactin productivity in the mutant, high-throughput proteomic analysis was carried out to analyze the differential protein expression. Our results showed that several differentially expressed proteins are involved in OppA, DegU and Carbon Catabolite Repression (CCR) regulatory pathways, which could be positively or negatively associated with surfactin biosynthesis. At both transcriptional and translational levels, we suggested that OppA may play a key role in surfactin synthesis regulation. Based on the above findings, we proposed the hypothesis that a point mutation in the oppA gene may lead to changes in oligopeptides acquisition in B. subtilis, and then the changed oligopeptides may activate or suppress the global regulatory protein, CcpA in the CCR pathway, and ComA and DegU may indirectly regulate surfactin synthesis in Bs-H74. To further explore the regulatory mechanisms in Bs-H74, metabolomics analysis was performed in this study. Interestingly, only 16 metabolites showed changes in abundance in Bs-H74 compared to Bs-916. Neohesperidin, a type of natural flavanone glycosides from citrus with a range of biological activities, increased by 18 times over the wild type Bs-916. This result implied exciting findings in regulatory mechanisms by OppA protein. CONCLUSIONS In summary, this study has revealed the mechanisms underlying the improved antagonistic property with increased surfactin production in Bs-H74 at the gene, protein and metabolic levels, which may help to comprehend the map of the regulatory networks in B. subtilis. Findings from our work have provided a solid physical and theoretical basis for practically applying metabolic and genetic engineering to achieve improved and high-yielding biocontrol strains.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Zhiyi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Hui Feng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xi Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
4
|
Denham EL, Piersma S, Rinket M, Reilman E, de Goffau MC, van Dijl JM. Differential expression of a prophage-encoded glycocin and its immunity protein suggests a mutualistic strategy of a phage and its host. Sci Rep 2019; 9:2845. [PMID: 30808982 PMCID: PMC6391423 DOI: 10.1038/s41598-019-39169-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/31/2018] [Indexed: 01/12/2023] Open
Abstract
Sublancin 168 is a highly potent and stable antimicrobial peptide secreted by the Gram-positive bacterium Bacillus subtilis. Production of sublancin gives B. subtilis a major competitive growth advantage over a range of other bacteria thriving in the same ecological niches, the soil and plant rhizosphere. B. subtilis protects itself against sublancin by producing the cognate immunity protein SunI. Previous studies have shown that both the sunA gene for sublancin and the sunI immunity gene are encoded by the prophage SPβ. The sunA gene is under control of several transcriptional regulators. Here we describe the mechanisms by which sunA is heterogeneously expressed within a population, while the sunI gene encoding the immunity protein is homogeneously expressed. The key determinants in heterogeneous sunA expression are the transcriptional regulators Spo0A, AbrB and Rok. Interestingly, these regulators have only a minor influence on sunI expression and they have no effect on the homogeneous expression of sunI within a population of growing cells. Altogether, our findings imply that the homogeneous expression of sunI allows even cells that are not producing sublancin to protect themselves at all times from the active sublancin produced at high levels by their isogenic neighbors. This suggests a mutualistic evolutionary strategy entertained by the SPβ prophage and its Bacillus host, ensuring both stable prophage maintenance and a maximal competitive advantage for the host at minimal costs.
Collapse
Affiliation(s)
- Emma L Denham
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.,Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sjouke Piersma
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Marleen Rinket
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Ewoud Reilman
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands
| | - Marcus C de Goffau
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.,Wellcome Sanger Institute, Cambridge, UK
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Hanzeplein 1, P.O. Box 30001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
5
|
Velho RV, Caldas DGG, Medina LFC, Tsai SM, Brandelli A. Real-time PCR investigation on the expression of sboA and ituD genes in Bacillus spp. Lett Appl Microbiol 2011; 52:660-6. [PMID: 21501196 DOI: 10.1111/j.1472-765x.2011.03060.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the expression of sboA and ituD genes among strains of Bacillus spp. at different pH and temperature. METHODS AND RESULTS Different Bacillus strains from the Amazon basin and Bacillus subtilis ATCC 19659 were investigated for the production of subtilosin A and iturin A by qRT-PCR, analysing sboA and ituD gene expression under different culture conditions. Amazonian strains presented a general gene expression level lower than B. subtilis ATCC 19659 for sboA. In contrast, when analysing the expression of ituD gene, the strains from the Amazon, particularly P40 and P45B, exhibited higher levels of expression. Changes in pH (6 and 8) and temperature (37 and 42 °C) caused a decrease in sboA expression, but increased ituD expression among strains from Amazonian environment. CONCLUSIONS Temperature and pH have an important influence on the expression of genes sboA (subtilosin A) and ituD (iturin A) among Bacillus spp. The strains P40 and P45B can be useful for the production of antimicrobial peptide iturin A. SIGNIFICANCE AND IMPACT OF THE STUDY Monitoring the expression of essential biosynthetic genes by qRT-PCR is a valuable tool for optimization of the production of antimicrobial peptides.
Collapse
Affiliation(s)
- R V Velho
- Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Brasil
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Abstract
Bacillus anthracis shares many regulatory loci with the nonpathogenic Bacillus species Bacillus subtilis. One such locus is sinIR, which in B. subtilis controls sporulation, biofilm formation, motility, and competency. As B. anthracis is not known to be motile, to be naturally competent, or to readily form biofilms, we hypothesized that the B. anthracis sinIR regulon is distinct from that of B. subtilis. A genome-wide expression microarray analysis of B. anthracis parental and sinR mutant strains indicated limited convergence of the B. anthracis and B. subtilis SinR regulons. The B. anthracis regulon includes homologues of some B. subtilis SinR-regulated genes, including the signal peptidase gene sipW near the sinIR locus and the sporulation gene spoIIE. The B. anthracis SinR protein also negatively regulates transcription of genes adjacent to the sinIR locus that are unique to the Bacillus cereus group species. These include calY and inhA1, structural genes for the metalloproteases camelysin and immune inhibitor A1 (InhA1), which have been suggested to be associated with virulence in B. cereus and B. anthracis, respectively. Electrophoretic mobility shift assays revealed direct binding of B. anthracis SinR to promoter DNA from strongly regulated genes, such as calY and sipW, but not to the weakly regulated inhA1 gene. Assessment of camelysin and InhA1 levels in culture supernates from sinR-, inhA1-, and calY-null mutants showed that the concentration of InhA1 in the culture supernatant is inversely proportional to the concentration of camelysin. Our data are consistent with a model in which InhA1 protease levels are controlled at the transcriptional level by SinR and at the posttranslational level by camelysin.
Collapse
|
8
|
Hobbs CA, Bobay BG, Thompson RJ, Perego M, Cavanagh J. NMR solution structure and DNA-binding model of the DNA-binding domain of competence protein A. J Mol Biol 2010; 398:248-63. [PMID: 20302877 DOI: 10.1016/j.jmb.2010.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/15/2022]
Abstract
Competence protein A (ComA) is a response regulator protein involved in the development of genetic competence in the Gram-positive spore-forming bacterium Bacillus subtilis, as well as the regulation of the production of degradative enzymes and antibiotic synthesis. ComA belongs to the NarL family of proteins, which are characterized by a C-terminal transcriptional activator domain that consists of a bundle of four helices, where the second and third helices (alpha 8 and alpha 9) form a helix-turn-helix DNA-binding domain. Using NMR spectroscopy, the high-resolution 3D solution structure of the C-terminal DNA-binding domain of ComA (ComAC) has been determined. In addition, surface plasmon resonance and NMR protein-DNA titration experiments allowed for the analysis of the interaction of ComAC with its target DNA sequences. Combining the solution structure and biochemical data, a model of ComAC bound to the ComA recognition sequences on the srfA promoter has been developed. The model shows that for DNA binding, ComA uses the conserved helix-turn-helix motif present in other NarL family members. However, the model reveals also that ComA might use a slightly different part of the helix-turn-helix motif and there appears to be some associated domain re-orientation. These observations suggest a basis for DNA binding specificity within the NarL family.
