1
|
Kramer P, Gäbel K, Pfeiffer F, Soppa J. Haloferax volcanii, a prokaryotic species that does not use the Shine Dalgarno mechanism for translation initiation at 5'-UTRs. PLoS One 2014; 9:e94979. [PMID: 24733188 PMCID: PMC3986360 DOI: 10.1371/journal.pone.0094979] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/21/2014] [Indexed: 11/30/2022] Open
Abstract
It was long assumed that translation initiation in prokaryotes generally occurs via the so-called Shine Dalgarno (SD) mechanism. Recently, it became clear that translation initiation in prokaryotes is more heterogeneous. In the haloarchaeon Haloferax volcanii, the majority of transcripts is leaderless and most transcripts with a 5′-UTR lack a SD motif. Nevertheless, a bioinformatic analysis predicted that 20–30% of all genes are preceded by a SD motif in haloarchaea. To analyze the importance of the SD mechanism for translation initiation in haloarchaea experimentally the monocistronic sod gene was chosen, which contains a 5′-UTR with an extensive SD motif of seven nucleotides and a length of 19 nt, the average length of 5′UTRs in this organism. A translational fusion of part of the sod gene with the dhfr reporter gene was constructed. A mutant series was generated that matched the SD motif from zero to eight positions, respectively. Surprisingly, there was no correlation between the base pairing ability between transcripts and 16S rRNA and translational efficiency in vivo under several different growth conditions. Furthermore, complete replacement of the SD motif by three unrelated sequences did not reduce translational efficiency. The results indicate that H. volcanii does not make use of the SD mechanism for translation initiation in 5′-UTRs. A genome analysis revealed that while the number of SD motifs in 5′-UTRs is rare, their fraction within open reading frames is high. Possible biological functions for intragenic SD motifs are discussed, including re-initiation of translation at distal genes in operons.
Collapse
Affiliation(s)
- Piet Kramer
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | - Katrin Gäbel
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
| | | | - Jörg Soppa
- Institute for Molecular Biosciences, Biocentre, Goethe-University, Frankfurt, Germany
- * E-mail:
| |
Collapse
|
2
|
Bandyopadhyay K, Parua PK, Datta AB, Parrack P. Studies on Escherichia coli HflKC suggest the presence of an unidentified λ factor that influences the lysis-lysogeny switch. BMC Microbiol 2011; 11:34. [PMID: 21324212 PMCID: PMC3053222 DOI: 10.1186/1471-2180-11-34] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 02/17/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The lysis-lysogeny decision in the temperate coliphage λ is influenced by a number of phage proteins (CII and CIII) as well as host factors, viz. Escherichia coli HflB, HflKC and HflD. Prominent among these are the transcription factor CII and HflB, an ATP-dependent protease that degrades CII. Stabilization of CII promotes lysogeny, while its destabilization induces the lytic mode of development. All other factors that influence the lytic/lysogenic decision are known to act by their effects on the stability of CII. Deletion of hflKC has no effect on the stability of CII. However, when λ infects ΔhflKC cells, turbid plaques are produced, indicating stabilization of CII under these conditions. RESULTS We find that CII is stabilized in ΔhflKC cells even without infection by λ, if CIII is present. Nevertheless, we also obtained turbid plaques when a ΔhflKC host was infected by a cIII-defective phage (λcIII67). This observation raises a fundamental question: does lysogeny necessarily correlate with the stabilization of CII? Our experiments indicate that CII is indeed stabilized under these conditions, implying that stabilization of CII is possible in ΔhflKC cells even in the absence of CIII, leading to lysogeny. CONCLUSION We propose that a yet unidentified CII-stabilizing factor in λ may influence the lysis-lysogeny decision in ΔhflKC cells.
Collapse
Affiliation(s)
- Kaustav Bandyopadhyay
- Department of Biochemistry, Bose Institute, P 1/12, C,I,T, Scheme VIIM, Kolkata 700 054, India
| | | | | | | |
Collapse
|
3
|
Ming-rong D, Xiao-lei R, Fu-xiu L, Qin Z, Hua-ping L. Sequence analysis of segment 8 of five Chinese isolates of Rice gall dwarf virus and expression of a main outer capsid protein in Escherichia coli. Virol Sin 2007. [DOI: 10.1007/s12250-007-0005-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
4
|
Abstract
Temperature is an important parameter that free-living cells monitor constantly. The expression of heat-shock, cold-shock and some virulence genes is coordinated in response to temperature changes. Apart from protein-mediated transcriptional control mechanisms, translational control by RNA thermometers is a widely used regulatory strategy. RNA thermometers are complex RNA structures that change their conformation in response to temperature. Most, but not all, RNA thermometers are located in the 5'-untranslated region and mask ribosome-binding sites by base pairing at low temperatures. Melting of the structure at increasing temperature permits ribosome access and translation initiation. Different cis-acting RNA thermometers and a trans-acting thermometer will be presented.
