1
|
Tyagi JL, Gupta P, Ghate MM, Kumar D, Poluri KM. Assessing the synergistic potential of bacteriophage endolysins and antimicrobial peptides for eradicating bacterial biofilms. Arch Microbiol 2024; 206:272. [PMID: 38772980 DOI: 10.1007/s00203-024-04003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
Phage-encoded endolysins have emerged as a potential substitute to conventional antibiotics due to their exceptional benefits including host specificity, rapid host killing, least risk of resistance. In addition to their antibacterial potency and biofilm eradication properties, endolysins are reported to exhibit synergism with other antimicrobial agents. In this study, the synergistic potency of endolysins was dissected with antimicrobial peptides to enhance their therapeutic effectiveness. Recombinantly expressed and purified bacteriophage endolysin [T7 endolysin (T7L); and T4 endolysin (T4L)] proteins have been used to evaluate the broad-spectrum antibacterial efficacy using different bacterial strains. Antibacterial/biofilm eradication studies were performed in combination with different antimicrobial peptides (AMPs) such as colistin, nisin, and polymyxin B (PMB) to assess the endolysin's antimicrobial efficacy and their synergy with AMPs. In combination with T7L, polymyxin B and colistin effectively eradicated the biofilm of Pseudomonas aeruginosa and exhibited a synergistic effect. Further, a combination of T4L and nisin displayed a synergistic effect against Staphylococcus aureus biofilms. In summary, the obtained results endorse the theme of combinational therapy consisting of endolysins and AMPs as an effective remedy against the drug-resistant bacterial biofilms that are a serious concern in healthcare settings.
Collapse
Affiliation(s)
- Jaya Lakshmi Tyagi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248001, India
| | - Mayur Mohan Ghate
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Dinesh Kumar
- Centre of Bio-Medical Research, SGPGIMS, Lucknow, Uttar Pradesh, 226014, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
2
|
Yaeger LN, Ranieri MRM, Chee J, Karabelas-Pittman S, Rudolph M, Giovannoni AM, Harvey H, Burrows LL. A genetic screen identifies a role for oprF in Pseudomonas aeruginosa biofilm stimulation by subinhibitory antibiotics. NPJ Biofilms Microbiomes 2024; 10:30. [PMID: 38521769 PMCID: PMC10960818 DOI: 10.1038/s41522-024-00496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
Biofilms are surface-associated communities of bacteria that grow in a self-produced matrix of polysaccharides, proteins, and extracellular DNA (eDNA). Sub-minimal inhibitory concentrations (sub-MIC) of antibiotics induce biofilm formation, potentially as a defensive response to antibiotic stress. However, the mechanisms behind sub-MIC antibiotic-induced biofilm formation are unclear. We show that treatment of Pseudomonas aeruginosa with multiple classes of sub-MIC antibiotics with distinct targets induces biofilm formation. Further, addition of exogenous eDNA or cell lysate failed to increase biofilm formation to the same extent as antibiotics, suggesting that the release of cellular contents by antibiotic-driven bacteriolysis is insufficient. Using a genetic screen for stimulation-deficient mutants, we identified the outer membrane porin OprF and the ECF sigma factor SigX as important. Similarly, loss of OmpA - the Escherichia coli OprF homolog - prevented sub-MIC antibiotic stimulation of E. coli biofilms. Our screen also identified the periplasmic disulfide bond-forming enzyme DsbA and a predicted cyclic-di-GMP phosphodiesterase encoded by PA2200 as essential for biofilm stimulation. The phosphodiesterase activity of PA2200 is likely controlled by a disulfide bond in its regulatory domain, and folding of OprF is influenced by disulfide bond formation, connecting the mutant phenotypes. Addition of reducing agent dithiothreitol prevented sub-MIC antibiotic biofilm stimulation. Finally, activation of a c-di-GMP-responsive promoter follows treatment with sub-MIC antibiotics in the wild-type but not an oprF mutant. Together, these results show that antibiotic-induced biofilm formation is likely driven by a signaling pathway that translates changes in periplasmic redox state into elevated biofilm formation through increases in c-di-GMP.