Collapse
Affiliation(s)
- Carey A Hobbs
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
9
|
Koumoutsi A, Chen XH, Vater J, Borriss R. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl Environ Microbiol 2007; 73:6953-64. [PMID: 17827323 PMCID: PMC2074971 DOI: 10.1128/aem.00565-07] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental strain Bacillus amyloliquefaciens FZB42 differs from the domesticated model organism of the same genus, Bacillus subtilis 168, in its ability to promote plant growth and suppress plant-pathogenic organisms present in the rhizosphere. This behavior is exerted mainly through the production of several nonribosomal cyclic lipopeptides and polyketides, which exhibit a broad range of action against phytopathogenic bacteria, fungi, and nematodes. Here, we provide evidence that the synthesis of the main antifungal agent of B. amyloliquefaciens FZB42, bacillomycin D, is regulated in multiple layers. Expression of the bacillomycin D operon (bmy) is dependent on a single sigma(A)-dependent promoter, P(bmy) and is favored in its natural host by the small regulatory protein DegQ. The global regulators DegU and ComA are required for the full transcriptional activation of bmy. DegU retains a key role since it binds directly to two sites located upstream of the bacillomycin D promoter. Moreover, both DegU and a transmembrane protein of unknown function, YczE, act on a later level of gene expression, exerting their posttranscriptional effects in a hitherto-unknown manner.
Collapse
Affiliation(s)
- Alexandra Koumoutsi
- Institut für Biologie/Bakteriengenetik, Humboldt Universität Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
10
|
Kobayashi H, Akitomi J, Fujii N, Kobayashi K, Altaf-Ul-Amin M, Kurokawa K, Ogasawara N, Kanaya S. The entire organization of transcription units on the Bacillus subtilis genome. BMC Genomics 2007; 8:197. [PMID: 17598888 PMCID: PMC1925097 DOI: 10.1186/1471-2164-8-197] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 06/28/2007] [Indexed: 11/17/2022] Open
Abstract
Background In the post-genomic era, comprehension of cellular processes and systems requires global and non-targeted approaches to handle vast amounts of biological information. Results The present study predicts transcription units (TUs) in Bacillus subtilis, based on an integrated approach involving DNA sequence and transcriptome analyses. First, co-expressed gene clusters are predicted by calculating the Pearson correlation coefficients of adjacent genes for all the genes in a series that are transcribed in the same direction with no intervening gene transcribed in the opposite direction. Transcription factor (TF) binding sites are then predicted by detecting statistically significant TF binding sequences on the genome using a position weight matrix. This matrix is a convenient way to identify sites that are more highly conserved than others in the entire genome because any sequence that differs from a consensus sequence has a lower score. We identify genes regulated by each of the TFs by comparing gene expression between wild-type and TF mutants using a one-sided test. By applying the integrated approach to 11 σ factors and 17 TFs of B. subtilis, we are able to identify fewer candidates for genes regulated by the TFs than were identified using any single approach, and also detect the known TUs efficiently. Conclusion This integrated approach is, therefore, an efficient tool for narrowing searches for candidate genes regulated by TFs, identifying TUs, and estimating roles of the σ factors and TFs in cellular processes and functions of genes composing the TUs.
Collapse
Affiliation(s)
- Hirokazu Kobayashi
- Department of Bioinformatics and Genomes, Graduate School of Information Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Joe Akitomi
- Department of Bioinformatics and Genomes, Graduate School of Information Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Nobuyuki Fujii
- Department of Bioinformatics and Genomes, Graduate School of Information Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Kazuo Kobayashi
- Department of Bioinformatics and Genomes, Graduate School of Information Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Md Altaf-Ul-Amin
- Department of Bioinformatics and Genomes, Graduate School of Information Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Ken Kurokawa
- Department of Bioinformatics and Genomes, Graduate School of Information Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Naotake Ogasawara
- Department of Bioinformatics and Genomes, Graduate School of Information Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| | - Shigehiko Kanaya
- Department of Bioinformatics and Genomes, Graduate School of Information Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
11
|
Duitman EH, Wyczawski D, Boven LG, Venema G, Kuipers OP, Hamoen LW. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases. Appl Environ Microbiol 2007; 73:3490-6. [PMID: 17416694 PMCID: PMC1932663 DOI: 10.1128/aem.02751-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural isolates of Bacillus subtilis are often difficult to transform due to their low genetic competence levels. Here we describe two methods that stimulate natural transformation. The first method uses plasmid pGSP12, which expresses the competence transcription factor ComK and stimulates competence development about 100-fold. The second method stimulates Campbell-type recombination of DNA ligation mixtures in B. subtilis by the addition of polyethylene glycol. We employed these novel methods to study the regulation of the synthetases for the lipopeptide antibiotics mycosubtilin (myc) and surfactin (srfA) in B. subtilis strain ATCC 6633. By means of lacZ reporter fusions, it was shown that the expression of srfA is >100 times lower in strain ATCC 6633 than in the laboratory strain B. subtilis 168. Expression of the myc operon was highest in rich medium, whereas srfA expression reached maximal levels in minimal medium. Further genetic analyses showed that the srfA operon is mainly regulated by the response regulator ComA, while the myc operon is primarily regulated by the transition-state regulator AbrB. Although there is in vitro evidence for a synergistic activity of mycosubtilin and surfactin, the expression of both lipopeptide antibiotics is clearly not coordinated.
Collapse
Affiliation(s)
- Erwin H Duitman
- Department of Genetics, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Ross C, Pybus C, Pedraza-Reyes M, Sung HM, Yasbin RE, Robleto E. Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis. J Bacteriol 2006; 188:7512-20. [PMID: 16950921 PMCID: PMC1636285 DOI: 10.1128/jb.00980-06] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previously, using a chromosomal reversion assay system, we established that an adaptive mutagenic process occurs in nongrowing Bacillus subtilis cells under stress, and we demonstrated that multiple mechanisms are involved in generating these mutations (41, 43). In an attempt to delineate how these mutations are generated, we began an investigation into whether or not transcription and transcription-associated proteins influence adaptive mutagenesis. In B. subtilis, the Mfd protein (transcription repair coupling factor) facilitates removal of RNA polymerase stalled at transcriptional blockages and recruitment of repair proteins to DNA lesions on the transcribed strand. Here we demonstrate that the loss of Mfd has a depressive effect on stationary-phase mutagenesis. An association between Mfd mutagenesis and aspects of transcription is discussed.
Collapse
Affiliation(s)
- Christian Ross
- Department of Biological Sciences, University of Nevada, Las Vegas, 89154-4004, USA
| | | | | | | | | | | |
Collapse
|
13
|
Chu F, Kearns DB, Branda SS, Kolter R, Losick R. Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 2006; 59:1216-28. [PMID: 16430695 DOI: 10.1111/j.1365-2958.2005.05019.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Wild strains of the spore-forming bacterium Bacillus subtilis are capable of forming architecturally complex communities of cells. The formation of these biofilms is mediated in part by the 15-gene exopolysaccharide operon, epsA-O, which is under the direct negative control of the SinR repressor. We report the identification of an additional operon, yqxM-sipW-tasA, that is required for biofilm formation and is under the direct negative control of SinR. We now show that all three members of the operon are required for the formation of robust biofilms and that SinR is a potent repressor of the operon that acts by binding to multiple sites in the promoter region. Genome-wide analysis of SinR-controlled transcription indicates that the epsA-O and yqxM-sipW-tasA operons constitute many of the most strongly controlled genes in the SinR regulon. These findings reinforce the view that SinR is a master regulator for biofilm formation and further suggest that a principal biological function of SinR is to govern the assembly of complex multicellular communities.