Collapse
Affiliation(s)
- Franz Narberhaus
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Bochum, Germany.
| | | | | |
Collapse
|
5
|
Abstract
The lysis-lysogeny decision of bacteriophage lambda (lambda) is a paradigm for developmental genetic networks. There are three key features, which characterize the network. First, after infection of the host bacterium, a decision between lytic or lysogenic development is made that is dependent upon environmental signals and the number of infecting phages per cell. Second, the lysogenic prophage state is very stable. Third, the prophage enters lytic development in response to DNA-damaging agents. The CI and Cro regulators define the lysogenic and lytic states, respectively, as a bistable genetic switch. Whereas CI maintains a stable lysogenic state, recent studies indicate that Cro sets the lytic course not by directly blocking CI expression but indirectly by lowering levels of CII which activates cI transcription. We discuss how a relatively simple phage like lambda employs a complex genetic network in decision-making processes, providing a challenge for theoretical modeling.
Collapse
Affiliation(s)
- Amos B Oppenheim
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | | | | | |
Collapse
|
6
|
Shotland Y, Shifrin A, Ziv T, Teff D, Koby S, Kobiler O, Oppenheim AB. Proteolysis of bacteriophage lambda CII by Escherichia coli FtsH (HflB). J Bacteriol 2000; 182:3111-6. [PMID: 10809689 PMCID: PMC94496 DOI: 10.1128/jb.182.11.3111-3116.2000] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
FtsH (HflB) is a conserved, highly specific, ATP-dependent protease for which a number of substrates are known. The enzyme participates in the phage lambda lysis-lysogeny decision by degrading the lambda CII transcriptional activator and by its response to inhibition by the lambda CIII gene product. In order to gain further insight into the mechanism of the enzymatic activity of FtsH (HflB), we identified the peptides generated following proteolysis of the phage lambda CII protein. It was found that FtsH (HflB) acts as an endopeptidase degrading CII into small peptides with limited amino acid specificity at the cleavage site. beta-Casein, an unstructured substrate, is also degraded by FtsH (HflB), suggesting that protein structure may play a minor role in determining the products of proteolysis. The majority of the peptides produced were 13 to 20 residues long.
Collapse
Affiliation(s)
- Y Shotland
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
7
|
Grunberg-Manago M. Messenger RNA stability and its role in control of gene expression in bacteria and phages. Annu Rev Genet 2000; 33:193-227. [PMID: 10690408 DOI: 10.1146/annurev.genet.33.1.193] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The stability of mRNA in prokaryotes depends on multiple factors and it has not yet been possible to describe the process of mRNA degradation in terms of a unique pathway. However, important advances have been made in the past 10 years with the characterization of the cis-acting RNA elements and the trans-acting cellular proteins that control mRNA decay. The trans-acting proteins are mainly four nucleases, two endo- (RNase E and RNase III) and two exonucleases (PNPase and RNase II), and poly(A) polymerase. RNase E and PNPase are found in a multienzyme complex called the degradosome. In addition to the host nucleases, phage T4 encodes a specific endonuclease called RegB. The cis-acting elements that protect mRNA from degradation are stable stem-loops at the 5' end of the transcript and terminators or REP sequences at their 3' end. The rate-limiting step in mRNA decay is usually an initial endonucleolytic cleavage that often occurs at the 5' extremity. This initial step is followed by directional 3' to 5' degradation by the two exonucleases. Several examples, reviewed here, indicate that mRNA degradation is an important step at which gene expression can be controlled. This regulation can be either global, as in the case of growth rate-dependent control, or specific, in response to changes in the environmental conditions.