Collapse
Affiliation(s)
- Luke N Yaeger
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michael R M Ranieri
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jessica Chee
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sawyer Karabelas-Pittman
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Madeleine Rudolph
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alessio M Giovannoni
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Hanjeong Harvey
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
3
|
Cheng X, Chen Z, Gao C, Zhang Y, Yang L, Wan J, Wei Y, Zeng S, Zhang Y, Zhang Y, Li Y, Zhang W, Zou Q, Lu G, Gu J. Structural and biological insights into outer membrane protein lipotoxin F of Pseudomonas aeruginosa: Implications for vaccine application. Int J Biol Macromol 2023; 253:127634. [PMID: 37884248 DOI: 10.1016/j.ijbiomac.2023.127634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/26/2023] [Accepted: 10/21/2023] [Indexed: 10/28/2023]
Abstract
Due to the increasing antibiotic resistance of Pseudomonas aeruginosa (PA), an effective vaccine is urgently needed. However, no PA vaccine has been approved to date, and new protective antigens are needed to improve their efficacy. In this study, Luminex beads were used to identify new candidate antigens, after which their crystal structure was determined, and their potential contribution to bacterial pathogenesis was assessed in vitro and in vivo. Notably, a significant antibody response against the outer membrane protein LptF (lipotoxin F) was detected in sera from 409 volunteers. Moreover, vaccination with recombinant LptF conferred effective protection in an acute PA pneumonia model. The crystal structure showed that LptF comprises a 3-stranded β-sheet (β1-β3) and three α-helices (α1-α3) that are organized in an α/β/α/β/α/β pattern, which is structurally homologous to OmpA and related outer membrane proteins. In addition, LptF binds to peptidoglycan in an atypical manner, contributing to the pathogenesis and survival of PA under stress. Our data indicate that LptF is an important virulence factor and thus a promising candidate antigen for PA vaccines.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Zimin Chen
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Chen Gao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yi Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Liuyang Yang
- Laboratory Medicine Department, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiqing Wan
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yujie Wei
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Sheng Zeng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yiwen Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yueyue Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Yuhang Li
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Weijun Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China
| | - Guangwen Lu
- West China Hospital Emergency Department (WCHED), State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China.
| | - Jiang Gu
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing 400038, China.
| |
Collapse
|
4
|
Thanvi R, Nada S, Dissanayake R, Vartak A, Sebilleau CO, Alom NE, Prestwich EG, Wall KA, Sucheck SJ. Synthesis and Evaluation of a Self-Adjuvanting Pseudomonal Vaccine Based on Major Outer Membrane Porin OprF Epitopes Formulated with Low-Toxicity QS-21-Containing Liposomes. Bioconjug Chem 2023; 34:893-910. [PMID: 37092892 PMCID: PMC10723056 DOI: 10.1021/acs.bioconjchem.3c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Pseudomonas aeruginosa (PA) is a Gram-negative pathogen that the World Health Organization has ranked as a priority 1 (critical) threat. One potential prophylactic approach to preventing or reducing the incidence of PA would be development of a long sought-after vaccine. Both antibody and CD4+ T-cell responses have been noted as playing key roles in protection against infection. In these studies, we have designed a prototype vaccine consisting of several known linear B-cell epitopes derived from an outer membrane porin F (OprF). The resulting thiol-containing protein was conjugated to a version of the lipopeptide-based Toll-like receptor agonist Pam3CysSK4Mal (10) containing a maleimide moiety and formulated into dipalmitoylphosphatidylcholine (DPPC)/cholesterol (Chol) liposomes. Mice immunized with the resulting vaccine generated antibodies that bound PA14 (serotype O10) in vitro and induced opsonization in the presence of rabbit complement and murine macrophage RAW264.7 cells. The liposome was optimized to contain 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG), Chol, Pam3CysSK4-OprF (12) and the Quillaja saponaria-derived saponin adjuvant QS-21. The resulting vaccine formulation produced significantly higher antibody titers, increased the IgG2a antibody isotype, and increased the number of IgG-producing B-cells as well as splenic primed T-cells. In summary, the liposomal vaccine platform was found highly useful for the generation of a robust and balanced TH1/TH2 response.