Collapse
Affiliation(s)
- Frances Chu
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
14
|
Sung HM, Yasbin RE. Adaptive, or stationary-phase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis. J Bacteriol 2002; 184:5641-53. [PMID: 12270822 PMCID: PMC139596 DOI: 10.1128/jb.184.20.5641-5653.2002] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adaptive (stationary-phase) mutagenesis occurs in the gram-positive bacterium Bacillus subtilis. Furthermore, taking advantage of B. subtilis as a paradigm for the study of prokaryotic differentiation and development, we have shown that this type of mutagenesis is subject to regulation involving at least two of the genes that are involved in the regulation of post-exponential phase prokaryotic differentiation, i.e., comA and comK. On the other hand, a functional RecA protein was not required for this type of mutagenesis. The results seem to suggest that a small subpopulation(s) of the culture is involved in adaptive mutagenesis and that this subpopulation(s) is hypermutable. The existence of such a hypermutable subpopulation(s) raises important considerations with respect to evolution, the development of specific mutations, the nature of bacterial populations, and the level of communication among bacteria in an ecological niche.
Collapse
Affiliation(s)
- Huang-Mo Sung
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | |
Collapse
|
15
|
Jiang M, Grau R, Perego M. Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. J Bacteriol 2000; 182:303-10. [PMID: 10629174 PMCID: PMC94277 DOI: 10.1128/jb.182.2.303-310.2000] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the phosphorelay signal transduction system for sporulation initiation in Bacillus subtilis, the opposing activities of histidine kinases and aspartyl phosphate phosphatases determine the cell's decision whether to continue with vegetative growth or to initiate the differentiation process. Regulated dephosphorylation of the Spo0A and Spo0F response regulators allows a variety of negative signals from physiological processes that are antithetical to sporulation to impact on the activation level of the phosphorelay. Spo0F approximately P is the known target of two related phosphatases, RapA and RapB. In addition to RapA and RapB, a third member of the Rap family of phosphatases, RapE, specifically dephosphorylated the Spo0F approximately P intermediate in response to competence development. RapE phosphatase activity was found to be controlled by a pentapeptide (SRNVT) generated from within the carboxy-terminal domain of the phrE gene product. A synthetic PhrE pentapeptide could (i) complement the sporulation deficiency caused by deregulated RapE activity of a phrE mutant and (ii) inhibit RapE-dependent dephosphorylation of Spo0F approximately P in in vitro experiments. The PhrE pentapeptide did not inhibit the phosphatase activity of RapA and RapB. These results confirm previous conclusions that the specificity for recognition of the target phosphatase is contained within the amino acid sequence of the pentapeptide inhibitor.
Collapse
Affiliation(s)
- M Jiang
- The Scripps Research Institute, Department of Molecular Medicine, Division of Cellular Biology, La Jolla, California 92037, USA
| | | | | |
Collapse
|
16
|
Serror P, Sonenshein AL. CodY is required for nutritional repression of Bacillus subtilis genetic competence. J Bacteriol 1996; 178:5910-5. [PMID: 8830686 PMCID: PMC178446 DOI: 10.1128/jb.178.20.5910-5915.1996] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The acquisition of genetic competence by Bacillus subtilis is repressed when the growth medium contains Casamino Acids. This repression was shown to be exerted at the level of expression from the promoters of the competence-regulatory genes srfA and comK and was relieved in strains carrying a null mutation in the codY gene. DNase I footprinting experiments showed that purified CodY binds directly to the srfA and comK promoter regions.
Collapse
Affiliation(s)
- P Serror
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- A J Dijkstra
- Pharma Research Department, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | |
Collapse
|
18
|
Hahn J, Kong L, Dubnau D. The regulation of competence transcription factor synthesis constitutes a critical control point in the regulation of competence in Bacillus subtilis. J Bacteriol 1994; 176:5753-61. [PMID: 8083167 PMCID: PMC196779 DOI: 10.1128/jb.176.18.5753-5761.1994] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
comK, which encodes the competence transcription factor, is itself transcriptionally activated at the transition from exponential growth to stationary phase in Bacillus subtilis. MecA, a negative regulator of competence, also inhibits comK transcription when overexpressed, and a mecA null mutation results in comK overexpression. Although null mutations in mecA, as well as in another gene, mecB, are known to bypass the requirements for nearly all of the competence regulatory genes, the comK requirement is not suppressed by mecA inactivation. Various competence regulatory genes (comA, srfA, degU, abrB, sin, and spo0A) are shown to be required for the expression of comK. srfA transcription is shown to occur equally in cells destined for competence and those destined not to become competent. In contrast, comK transcription is restricted to the presumptive competent cells. These and other results are combined to describe a regulatory pathway for competence.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
19
|
Márquez-Magaña LM, Mirel DB, Chamberlin MJ. Regulation of sigma D expression and activity by spo0, abrB, and sin gene products in Bacillus subtilis. J Bacteriol 1994; 176:2435-8. [PMID: 8157613 PMCID: PMC205369 DOI: 10.1128/jb.176.8.2435-2438.1994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Expression of sigma D protein and of the hag gene, which is transcribed by the sigma D holoenzyme, is not dependent on spo0, abrB, or sin gene products in Bacillus subtilis. Preliminary results, however, suggest that a signal mediated by the spo0K locus may be responsible for the inhibition of sigma D activity during the stationary phase.
Collapse
Affiliation(s)
- L M Márquez-Magaña
- Division of Biochemistry and Molecular Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
20
|
O'Reilly M, Woodson K, Dowds BC, Devine KM. The citrulline biosynthetic operon, argC-F, and a ribose transport operon, rbs, from Bacillus subtilis are negatively regulated by Spo0A. Mol Microbiol 1994; 11:87-98. [PMID: 7511775 DOI: 10.1111/j.1365-2958.1994.tb00292.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A method is described here that can be used to identify operons whose expression is controlled by any particular regulator protein. This method was used to identify operons whose expression is negatively regulated by Spo0A in Bacillus subtilis. Twenty-eight strains were identified, each of which contains an operon-lacZ transcriptional fusion, negatively regulated, either directly or indirectly, by Spo0A. In one of these strains (CSA8), the lacZ gene is fused to the argC-F operon positioned at 100 degrees on the B. subtilis chromosome. The regulated expression of this operon by Spo0A-P is mediated indirectly through the transition state regulator AbrB and is manifest only during growth on solid medium. In a second strain (CSA15), the lacZ gene is fused to an operon encoding a transport system which displays features characteristic of the ABC group of transporters, and which has a very high level of identity to the ribose transport system from Escherichia coli. Expression of the ribose transport operon is directed by a single SigA-type promoter. Transcription from this promoter is repressed by the phosphorylated form of Spo0A during the late-exponential/transition phase of the growth cycle and this control is not mediated through the transition-state regulator, AbrB.