Collapse
|
8
|
Ogura T, Inoue K, Tatsuta T, Suzaki T, Karata K, Young K, Su LH, Fierke CA, Jackman JE, Raetz CR, Coleman J, Tomoyasu T, Matsuzawa H. Balanced biosynthesis of major membrane components through regulated degradation of the committed enzyme of lipid A biosynthesis by the AAA protease FtsH (HflB) in Escherichia coli. Mol Microbiol 1999; 31:833-44. [PMID: 10048027 DOI: 10.1046/j.1365-2958.1999.01221.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The suppressor mutation, named sfhC21, that allows Escherichia coli ftsH null mutant cells to survive was found to be an allele of fabZ encoding R-3-hydroxyacyl-ACP dehydrase, involved in a key step of fatty acid biosynthesis, and appears to upregulate the dehydrase. The ftsH1(Ts) mutation increased the amount of lipopolysaccharide at 42 degrees C. This was accompanied by a dramatic increase in the amount of UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase [the IpxC (envA) gene product] involved in the committed step of lipid A biosynthesis. Pulse-chase experiments and in vitro assays with purified components showed that FtsH, the AAA-type membrane-bound metalloprotease, degrades the deacetylase. Genetic evidence also indicated that the FtsH protease activity for the deacetylase might be affected when acyl-ACP pools were altered. The biosynthesis of phospholipids and the lipid A moiety of lipopolysaccharide, both of which derive their fatty acyl chains from the same R-3-hydroxyacyl-ACP pool, is regulated by FtsH.
Collapse
Affiliation(s)
- T Ogura
- Department of Molecular Cell Biology, Kumamoto University School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Altuvia S, Zhang A, Argaman L, Tiwari A, Storz G. The Escherichia coli OxyS regulatory RNA represses fhlA translation by blocking ribosome binding. EMBO J 1998; 17:6069-75. [PMID: 9774350 PMCID: PMC1170933 DOI: 10.1093/emboj/17.20.6069] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OxyS is a small untranslated RNA which is induced in response to oxidative stress in Escherichia coli. This novel RNA acts as a global regulator to activate or repress the expression of as many as 40 genes, including the fhlA-encoded transcriptional activator and the rpoS-encoded sigma(s) subunit of RNA polymerase. Deletion analysis of OxyS showed that different domains of the small RNA are required for the regulation of fhlA and rpoS. We examined the mechanism of OxyS repression of fhlA and found that the OxyS RNA inhibits fhlA translation by pairing with a short sequence overlapping the Shine-Dalgarno sequence, thereby blocking ribosome binding/translation.
Collapse
Affiliation(s)
- S Altuvia
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
10
|
Herman C, Thévenet D, D'Ari R, Bouloc P. The HflB protease of Escherichia coli degrades its inhibitor lambda cIII. J Bacteriol 1997; 179:358-63. [PMID: 8990286 PMCID: PMC178704 DOI: 10.1128/jb.179.2.358-363.1997] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The cIII protein of bacteriophage lambda is known to protect two regulatory proteins from degradation by the essential Escherichia coli protease HflB (also known as FtsH), viz., the lambda cII protein and the host heat shock sigma factor sigma32. lambda cIII, itself an unstable protein, is partially stabilized when the HflB concentration is decreased, and its half-life is decreased when HflB is overproduced, strongly suggesting that it is degraded by HflB in vivo. The in vivo degradation of lambda cIII (unlike that of sigma32) does not require the molecular chaperone DnaK. Furthermore, the half-life of lambda cIII is not affected by depletion of the endogenous ATP pool, suggesting that lambda cIII degradation is ATP independent (unlike that of lambda cII and sigma32). The lambda cIII protein, which is predicted to contain a 22-amino-acid amphipathic helix, is associated with the membrane, and nonlethal overproduction of lambda cIII makes cells hypersensitive to the detergent sodium dodecyl sulfate. This could reflect a direct lambda cIII-membrane interaction or an indirect association via the membrane-bound HflB protein, which is known to be involved in the assembly of certain periplasmic and outer membrane proteins.