Collapse
Affiliation(s)
- Radhika Thanvi
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Shadia Nada
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio 43614, United States
| | - Ravindika Dissanayake
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio 43614, United States
| | - Abhishek Vartak
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Chloé Olayinka Sebilleau
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Nur-E Alom
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Erin G Prestwich
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio 43614, United States
| | - Katherine A Wall
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, Ohio 43614, United States
| | - Steven J Sucheck
- Department of Chemistry and Biochemistry, University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
5
|
von Kügelgen A, van Dorst S, Alva V, Bharat TAM. A multidomain connector links the outer membrane and cell wall in phylogenetically deep-branching bacteria. Proc Natl Acad Sci U S A 2022; 119:e2203156119. [PMID: 35943982 PMCID: PMC9388160 DOI: 10.1073/pnas.2203156119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/24/2022] [Indexed: 01/30/2023] Open
Abstract
Deinococcus radiodurans is a phylogenetically deep-branching extremophilic bacterium that is remarkably tolerant to numerous environmental stresses, including large doses of ultraviolet (UV) radiation and extreme temperatures. It can even survive in outer space for several years. This endurance of D. radiodurans has been partly ascribed to its atypical cell envelope comprising an inner membrane, a large periplasmic space with a thick peptidoglycan (PG) layer, and an outer membrane (OM) covered by a surface layer (S-layer). Despite intense research, molecular principles governing envelope organization and OM stabilization are unclear in D. radiodurans and related bacteria. Here, we report a electron cryomicroscopy (cryo-EM) structure of the abundant D. radiodurans OM protein SlpA, showing how its C-terminal segment forms homotrimers of 30-stranded β-barrels in the OM, whereas its N-terminal segment forms long, homotrimeric coiled coils linking the OM to the PG layer via S-layer homology (SLH) domains. Furthermore, using protein structure prediction and sequence-based bioinformatic analysis, we show that SlpA-like putative OM-PG connector proteins are widespread in phylogenetically deep-branching Gram-negative bacteria. Finally, combining our atomic structures with fluorescence and electron microscopy of cell envelopes of wild-type and mutant bacterial strains, we report a model for the cell surface of D. radiodurans. Our results will have important implications for understanding the cell surface organization and hyperstability of D. radiodurans and related bacteria and the evolutionary transition between Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Andriko von Kügelgen
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sofie van Dorst
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen 72076, Germany
| | - Tanmay A. M. Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
6
|
Molecular Characterization and Designing of a Novel Multiepitope Vaccine Construct Against Pseudomonas aeruginosa. Int J Pept Res Ther 2022; 28:49. [PMID: 35069055 PMCID: PMC8762192 DOI: 10.1007/s10989-021-10356-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 12/30/2022]
Abstract
ABSTRACT Pseudomonas aeruginosa, an ESKAPE pathogen causes many fatal clinical diseases in humans across the globe. Despite an increase in clinical instances of Pseudomonas infection, there is currently no effective vaccine or treatment available. The major membrane protein candidate of the P. aeruginosa bacterial cell is known to be a critical component for cellular bacterial susceptibility to antimicrobial peptides and survival inside the host organisms. Therefore, the current computational study aims to examine P. aeruginosa's major membrane protein, OprF, and OprI, in order to design linear B-cell, cytotoxic T-cell, and helper T-cell peptide-based vaccine constructs. Utilizing various immune-informatics tools and databases, a total of two B-cells and twelve T-cells peptides were predicted. The final vaccine design was simulated to generate a high-quality three-dimensional structure, which included epitopes, adjuvant, and linkers. The vaccine was shown to be nonallergenic, antigenic, soluble, and had the best biophysical properties. The vaccine and Toll-like receptor 4 have a strong and stable interaction, according to protein-protein docking and molecular dynamics simulations. Additionally, in silico cloning was employed to see how the developed vaccine expressed in the pET28a (+) vector. Ultimately, an immune simulation was performed to see the vaccine efficacy. In conclusion, the newly developed vaccine appears to be a promising option for a vaccine against P. aeruginosa infection. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10989-021-10356-z.
Collapse
|
7
|
Mayeux G, Gayet L, Liguori L, Odier M, Martin DK, Cortès S, Schaack B, Lenormand JL. Cell-free expression of the outer membrane protein OprF of Pseudomonas aeruginosa for vaccine purposes. Life Sci Alliance 2021; 4:4/6/e202000958. [PMID: 33972378 PMCID: PMC8127326 DOI: 10.26508/lsa.202000958] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022] Open
Abstract
Production of recombinant proteoliposomes containing OprF from P. aeruginosa promotes the active open conformation of the porin exposing native epitopes. These OprF proteoliposomes were used as vaccines to protect mice against a P. aeruginosa acute pulmonary infection model. Pseudomonas aeruginosa is the second-leading cause of nosocomial infections and pneumonia in hospitals. Because of its extraordinary capacity for developing resistance to antibiotics, treating infections by Pseudomonas is becoming a challenge, lengthening hospital stays, and increasing medical costs and mortality. The outer membrane protein OprF is a well-conserved and immunogenic porin playing an important role in quorum sensing and in biofilm formation. Here, we used a bacterial cell-free expression system to reconstitute OprF under its native forms in liposomes and we demonstrated that the resulting OprF proteoliposomes can be used as a fully functional recombinant vaccine against P. aeruginosa. Remarkably, we showed that our system promotes the folding of OprF into its active open oligomerized state as well as the formation of mega-pores. Our approach thus represents an easy and efficient way for producing bacterial membrane antigens exposing native epitopes for vaccine purposes.