Collapse
Affiliation(s)
- M O'Reilly
- Department of Genetics, Trinity College, Dublin, Ireland
| | | | | | | |
Collapse
|
21
|
Hahn J, Inamine G, Kozlov Y, Dubnau D. Characterization of comE, a late competence operon of Bacillus subtilis required for the binding and uptake of transforming DNA. Mol Microbiol 1993; 10:99-111. [PMID: 7968523 DOI: 10.1111/j.1365-2958.1993.tb00907.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The binding and transport of DNA by competent Bacillus subtilis requires the assembly of a specialized apparatus. We present here the characterization of comE, an operon under competence control that is required for both DNA binding to the competent cell surface, and for uptake. comE contains three open reading frames (ORF1-3) read in the forward direction, preceded by a long untranslated leader sequence and an apparent E sigma A promoter. A minor promoter also is responsible for transcription of ORF2 and -3. A transcript containing a single ORF is produced in the reverse direction. The reverse ORF overlaps ORF1 and the untranslated comE leader. The comE transcript is present at a very low level during growth and at an elevated level in stationary-phase cells. Conversely, the reverse transcript is present during exponential growth and disappears during stationary phase. The reverse ORF resembles prokaryotic and eukaryotic pyrroline-5'-carboxylate reductases, while ORF2 is similar to several dCMP deaminases. ORF1 and ORF3 are predicted to be integral membrane proteins. The latter is specifically required for DNA uptake but not for binding.
Collapse
Affiliation(s)
- J Hahn
- Public Health Research Institute, New York, New York 10016
| | | | | | | |
Collapse
|
22
|
Londoño-Vallejo JA, Dubnau D. comF, a Bacillus subtilis late competence locus, encodes a protein similar to ATP-dependent RNA/DNA helicases. Mol Microbiol 1993; 9:119-31. [PMID: 8412657 DOI: 10.1111/j.1365-2958.1993.tb01674.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have sequenced and genetically characterized comF, a Bacillus subtilis competence locus, previously identified by Tn917 transposon insertion mutagenesis. Expression of the locus, in which three open reading frames (ORFs) were found, is driven by a single sigma A-like promoter in front of comFORF1 and is dependent on early regulatory competence genes and only expressed in competence medium. The predicted amino acid sequences of two of the ORFs showed similarities to known proteins in the GenBank and SwissProt databases: ComFORF1 is similar to an extensive family of ATP-dependent RNA/DNA helicases with closer similarity to the DEAD protein subfamily and to the PriA protein in Escherichia coli. The latter is a DNA translocase/helicase required for primosome assembly at the replication fork of phage phi X174. ComFORF3 is 22% identical to Com101, a protein required for genetic competence in Haemophilus influenzae, a naturally competent Gram-negative bacterium. In-frame comFORF1 deletions were 1000-fold deficient in transformability compared to the wild-type, whereas disruptions of the other two ORFs were only five- to 10-fold lower. These observations allow us to hypothesize that the ComFORF1 late gene product plays an essential role during the binding and uptake events involved in Bacillus subtilis transformation.
Collapse
|
23
|
van Sinderen D, Galli G, Cosmina P, de Ferra F, Withoff S, Venema G, Grandi G. Characterization of the srfA locus of Bacillus subtilis: only the valine-activating domain of srfA is involved in the establishment of genetic competence. Mol Microbiol 1993; 8:833-41. [PMID: 8355610 DOI: 10.1111/j.1365-2958.1993.tb01630.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
srfA is a locus required for the production of the lipopeptide antibiotic surfactin. This locus is also necessary for efficient sporulation and competence development. Mutations in the 5' portion of the srfA operon affect all three of these processes, whereas mutations in the 3' portion of srfA only affect sporulation and surfactin production. Analysis of the proteins encoded by the srfA locus revealed seven large domains which are likely to be responsible for the activation and binding of the seven amino acids of surfactin. Identification of the amino acid that is activated by the srfA domains was determined by amino acid-dependent pyrophosphate exchange reactions on partially purified cell extracts of strains carrying different srfA mutations. These results indicate colinearity between the order of the domains in the srfA locus and the amino acid sequence of surfactin. The minimal genetic element of srfA required for the establishment of competence was shown to be the 5' region of the second open reading of srfA, which encodes the valine activation domain. This portion of srfA, when cloned on a plasmid, complemented the competence deficiency of a srfA deletion mutant in trans.
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, Centre of Biological Sciences, Haren Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Strauch MA, Hoch JA. Transition-state regulators: sentinels of Bacillus subtilis post-exponential gene expression. Mol Microbiol 1993; 7:337-42. [PMID: 8459762 DOI: 10.1111/j.1365-2958.1993.tb01125.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
When Bacillus subtilis encounters a nutrient-depleted environment, it expresses a wide variety of genes that encode functions in alternative pathways of metabolism and energy production. Expression of these genes first occurs during the transition from active growth into stationary phase and is controlled by a class of proteins termed transition-state regulators. In several instances, a given gene is redundantly controlled by two or more of these regulators and many of these regulators control genes in numerous different pathways. The AbrB, Hpr and Sin proteins are the best-studied examples of these regulatory molecules. Their role is to prevent inappropriate and possibly detrimental functions from being expressed during exponential growth when they are not needed. They serve as elements integrating sporulation with ancillary stationary-phase phenomena and appear to participate in the timing of early sporulation events and in fine-tuning the magnitude of gene expression in response to specific environmental conditions.
Collapse
Affiliation(s)
- M A Strauch
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
25
|
Jagura-Burdzy G, Khanim F, Smith CA, Thomas CM. Crosstalk between plasmid vegetative replication and conjugative transfer: repression of the trfA operon by trbA of broad host range plasmid RK2. Nucleic Acids Res 1992; 20:3939-44. [PMID: 1508679 PMCID: PMC334070 DOI: 10.1093/nar/20.15.3939] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previous deletion and complementation analysis has indicated that the region between trfA and kilBI (trbB) encodes trans-acting factor, designated trbA, required for conjugative transfer of broad host range plasmid RK2. In analysing the nucleotide sequence of this region we have discovered a gene encoding a 12 kDa polypeptide. The predicted amino acid sequence of this protein shows similarity at its C-terminal to KorA from the central control operon of RK2 and at its N-terminal to immunity repressor protein from phage phi 105 of Bacillus subtilis as well as the Sin protein of B. subtilis which regulates alternate developmental processes including sporulation, motility and competence. We show that TrbA represses transcription of both trfA (vegetative replication) and kilBI (trbB) (required for conjugative transfer and whose product has similarity to ComG, required for competence of B. subtilis) and may help to coordinate expression of both sets of functions. This region has similarities to some temperate bacteriophage immunity regions in modulating divergent transcription required for alternative means of propagation.
Collapse
|
26
|
Marahiel MA. [Molecular biology and regulatory mechanisms of antibiotic production in Bacillus]. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1992; 79:202-12. [PMID: 1630495 DOI: 10.1007/bf01227129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Several species of the genus Bacillus produce linear and cyclic peptide antibiotics nonribosomally through multienzyme complexes by the so-called thiotemplate mechanism. Molecular genetic studies have shown that some peptide antibiotic biosynthesis genes are organized in operons and that they are expressed postexponentially under conditions that also activate the process of endospore formation in Bacillus. Furthermore, DNA-sequence analysis of some multifunctional peptide synthetase genes revealed that they contain a highly conserved and repeated domain structure. The same domain was also found to be conserved within a superfamily of peptide synthetases and adenylate-forming enzymes of diverse origins. Based on sequence homology and functional similarity I conclude that those enzymes bearing domain(s) represent a family of superenzymes which may have a common evolutionary origin.