Collapse
Affiliation(s)
- C Herman
- Institut Jacques Monod, Université Paris 7, France
| | | | | | | |
Collapse
|
11
|
de Smit MH, van Duin J. Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. J Mol Biol 1994; 235:173-84. [PMID: 8289239 DOI: 10.1016/s0022-2836(05)80024-5] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Translational efficiency in Escherichia coli is in part determined by the Shine-Dalgarno (SD) interaction, i.e. the base-pairing of the 3' end of 16S ribosomal RNA to a stretch of complementary nucleotides in the messenger, located just upstream of the initiation codon. Although a large number of mutations in SD sequences have been produced and analysed, it has so far not been possible to find a clear-cut quantitative relationship between the extent of the complementarity to the rRNA and translational efficiency. This is presumably due to a lack of information about the secondary structures of the messengers used, before and after mutagenesis. Such information is crucial, because intrastrand base-pairing of a ribosome binding site can have a profound influence on its translational efficiency. By site-directed mutagenesis, we have varied the extent of the SD complementarity in the coat-protein gene of bacteriophage MS2. The ribosome binding site of this gene is known to adopt a simple hairpin structure. Substitutions in the SD region were combined with other mutations, which altered the stability of the structure in a predictable way. We find that mutations reducing the SD complementarity by one or two nucleotides diminish translational efficiency only if ribosome binding is impaired by the structure of the messenger. In the absence of an inhibitory structure, these mutations have no effect. In other words, a strong SD interaction can compensate for a structured initiation region. This can be understood by considering translational initiation on a structured ribosome binding site as a competition between intramolecular base-pairing of the messenger and binding to a 30 S ribosomal subunit. A good SD complementarity provides the ribosome with an increased affinity for its binding site, and thereby enhances its ability to compete against the secondary structure. This function of the SD interaction closely parallels the RNA-unfolding capacity of ribosomal protein S1. By comparing the expression data from mutant and wild-type SD sequences, we have estimated the relative contribution of the SD base-pairs to ribosome-mRNA affinity. Quantitatively, this contribution corresponds quite well with the theoretical base-pairing stabilities of the wild-type and mutant SD interactions.
Collapse
Affiliation(s)
- M H de Smit
- Department of Biochemistry, Gorlaeus Laboratories, University of Leiden, The Netherlands
| | | |
Collapse
|
12
|
Wikström PM, Lind LK, Berg DE, Björk GR. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli. J Mol Biol 1992; 224:949-66. [PMID: 1569581 DOI: 10.1016/0022-2836(92)90462-s] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The trmD operon of Escherichia coli consists of the genes for the ribosomal protein (r-protein) S16, a 21 kilodalton protein (21K) of unknown function, the tRNA(m1G37)methyltransferase (TrmD), and r-protein L19, in that order. The synthesis of the 21K and TrmD proteins is 12 and 40-fold lower, respectively, than that of the two r-proteins, although the corresponding parts of the mRNA are equally abundant. This translational control of expression of at least the 21K protein gene (21K), is mediated by a negative control element located between codons 18 and 50 of 21K. Here, we present evidence for a model in which mRNA sequences up to around 100 nucleotides downstream from the start codon of 21K fold back and base-pair to the 21K translation initiation region, thereby decreasing the translation initiation frequency. Mutations in the internal negative control element of 21K that would prevent the formation of the proposed mRNA secondary structure over both the Shine-Dalgarno (SD) sequence and the start codon increased expression up to about 20-fold, whereas mutations that would disrupt the base-pairing with the SD-sequence had only relatively small effects on expression. In addition, the expression increased 12-fold when the stop codon of the preceding gene, rpsP, was moved next to the SD-sequence of 21K allowing the ribosomes to unfold the postulated mRNA secondary structure. The expression increased up to 150-fold when that stop codon change was combined with the internal negative control element base-substitutions that derepressed translation about 20-fold. The negative control element of 21K does not seem to be responsible for the low expression of the trmD gene located downstream. However, a similar negative control element native to trmD can explain at least partly the low expression of trmD. Possibly, the two mRNA secondary structures function to decouple translation of 21K and trmD from that of the respective upstream cistron in order to achieve their independent regulation.