Collapse
Affiliation(s)
- Géraldine Mayeux
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| | - Landry Gayet
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| | - Lavinia Liguori
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France.,Maison Familiale Rurale Moirans, Moirans, France
| | - Marine Odier
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France.,Catalent Pharma Solutions, Eberbach, Germany
| | - Donald K Martin
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| | | | - Béatrice Schaack
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France.,University Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jean-Luc Lenormand
- TheREx and Synabi, University Grenoble Alpes, CNRS, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut Polytechnique (INP), Translational Innovation in Medicine and Complexity (TIMC), Grenoble, France
| |
Collapse
|
8
|
Warraich AA, Mohammed AUR, Gibson H, Hussain M, Rahman AS. Acidic amino acids as counterions of ciprofloxacin: Effect on growth and pigment production in Staphylococcus aureus NCTC 8325 and Pseudomonas aeruginosa PAO1. PLoS One 2021; 16:e0250705. [PMID: 33914790 PMCID: PMC8084218 DOI: 10.1371/journal.pone.0250705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/13/2021] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial resistance (AMR) is emerging as a global threat to public health. One of the strategies employed to combat AMR is the use of adjuvants which act to enhance or reinstate antimicrobial activity by inhibiting resistance mechanisms. However, these adjuvants are themselves not immune to selecting resistant phenotypes. Thus, there is a need to utilise mechanisms which are either less likely to or unable to trigger resistance. One commonly employed mechanism of resistance by microorganisms is to prevent antimicrobial uptake or efflux the antibiotic which manages to permeate its membrane. Here we propose amino acids as antimicrobial adjuvants that may be utilizing alternate mechanisms to fight AMR. We used a modified ethidium bromide (EtBr) efflux assay to determine its efflux in the presence of ciprofloxacin within Staphylococcus aureus (NCTC 8325) and Pseudomonas aeruginosa (PAO1). In this study, aspartic acid and glutamic acid were found to inhibit growth of both bacterial species. Moreover, a reduced production of toxic pigments, pyocyanin and pyoverdine by P. aeruginosa was also observed. As evident from similar findings with tetracycline, these adjuvants, may be a way forward towards tackling antimicrobial resistance.
Collapse
Affiliation(s)
- Annsar Ahmad Warraich
- Aston Pharmacy School, Aston University, Birmingham, United Kingdom
- School of Pharmacy, University of Wolverhampton, Wolverhampton, United Kingdom
| | | | - Hazel Gibson
- School of Pharmacy, University of Wolverhampton, Wolverhampton, United Kingdom
| | | | - Ayesha Sabah Rahman
- School of Pharmacy, University of Wolverhampton, Wolverhampton, United Kingdom
| |
Collapse
|
9
|
Langendonk RF, Neill DR, Fothergill JL. The Building Blocks of Antimicrobial Resistance in Pseudomonas aeruginosa: Implications for Current Resistance-Breaking Therapies. Front Cell Infect Microbiol 2021; 11:665759. [PMID: 33937104 PMCID: PMC8085337 DOI: 10.3389/fcimb.2021.665759] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
P. aeruginosa is classified as a priority one pathogen by the World Health Organisation, and new drugs are urgently needed, due to the emergence of multidrug-resistant (MDR) strains. Antimicrobial-resistant nosocomial pathogens such as P. aeruginosa pose unwavering and increasing threats. Antimicrobial stewardship has been a challenge during the COVID-19 pandemic, with a majority of those hospitalized with SARS-CoV2 infection given antibiotics as a safeguard against secondary bacterial infection. This increased usage, along with increased handling of sanitizers and disinfectants globally, may further accelerate the development and spread of cross-resistance to antibiotics. In addition, P. aeruginosa is the primary causative agent of morbidity and mortality in people with the life-shortening genetic disease cystic fibrosis (CF). Prolonged periods of selective pressure, associated with extended antibiotic treatment and the actions of host immune effectors, results in widespread adaptive and acquired resistance in P. aeruginosa found colonizing the lungs of people with CF. This review discusses the arsenal of resistance mechanisms utilized by P. aeruginosa, how these operate under high-stress environments such as the CF lung and how their interconnectedness can result in resistance to multiple antibiotic classes. Intrinsic, adaptive and acquired resistance mechanisms will be described, with a focus on how each