Collapse
Affiliation(s)
- M A Marahiel
- Biochemie/Fb Chemie der Universität, Marburg, FRG
| |
Collapse
|
27
|
Raymond-Denise A, Guillen N. Expression of the Bacillus subtilis dinR and recA genes after DNA damage and during competence. J Bacteriol 1992; 174:3171-6. [PMID: 1577687 PMCID: PMC205983 DOI: 10.1128/jb.174.10.3171-3176.1992] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The Bacillus subtilis dinR gene product is homologous to the LexA protein of Escherichia coli and regulates the expression of dinR and dinC. Using transcriptional fusions in the dinR and the recA genes, we have investigated the epistatic relationship between these two genes during the SOS response induced either by DNA damage or by competence. The results show that after DNA damage, induction of the expression of both recA and dinR is dependent on the activity of the DinR and RecA proteins. A RecA-dependent activity on DinR is proposed as the initial event in the induction of the SOS network. In contrast, the competence-related induction of dinR and recA appears to involve two distinct mechanisms. While one mechanism corresponds to the classical regulation of the SOS response, the other appears to involve an activating factor. Moreover, this factor is active in cells in which competence is prevented by a mutation in the regulatory gene comA.
Collapse
Affiliation(s)
- A Raymond-Denise
- Unité de Pathogénie Microbienne Moléculaire, Institut National de la Santé et de la Recherche Médicale U199, Institut Pasteur, Paris, France
| | | |
Collapse
|
28
|
Nakano MM, Zuber P. The primary role of comA in establishment of the competent state in Bacillus subtilis is to activate expression of srfA. J Bacteriol 1991; 173:7269-74. [PMID: 1938921 PMCID: PMC209234 DOI: 10.1128/jb.173.22.7269-7274.1991] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The establishment of genetic competence in Bacillus subtilis requires the genes of the competence regulon which function in the binding, processing, and transport of DNA. Their expression is governed by multiple regulatory pathways that are composed of the comA, comP, sin, abrB, spo0H, spo0K, spo0A, degU, and srfA gene products. Among these, srfA is thought to occupy an intermediate position in one of the pathways that controls late competence gene expression. The full expression of srfA requires the gene products of comP, comA, and spo0K. To determine the role of these genes in the regulation of competence development, the expression of the srfA operon was placed under control of the isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter Pspac and the expression of the Pspac-srfA construct was examined in mutants blocked in early competence. By monitoring the IPTG-induced expression of Pspac-srfA with a srfA-lacZ operon fusion, it was observed that srfA expression was no longer dependent on the products of comP, comA, and spo0K. Production of the lipopeptide antibiotic surfactin in Pspac-srfA-bearing cells was induced in the presence of IPTG and was independent of ComP and ComA. Competence development was induced by IPTG and was independent of comP, comA, and spo0K in cells carrying Pspac-srfA. These results suggest that the ComP-ComA signal transduction pathway as well as Spo0K is required for the expression of srfA in the regulatory cascade of competence development. Studies of Pspac-srfA also examined the involvement of srfA in the growth stage-specific and nutritional regulation of a late competence gene.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130
| | | |
Collapse
|
29
|
Raymond-Denise A, Guillen N. Identification of dinR, a DNA damage-inducible regulator gene of Bacillus subtilis. J Bacteriol 1991; 173:7084-91. [PMID: 1657879 PMCID: PMC209213 DOI: 10.1128/jb.173.22.7084-7091.1991] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A Bacillus subtilis strain deficient in homologous recombination was isolated from a library of Tn917lac insertion mutants. The interrupted locus consists of an open reading frame encoding a 22,823-dalton polypeptide. Analysis of the deduced amino acid sequence revealed 34% identity and 47.3% similarity with the LexA protein from Escherichia coli. The gene was designated dinR. It is located between the recA and thyA genetic markers, at 162 degrees on the B. subtilis chromosome. The dinR gene was shown to be expressed during the entire B. subtilis cellular cycle with at least a threefold increase when cells develop competence. In addition, the use of a merodiploid strain, in which a copy of the wild-type dinR gene coexists with a dinR-lacZ transcriptional fusion, demonstrated that dinR is an SOS gene and that the SOS-induced expression of dinR occurred only when a wild-type copy of dinR was present. In addition, DinR seems to regulate the expression of dinC, another SOS gene.
Collapse
Affiliation(s)
- A Raymond-Denise
- Unité de Pathogénie Microbienne Moléculaire, U199 Institut National de la Santé et de la Recherche Médicale, Institut Pasteur, Paris, France
| | | |
Collapse
|
30
|
Abstract
Genetic competence may be defined as a physiological state enabling a bacterial culture to bind and take up high-molecular-weight exogenous DNA (transformation). In Bacillus subtilis, competence develops postexponentially and only in certain media. In addition, only a minority of the cells in a competent culture become competent, and these are physiologically distinct. Thus, competence is subject to three regulatory modalities: growth stage specific, nutritionally responsive, and cell type specific. This review summarizes the present state of knowledge concerning competence in B. subtilis. The study of genes required for transformability has permitted their classification into two broad categories. Late competence genes are expressed under competence control and specify products required for the binding, uptake, and processing of transforming DNA. Regulatory genes specify products that are needed for the expression of the late genes. Several of the late competence gene products have been shown to be membrane localized, and others are predicted to be membrane associated on the basis of amino acid sequence data. Several of these predicted protein sequences show a striking resemblance to gene products that are involved in the export and/or assembly of extracellular proteins and structures in gram-negative organisms. This observation is consistent with the idea that the late products are directly involved in transport of DNA and is equally consistent with the notion that they play a morphogenetic role in the assembly of a transport apparatus. The competence regulatory apparatus constitutes an elaborate signal transduction system that senses and interprets environmental information and passes this information to the competence-specific transcriptional machinery. Many of the regulatory gene products have been identified and partially characterized, and their interactions have been studied genetically and in some cases biochemically as well. These include several histidine kinase and response regulator members of the bacterial two-component signal transduction machinery, as well as a number of known transcriptionally active proteins. Results of genetic studies are consistent with the notion that the regulatory proteins interact in a hierarchical way to make up a regulatory pathway, and it is possible to propose a provisional scheme for the organization of this pathway. It is remarkable that almost all of the regulatory gene products appear to play roles in the control of various forms of postexponential expression in addition to competence, e.g., sporulation, degradative-enzyme production, motility, and antibiotic production. This has led to the notion of a signal transduction network which transduces environmental information to determine the levels and timing of expression of the ultimate products characteristic of each of these systems.
Collapse
Affiliation(s)
- D Dubnau
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| |
Collapse
|
31
|
Nakano MM, Xia LA, Zuber P. Transcription initiation region of the srfA operon, which is controlled by the comP-comA signal transduction system in Bacillus subtilis. J Bacteriol 1991; 173:5487-93. [PMID: 1715856 PMCID: PMC208261 DOI: 10.1128/jb.173.17.5487-5493.1991] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
srfA is an operon required for the production of the lipopeptide antibiotic surfactin, competence development, and efficient sporulation in Bacillus subtilis. The expression of srfA is induced after the end of exponential growth and is dependent on the products of late-growth regulatory genes comP, comA, and spo0K. To begin to understand the mechanism of srfA regulation, the srfA promoter region was identified and characterized. To examine srfA promoter activity, the srfA promoter was fused to lacZ and inserted into the B. subtilis chromosome as a single copy at the SP beta prophage. The location of the transcription start site of srfA was determined by primer extension analysis and shown to be preceded by a sequence that resembles the consensus promoter recognized by the sigma A form of RNA polymerase. The srfA operon was found to have a sequence corresponding to a long, untranslated leader region of the srfA mRNA (300 bp). A nucleotide sequence and mutational analysis of the promoter identified a region of dyad symmetry required for srfA-lacZ expression. A similar sequence is found in the region upstream of the degQ promoter, transcription from which is also regulated by ComA. This region of dyad symmetry found upstream of these promoters may be the target for ComA-dependent transcriptional activation.