Collapse
Affiliation(s)
- P M Wikström
- Department of Microbiology, University of Umeå, Sweden
| | | | | | | |
Collapse
|
13
|
Kao SM, Olmsted SB, Viksnins AS, Gallo JC, Dunny GM. Molecular and genetic analysis of a region of plasmid pCF10 containing positive control genes and structural genes encoding surface proteins involved in pheromone-inducible conjugation in Enterococcus faecalis. J Bacteriol 1991; 173:7650-64. [PMID: 1938961 PMCID: PMC212534 DOI: 10.1128/jb.173.23.7650-7664.1991] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Exposure of Enterococcus faecalis cells carrying the tetracycline resistance plasmid pCF10 to the heptapeptide pheromone cCF10 results in an increase in conjugal transfer frequency by as much as 10(6)-fold. Pheromone-induced donor cells also express at least two plasmid-encoded surface proteins, the 130-kDa Sec 10 protein, which is involved in surface exclusion, and the 150-kDa Asc10 protein, which has been associated with the formation of mating aggregates. Previous subcloning and transposon mutagenesis studies indicated that the adjacent EcoRI c (7.5 kb) and e (4.5 kb) fragments of pCF10 encode the structural genes for these proteins and that the EcoRI c fragment also encodes at least two regulatory genes involved in activation of the expression of the genes encoding Asc10 and Sec10. In this paper, the results of physical and genetic analysis of this region of pCF10, along with the complete DNA sequences of the EcoRI c and e fragments, are reported. The results of the genetic studies indicate the location of the structural genes for the surface proteins and reveal important features of their transcription. In addition, we provide evidence here and in the accompanying paper (S. B. Olmsted, S.-M. Kao, L. J. van Putte, J. C. Gallo, and G. M. Dunny, J. Bacteriol. 173:7665-7672, 1991) for a role of Asc10 in mating aggregate formation. The data also reveal a complex positive control system that acts at distances of at least 3 to 6 kb to activate expression of Asc10. DNA sequence analysis presented here reveals the positions of a number of specific genes, termed prg (pheromone-responsive genes) in this region of pCF10. The genes mapped include prgA (encoding Sec10) and prgB (encoding Asc10), as well as four putative regulatory genes, prgX, -R, -S, and -T. Although the predicted amino acid sequences of Sec10 and Asc10 have some structural features in common with a number of surface proteins of gram-positive cocci, and the Asc10 sequence is highly similar to that of a similar protein encoded by the pheromone-inducible plasmid pAD1 (D. Galli, F. Lottspeich, and R. Wirth, Mol. Microbiol. 4:895-904, 1990), the regulatory genes show relatively little resemblance to any previously sequenced genes from either procaryotes or eucaryotes.
Collapse
Affiliation(s)
- S M Kao
- Department of Microbiology, Immunology and Parasitology, New York State College of Veterinary Medicine, Cornell University, Ithaca 14853
| | | | | | | | | |
Collapse
|
14
|
Oppenheim A, Altuvia S, Kornitzer D, Teff D, Koby S. Translation control of gene expression. J Basic Clin Physiol Pharmacol 1991; 2:223-31. [PMID: 1797096 DOI: 10.1515/jbcpp.1991.2.3.223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The bacteriophage lambda cIII gene product is an early regulator of the lysogenic pathway. The availability of a set of cIII expression mutants allowed us to establish the structure-function relationship of the cIII mRNA. We demonstrated, using defined in vitro systems, that the cIII mRNA is present in two conformations at equilibrium. Mutations that have been shown to lead to cIII overexpression were found to freeze the RNA in one conformation (structure B), and permit efficient binding to the 30S ribosomal subunit. Mutations that have been shown to prevent cIII translation cause the mRNA to assume the alternative conformation (structure A). In this structure, the translation initiation region is occluded, thereby preventing 30S ribosomal subunit binding. Translation of the cIII gene is regulated by RNaseIII. We have localized the RNaseIII responsive element (RRE) to the cIII coding region. We suggest that the regulation of the equilibrium between the two mRNA conformations provides a mechanism for the control of cIII gene expression. The way in which RNaseIII participates in this regulation is as yet unknown.
Collapse
Affiliation(s)
- A Oppenheim
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
15
|
Kornitzer D, Altuvia S, Oppenheim AB. The activity of the CIII regulator of lambdoid bacteriophages resides within a 24-amino acid protein domain. Proc Natl Acad Sci U S A 1991; 88:5217-21. [PMID: 1828895 PMCID: PMC51843 DOI: 10.1073/pnas.88.12.5217] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The CIII protein of lambdoid bacteriophages promotes lysogeny by stabilizing the phage-encoded CII protein, a transcriptional activator of the repressor and integrase genes. We have isolated a set of missense mutations in the cIII gene of phage lambda and of phage HK022 that yield inactive CIII proteins. All the mutations are located in the relatively conserved central region of the protein. A comparative analysis of the CIII protein sequence in lambda, HK022, and the lambdoid bacteriophage P22 leads us to suggest that this central region assumes an amphipathic alpha-helical structure. This part of the lambda cIII gene was cloned within a fragment of the lacZ gene (the alpha-complementing fragment). The resulting fusion protein displays CIII activity. Mutations that yield a nonfunctional fusion protein map within its CIII moiety. These results indicate that the central portion of the CIII protein is both necessary and sufficient for CIII activity.