Collapse
MESH Headings
- Bacillus subtilis/genetics
- Bacillus subtilis/metabolism
- Bacterial Proteins/genetics
- Base Sequence
- Chromosomes, Bacterial
- DNA, Bacterial/genetics
- DNA-Directed RNA Polymerases/metabolism
- Gene Amplification
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Lipopeptides
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Operon
- Peptides, Cyclic
- Plasmids
- Promoter Regions, Genetic
- RNA, Bacterial/analysis
- Sequence Homology, Nucleic Acid
- Signal Transduction
- Spores, Bacterial
- Transcription, Genetic
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 77130
| | | | | |
Collapse
|
32
|
Weinrauch Y, Msadek T, Kunst F, Dubnau D. Sequence and properties of comQ, a new competence regulatory gene of Bacillus subtilis. J Bacteriol 1991; 173:5685-93. [PMID: 1715859 PMCID: PMC208298 DOI: 10.1128/jb.173.18.5685-5693.1991] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The sequence and properties of the comQ gene are described. comQ was predicted to encode a 34,209-Da protein, and the product of comQ was shown to be required for the development of genetic competence. The apparent transcriptional initiation and termination sites of comQ were mapped, and the location of a likely E sigma A promoter was inferred. The expression of comQ was maximal early in growth and declined as the cells approached the stationary phase. This expression was not dependent on any of the competence regulatory genes tested (comA, comP, sin, abrB, degU, and spo0A). Disruption of comQ in the chromosome prevented the development of competence as well as the transcription of comG, a late competence operon. This disruption also decreased the expression of srfA, a regulatory operon needed for the expression of competence. These and other results suggest a role for ComQ early in the hierarchy of competence regulatory genes, probably as a component of a signal transduction system.
Collapse
Affiliation(s)
- Y Weinrauch
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | | | |
Collapse
|
33
|
Msadek T, Kunst F, Klier A, Rapoport G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ. J Bacteriol 1991; 173:2366-77. [PMID: 1901055 PMCID: PMC207789 DOI: 10.1128/jb.173.7.2366-2377.1991] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Production of a class of both secreted and intracellular degradative enzymes in Bacillus subtilis is regulated at the transcriptional level by a signal transduction pathway which includes the DegS-DegU two-component system and at least two additional regulatory genes, degQ and degR, encoding polypeptides of 46 and 60 amino acids, respectively. Expression of degQ was shown to be controlled by DegS-DegU. This expression is decreased in the presence of glucose and increased under any of the following conditions: growth with poor carbon sources, amino acid deprivation, phosphate starvation, and growth in the presence of decoyinine, a specific inhibitor of GMP synthetase. In addition, expression of degQ is shown to be positively regulated by the ComP-ComA two-component system. Separate targets for regulation of degQ gene expression by DegS-DegU and ComP-ComA were located by deletion analysis between positions -393 and -186 and between positions -78 and -40, respectively. Regulation of degQ expression by amino acid deprivation was shown to be dependent upon ComA. Regulation by phosphate starvation, catabolite repression, and decoyinine was independent of the two-component systems and shown to involve sequences downstream from position -78. The ComP-ComA and DegS-DegU two-component systems seem to be closely related, sharing several target genes in common, such as late competence genes, as well as the degQ regulatory gene. Sequence analysis of the degQ region revealed the beginning of an open reading frame directly downstream from degQ. Disruption of this gene, designated comQ, suggests that it also controls expression of degQ and is required for development of genetic competence.
Collapse
Affiliation(s)
- T Msadek
- Unité de Biochimie Microbienne, Centre National de la Recherche Scientifique URA 1300, Institute Pasteur, Paris, France
| | | | | | | |
Collapse
|
34
|
Nakano MM, Magnuson R, Myers A, Curry J, Grossman AD, Zuber P. srfA is an operon required for surfactin production, competence development, and efficient sporulation in Bacillus subtilis. J Bacteriol 1991; 173:1770-8. [PMID: 1847909 PMCID: PMC207329 DOI: 10.1128/jb.173.5.1770-1778.1991] [Citation(s) in RCA: 161] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The srfA locus of Bacillus subtilis is defined by a transposon Tn917 insertion and is required for production of the peptide secondary metabolite surfactin. The srfA locus was isolated by cloning the DNA flanking srfA::Tn917 insertions followed by chromosome walking. The cloned region is an operon of over 25 kb which covers the transcription initiation region but not the intact 3' end of srfA. csh-293, which was previously identified as a Tn917lac mutation that impairs competence development and causes a conditional defect in sporulation, was known to be located in the vicinity of the srfA locus within the B. subtilis genome. The csh-293::Tn917lac mutation was discovered to cause a defect in surfactin production and was shown to be located in the srfA operon by its cotransformation with srfA mutations and by Southern hybridization analysis. Insertion mutations in srfA, created by the chromosomal integration of plasmids bearing overlapping srfA DNA fragments, were examined for their effects on surfactin production, competence, and sporulation. All three processes were found to require the intact 5' half of the srfA operon, whereas the 3' half of srfA was found to be required for sporulation and surfactin production but not competence. These experiments show that srfA gene products function in B. subtilis cell specialization and differentiation.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 77130
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Genetic competence develops as a global response of Bacillus subtilis to the onset of stationary phase, in glucose-minimal salts-based media. The onset of competence is accompanied by the expression of several late gene products that are required for the binding, processing and uptake of transforming DNA. A number of regulatory genes have been identified that are needed for the appropriate synthesis of the late gene products. The regulatory gene products include a number of known transcription factors, as well as several members of the bacterial two-component regulatory system. Genetic analysis has suggested a scheme for the flow of regulatory information signalling the onset of competence. Most of these regulatory products appear to be involved in the response to nutritional status, while the components responsible for growth stage and cell-type-specific control remain unknown. The general implications of this scheme for post-exponential expression are discussed.
Collapse
Affiliation(s)
- D Dubnau
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| |
Collapse
|
36
|
Gaur NK, Oppenheim J, Smith I. The Bacillus subtilis sin gene, a regulator of alternate developmental processes, codes for a DNA-binding protein. J Bacteriol 1991; 173:678-86. [PMID: 1898931 PMCID: PMC207059 DOI: 10.1128/jb.173.2.678-686.1991] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The sin gene of Bacillus subtilis encodes a dual-function regulatory protein, Sin, which is a negative as well as a positive regulator of alternate developmental processes that are induced at the end of vegetative growth in response to nutrient depletion. Sin has been purified to homogeneity by using a simple two-step procedure. It was found to bind to the developmentally regulated aprE (alkaline protease) gene at two sites in vitro. The stronger Sin-binding site (SBS-1) is located more than 200 bp upstream from the transcription start site. It is required for Sin repression of aprE expression in vivo, as strains bearing SBS-1 deletions were not affected by the sin gene. The second, weaker Sin-binding site lies on a DNA fragment that contains the aprE promoter. Results of DNase I, exonuclease III, and dimethyl sulfate footprinting analysis of SBS-1 suggested that Sin binding involves two adjacent binding sites which appear to contain two different partial dyad symmetries. An analysis of the predicted amino acid sequence of Sin revealed a potential leucine zipper protein dimerization motif which is flanked by two helix-turn-helix motifs that could be involved in recognizing two different dyad symmetries.
Collapse
Affiliation(s)
- N K Gaur
- Department of Microbiology, Public Health Research Institute, New York, New York
| | | | | |
Collapse
|
37
|
|
38
|
van Sinderen D, Withoff S, Boels H, Venema G. Isolation and characterization of comL, a transcription unit involved in competence development of Bacillus subtilis. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:396-404. [PMID: 2125113 DOI: 10.1007/bf00262434] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Using the transformation-deficient mutant M465, which was previously isolated by means of insertional mutagenesis with plasmid pHV60, a transcription unit comL required for genetic competence of Bacillus subtilis was identified. A chromosomal DNA fragment flanking the inserted pHV60 was isolated and used to screen two different libraries of B. subtilis DNA in phage lambda EMBL4 and lambda EMBL12, respectively. With the aid of six recombinant phages that hybridize with this chromosomal fragment a restriction map of about 23 kb of B. subtilis chromosomal DNA was constructed. Using small adjoining pieces of this chromosomal DNA in Campbell integrations, the size of the transcription unit involved in competence development could be delimited to about 15 kb. By insertion of a promoterless lacZ gene into comL, the transcriptional regulation of comL was analysed and epistatic interactions among various other com genes were determined. The results of these experiments indicated that comL is optimally expressed in glucose-based minimal medium when the culture enters the stationary phase of growth and that the expression of late competence genes is dependent on previous transcription of comL, which in turn is dependent on the gene products of comA and comB.
Collapse
Affiliation(s)
- D van Sinderen
- Department of Genetics, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
39
|
Mohan S, Dubnau D. Transcriptional regulation of comC: evidence for a competence-specific transcription factor in Bacillus subtilis. J Bacteriol 1990; 172:4064-71. [PMID: 1694528 PMCID: PMC213393 DOI: 10.1128/jb.172.7.4064-4071.1990] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
comC specifies a protein product that is required for genetic competence in Bacillus subtilis. The probable transcriptional start site of comC has been localized by high-resolution primer extension analysis and shown to be preceded by an appropriately positioned sequence that resembles the consensus promoter for the sigma A form of RNA polymerase. Low-resolution S1 nuclease transcription mapping was used to identify the comC terminator, which is located near a palindromic element recognizable in the DNA sequence. Deletion analysis of the sequence upstream from the likely promoter identified a region required in cis for the expression of comC. An overlapping, and possibly identical, sequence was shown to inhibit the expression of competence and of several late competence genes, when present in multiple copies. This was interpreted as due to the titration of a positively acting competence transcription factor (CTF) by multiple copies of the promoter-bearing fragment. In crude lysates of B. subtilis grown to competence, a DNA-binding activity that appeared to be specific for the comC promoter fragment was detected by gel retardation assays. This activity, postulated to be due to CTF, was detected only following growth in competence medium, only in the stationary phase of growth, and was dependent on the expression of ComA, a known competence-regulatory factor. In the presence of the mecA42 mutation, the ComA requirement for CTF activity was bypassed, and CTF activity could be detected in lysates prepared from a strain grown in complex medium. This behavior suggested that either the expression or the activation of CTF was regulated in a competence-specific manner. Comparison of the putative CTF-binding site defined by deletion analysis with a similarly positioned sequence upstream from the start site of the late competence gene comG revealed that both sequences contained palindromes, with 5 of 6 identical base pairs in each arm. It is suggested that these palindromic sequences comprise recognition elements for CTF binding and that CTF binding must occur for the appropriate expression of late competence genes.
Collapse
Affiliation(s)
- S Mohan
- Department of Microbiology, Public Health Research Institute, New York, NY 10016
| | | |
Collapse
|
40
|
Abstract
The development of competence in Bacillus subtilis is normally dependent on the growth medium. Expression of late competence genes occurs in glucose-minimal salts-based media but not in complex media. Expression is also inhibited when glutamine is added to competence medium and when glycerol is substituted for glucose. Mutations have been identified in two regulatory loci, mecA and mecB, which render competence development independent of these variables. Although in mec mutants the expression of late competence genes, as well as of competence itself, occurred in all media tested, this expression was still growth stage regulated. Thus at least some forms of medium-dependent and growth stage-specific regulation are genetically separable. One of the mecB mutations (mecB31) conferred oligosporogenicity. The mecB mutations were tightly linked by transformation to rif, lpm, and std markers and were located between rif-2103 and cysA14. The mecA42 mutant was linked by transduction to argC4.
Collapse
Affiliation(s)
- D Dubnau
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | |
Collapse
|
41
|
Roggiani M, Hahn J, Dubnau D. Suppression of early competence mutations in Bacillus subtilis by mec mutations. J Bacteriol 1990; 172:4056-63. [PMID: 2113920 PMCID: PMC213392 DOI: 10.1128/jb.172.7.4056-4063.1990] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although competence normally develops only in glucose-minimal salts media, mecA and mecB mutations permit the expression of competence and of late competence genes in complex media as well (D. Dubnau and M. Roggiani, J. Bacteriol. 172:4048-4055, 1990). The expression of late competence genes is dependent on the products of the regulatory genes comA, comB, comP, sin, abrB, spo0H, and spo0A. We show here that this list must be extended to include degU, csh-293, and spo0K. mecA and -B mutations bypass most of these requirements, making the expression of late competence genes and of competence itself independent of all of these regulatory genes, with the exceptions of spo0A and spo0K (in the case of mecB). The expression of late competence genes in mec mutants that are deficient for each of the bypassed regulatory functions is still under growth stage-specific regulation. The implications of these findings are discussed, and a provisional scheme for the flow of information during the development of competence is proposed.
Collapse
Affiliation(s)
- M Roggiani
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
42
|
Weinrauch Y, Penchev R, Dubnau E, Smith I, Dubnau D. A Bacillus subtilis regulatory gene product for genetic competence and sporulation resembles sensor protein members of the bacterial two-component signal-transduction systems. Genes Dev 1990; 4:860-72. [PMID: 2116363 DOI: 10.1101/gad.4.5.860] [Citation(s) in RCA: 160] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A Bacillus subtilis gene, required for genetic competence, was identified immediately upstream from the previously characterized gene comA. The comA gene product has been found to exhibit amino acid sequence similarity to the so-called effector class of signal-transduction proteins. DNA sequencing of the new determinant, named comP, revealed that the carboxy-terminal domain of the predicted ComP protein is similar in amino acid sequence to that of several sensor members of the bacterial two-component signal-transduction systems. The predicted amino-terminal domain contains several hydrophobic segments, postulated to be membrane-spanning. In vitro-derived comP disruptions are epistatic on the expression of all late competence genes tested, including comG, comC, comD, and comE, but not on expression of the early gene comB. Although comA has its own promoter, some transcription of comA, especially later in growth, occurs via readthrough from comP sequences. A roughly twofold epistatic effect of a comP disruption was noted on the downstream comA determinant, possibly due to interruption of readthrough transcription from comP to comA. Overexpression of comA fully restored competence to a comP mutant, providing evidence that ComA acts after ComP, and consistent with a role for the latter protein in activation of the former, possibly by phosphorylation. ComP probably is involved in transmitting information concerning the nutritional status of the medium, particularly the presence of nitrogen- and carbon-containing nutrients. ComP was also shown to play a role in sporulation, at least partly interchangeable with that of SpoIIJ, another putative sensor protein.