Collapse
Affiliation(s)
- D Kornitzer
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
16
|
Altuvia S, Kornitzer D, Kobi S, Oppenheim AB. Functional and structural elements of the mRNA of the cIII gene of bacteriophage lambda. J Mol Biol 1991; 218:723-33. [PMID: 1827163 DOI: 10.1016/0022-2836(91)90261-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The bacteriophage lambda cIII gene product is an early regulatory protein that participates in the lysis-lysogeny decision of the phage following infection. We have previously shown that the translation of the cIII gene is determined by two unique factors: (1) efficient expression is dependent upon the presence of RNaseIII in the cell; (2) alternative mRNA structures of the cIII coding region determine the rate of its translation initiation. In this study we demonstrate the presence of the alternative mRNA structures in vivo. The presence of minor RNaseIII cleavage sites within this region indicate that RNaseIII can differentiate between the two alternative structures. We localize by a deletion analysis the RNaseIII responsive element to the cIII coding region, and suggest that regulation of cIII translation by RNaseIII is achieved through binding to the alternative structures region of the mRNA.
Collapse
Affiliation(s)
- S Altuvia
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
17
|
Abstract
The cIII gene product of lambdoid bacteriophages promotes lysogeny by stabilizing the phage-encoded CII protein, a transcriptional activator of the repressor and integrase genes. Previous works showed that the synthesis of the bacteriophage lambda CIII protein has specific translational requirements imposed by the structure of the mRNA. To gain insight into the mRNA structure and its role in regulating cIII translation, we undertook a mutational analysis of the cIII gene of the related bacteriophage HK022. Our data support the hypothesis that in HK022, as in lambda, translation initiation requires a specific mRNA structure. In addition, we found that translation of HK022 cIII, like that of lambda, is strongly reduced in a host deficient in the endonuclease RNase III.
Collapse
Affiliation(s)
- D Kornitzer
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | |
Collapse
|
18
|
Altuvia S, Kornitzer D, Teff D, Oppenheim AB. Alternative mRNA structures of the cIII gene of bacteriophage lambda determine the rate of its translation initiation. J Mol Biol 1989; 210:265-80. [PMID: 2532257 DOI: 10.1016/0022-2836(89)90329-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bacteriophage lambda cIII gene product has a regulatory function in the lysis-lysogeny decision following infection. The availability of a set of cIII expression mutants allowed us to establish the structure-function relationship of the cIII mRNA. We demonstrate, using defined in vitro systems, that the cIII mRNA is present in two conformations at equilibrium. Mutations that have been shown to lead to cIII overexpression were found to freeze the RNA in one conformation (structure B), and permit efficient binding to the 30 S ribosomal subunit. Mutations that have been shown to prevent cIII translation cause the mRNA to assume the alternative conformation (structure A). In this structure, the translation initiation region is occluded, thereby preventing 30 S ribosomal subunit binding. By varying the temperature or Mg2+ concentration it was possible to alter the relative proportion of the alternative structures in wild-type mRNA. We suggest that the regulation of the equilibrium between the two mRNA conformations provides a mechanism for the control of cIII gene expression.
Collapse
Affiliation(s)
- S Altuvia
- Department of Molecular Genetics, Hebrew University-Hadassah Medical School, Jerusalem, Israel 91010
| | | | | | | |
Collapse
|
19
|
Passador L, Linn T. Autogenous regulation of the RNA polymerase beta subunit of Escherichia coli occurs at the translational level in vivo. J Bacteriol 1989; 171:6234-42. [PMID: 2681158 PMCID: PMC210494 DOI: 10.1128/jb.171.11.6234-6242.1989] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A series of transcriptional and translational fusions of the gene for the beta subunit of RNA polymerase (rpoB) to the lacZ reporter gene have been constructed on lambda vectors. Both transcriptional and translational fusions carry the upstream rplKAJL ribosomal protein gene region, which contains the two strong promoters rplKp and rplJp responsible for the transcription of rpoBC. Monolysogens carrying either the transcriptional translational fusion were assayed for beta-galactosidase, providing a measure of the transcription or of both transcription and translation of rpoB, respectively. Translational fusion monolysogens which also carried a multicopy plasmid containing the beta and beta' genes (rpoBC) under the control of a regulatable promoter, exhibited a substantial decrease in the beta-galactosidase levels upon overproduction of beta and beta'. No significant effect was seen in comparable experiments with the transcriptional fusions. These results argue that in vivo, the synthesis of the RNA polymerase beta subunit is autogenously regulated by a translational mechanism. Furthermore, experiments with the overexpressing plasmids confirm the requirement for a portion of the rplL-rpoB intercistronic region in the vicinity of the RNaseIII processing site for the efficient translation of the beta subunit mRNA.
Collapse
Affiliation(s)
- L Passador
- Department of Microbiology and Immunology, Faculty of Medicine, University o Western Ontario, London, Canada
| | | |
Collapse
|