Collapse
Affiliation(s)
- Y Weinrauch
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | | | | | |
Collapse
|
43
|
Abstract
Several species of the genus Bacillus produce peptide antibiotics which are synthesized either through a ribosomal or non-ribosomal mechanism. The antibiotics gramicidin, tyrocidine, and bacitracin are synthesized nonribosomally by the multienzyme thiotemplate mechanism. Surfactin and mycobacillin are also synthesized nonribosomally but by a mechanism that, apparently, is distinct from that of the multienzyme thiotemplate. Other antibiotics such as subtilin are gene encoded and are ribosomally synthesized. Molecular genetic and DNA sequence analysis have shown that biosynthesis genes for some antibiotics are clustered into polycistronic transcription units and are under the control of global regulatory systems that govern the expression of genes that are induced when Bacillus cells enter stationary phase of growth. Future experiments involving the molecular dissection of peptide antibiotic biosynthesis genes in Bacillus will be attempted in hopes of further examining the mechanism and regulation of antibiotic production.
Collapse
|
44
|
Mohan S, Aghion J, Guillen N, Dubnau D. Molecular cloning and characterization of comC, a late competence gene of Bacillus subtilis. J Bacteriol 1989; 171:6043-51. [PMID: 2553669 PMCID: PMC210470 DOI: 10.1128/jb.171.11.6043-6051.1989] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
comC is a Bacillus subtilis gene required for the development of genetic competence. We have cloned a fragment from the B. subtilis chromosome that carries comC and contains all the information required to complement a Tn917lac insertion in comC. Genetic tests further localized comC to a 2.0-kilobase HindIII fragment. Northern (RNA) blotting experiments revealed that an 800-base-pair comC-specific transcript appeared at the time of transition from exponential to stationary phase during growth through the competence regimen. The DNA sequence of the comC region revealed two open reading frames (ORFs), transcribed in the same direction. The upstream ORF encoded a protein with apparent sequence similarity to the folC gene of Escherichia coli. Insertion of a chloramphenicol resistance determinant into this ORF and integration of the disrupted construct into the bacterial chromosome by replacement did not result in competence deficiency. The downstream ORF, which contained the Tn917lac insertion that resulted in a lack of competence, is therefore the comC gene. The predicted protein product of comC consisted of 248 amino acid residues and was quite hydrophobic. The comC gene product was not required for the expression of any other com genes tested, and this fact, together with the marked hydrophobicity of ComC, suggests that it may be a component of the DNA-processing apparatus of competent cells.
Collapse
Affiliation(s)
- S Mohan
- Department of Microbiology, Public Health Research Institute of the City of New York, Inc., New York 10016
| | | | | | | |
Collapse
|
45
|
Nakano MM, Zuber P. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in Bacillus subtilis. J Bacteriol 1989; 171:5347-53. [PMID: 2507521 PMCID: PMC210372 DOI: 10.1128/jb.171.10.5347-5353.1989] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A Tn917 insertion mutation srfB impairs the production of the lipopeptide antibiotic surfactin in Bacillus subtilis. srfB is located between aroG and ald in the B. subtilis genome, as determined by phage PBS1 transduction mapping, and is not linked to the previously described surfactin loci sfp or srfA. A srfB mutant was found to be also deficient in the establishment of competence. SP beta phage-mediated complementation analysis showed that both competence and surfactin production were restored in the srfB mutant by a single DNA fragment of 1.5 kilobase pairs. The sequence of the complementing DNA revealed that the srfB gene is comA, an early competence gene which codes for a product similar to that of the activator class of bacterial two-component regulatory systems. The srfB mutation impaired the expression of a srfA-lacZ fusion, suggesting that surfactin production is positively regulated at the transcriptional level by the srfB (comA) gene product.
Collapse
Affiliation(s)
- M M Nakano
- Department of Botany and Microbiology, Oklahoma State University, Stillwater 74078
| | | |
Collapse
|
46
|
Weinrauch Y, Guillen N, Dubnau DA. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J Bacteriol 1989; 171:5362-75. [PMID: 2507523 PMCID: PMC210374 DOI: 10.1128/jb.171.10.5362-5375.1989] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The complete nucleotide sequences of the comA and comB loci of Bacillus subtilis were determined. The products of these genes are required for the development of competence in B. subtilis and for the expression of late-expressing competence genes. The major 5' termini of both the comA and comB transcripts were determined. The inferred promoters of both comA and comB contained sequences that were similar to those found at the -10 and -35 regions of promoters that are used by sigma A-RNA polymerase, the primary form of this enzyme in vegetative cells. The comB gene was located approximately 3 kilobase pairs upstream of the comA gene and encoded a 409-amino-acid protein with a predicted molecular weight of 46,693. The comA locus contained two open reading frames (ORFs) and comB contained one ORF. The predicted amino acid sequence of the comA ORF1 gene product consisted of 214 amino acids, with an aggregate molecular weight of 24,132. The ORF1 product was required for competence, while ORF2, which was cotranscribed with ORF1 and encoded a predicted protein of 126 amino acids, was not. The predicted protein sequence of the comA ORF1 gene product was found to be similar to that of several members of the effector class of procaryotic signal transducers. The C-terminal portion of the predicted comA sequence contained a possible helix-turn-helix motif, which is characteristic of DNA-binding proteins. comA ORF1 was cloned on a multicopy plasmid and was shown to complement the competence-deficient phenotype caused by the comA124 insertion of Tn917lac. Also, the presence of comA ORF1 in multiple copies interfered with sporulation. Anti-peptide antibodies raised to the predicted product of comA ORF1 reacted strongly with a single protein band of about 24,000 daltons in immunoblots. The possible roles of multiple signal transduction systems in triggering the development of competence are discussed.
Collapse
Affiliation(s)
- Y Weinrauch
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|
47
|
Albano M, Breitling R, Dubnau DA. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. J Bacteriol 1989; 171:5386-404. [PMID: 2507524 PMCID: PMC210376 DOI: 10.1128/jb.171.10.5386-5404.1989] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A series of Tn917lac insertions define the comG region of the Bacillus subtilis chromosome. comG mutants are deficient in competence and specifically in the binding of exogenous DNA. The genes included in the comG region are first expressed during the transition from the exponential to the stationary growth phase. From nucleotide sequence information, it was concluded that the comG locus contains seven open reading frames (ORFs), several of which overlap at their termini. High-resolution S1 nuclease mapping and primer extension were used to identify the 5' terminus of the comG mRNA. The sequence upstream from the comG start site closely resembled the consensus recognition sequence for the major B. subtilis vegetative RNA polymerase holoenzyme. Complementation analysis confirmed that the comG ORF1 protein is required for the ability of competent cultures to resolve into two populations with different cell densities on Renografin (E. R. Squibb & Sons, Princeton, N.J.) gradients, as well as for full expression of comE, another late competence locus. The predicted comG ORF1 protein showed significant similarity to the virB ORF11 protein from Agrobacterium tumefaciens, which is probably involved in T-DNA transfer. The N-terminal sequences of comG ORF3 and, to a lesser extent, the comG ORF4 and ORF5 proteins were similar to a class of pilin proteins from members of the genera Bacteroides, Pseudomonas, Neisseria, and Moraxella. All of the comG proteins except comG ORF1 possessed hydrophobic domains that were potentially capable of spanning the bacterial membrane. It is likely that these proteins are membrane associated, and they may comprise part of the DNA transport machinery. When present in multiple copies, a DNA fragment carrying the comG promoter was capable of inhibiting the development of competence as well as the expression of several late com genes, suggesting a role for a transcriptional activator in the expression of those genes.
Collapse
Affiliation(s)
- M Albano
- Department of Microbiology, Public Health Research Institute, New York, New York 10016
| | | | | |
Collapse
|