layer of resistance can serve as a building block, contributing to multi-tiered resistance to antimicrobial activity. Recent progress in the development of anti-resistance adjuvant therapies, targeting one or more of these building blocks, should lead to novel strategies for combatting multidrug resistant P. aeruginosa. Anti-resistance adjuvant therapy holds great promise, not least because resistance against such therapeutics is predicted to be rare. The non-bactericidal nature of anti-resistance adjuvants reduce the selective pressures that drive resistance. Anti-resistance adjuvant therapy may also be advantageous in facilitating efficacious use of traditional antimicrobials, through enhanced penetration of the antibiotic into the bacterial cell. Promising anti-resistance adjuvant therapeutics and targets will be described, and key remaining challenges highlighted. As antimicrobial stewardship becomes more challenging in an era of emerging and re-emerging infectious diseases and global conflict, innovation in antibiotic adjuvant therapy can play an important role in extending the shelf-life of our existing antimicrobial therapeutic agents.
Collapse
Affiliation(s)
- R. Frèdi Langendonk
- Institute of Infection, Veterinary and Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
10
|
Impey RE, Hawkins DA, Sutton JM, Soares da Costa TP. Overcoming Intrinsic and Acquired Resistance Mechanisms Associated with the Cell Wall of Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:E623. [PMID: 32961699 PMCID: PMC7558195 DOI: 10.3390/antibiotics9090623] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
The global increase in multi-drug-resistant bacteria is severely impacting our ability to effectively treat common infections. For Gram-negative bacteria, their intrinsic and acquired resistance mechanisms are heightened by their unique cell wall structure. The cell wall, while being a target of some antibiotics, represents a barrier due to the inability of most antibacterial compounds to traverse and reach their intended target. This means that its composition and resulting mechanisms of resistance must be considered when developing new therapies. Here, we discuss potential antibiotic targets within the most well-characterised resistance mechanisms associated with the cell wall in Gram-negative bacteria, including the outer membrane structure, porins and efflux pumps. We also provide a timely update on the current progress of inhibitor development in these areas. Such compounds could represent new avenues for drug discovery as well as adjuvant therapy to help us overcome antibiotic resistance.
Collapse
Affiliation(s)
- Rachael E. Impey
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| | - Daniel A. Hawkins
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| | - J. Mark Sutton
- National Infection Service, Research and Development Institute, Public Health England, Porton Down, Salisbury, Wiltshire SP4 0JG, UK;
| | - Tatiana P. Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (R.E.I.); (D.A.H.)
| |
Collapse
|
11
|
Ribosome Display Technology: Applications in Disease Diagnosis and Control. Antibodies (Basel) 2020; 9:antib9030028. [PMID: 32605027 PMCID: PMC7551589 DOI: 10.3390/antib9030028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022] Open
Abstract
Antibody ribosome display remains one of the most successful in vitro selection technologies for antibodies fifteen years after it was developed. The unique possibility of direct generation of whole proteins, particularly single-chain antibody fragments (scFvs), has facilitated the establishment of this technology as one of the foremost antibody production methods. Ribosome display has become a vital tool for efficient and low-cost production of antibodies for diagnostics due to its advantageous ability to screen large libraries and generate binders of high affinity. The remarkable flexibility of this method enables its applicability to various platforms. This review focuses on the applications of ribosome display technology in biomedical and agricultural fields in the generation of recombinant scFvs for disease diagnostics and control.
Collapse
|
12
|
Pushing beyond the Envelope: the Potential Roles of OprF in Pseudomonas aeruginosa Biofilm Formation and Pathogenicity. J Bacteriol 2019; 201:JB.00050-19. [PMID: 31010902 DOI: 10.1128/jb.00050-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ability of Pseudomonas aeruginosa to form biofilms, which are communities of cells encased in a self-produced extracellular matrix, protects the cells from antibiotics and the host immune response. While some biofilm matrix components, such as exopolysaccharides and extracellular DNA, are relatively well characterized, the extracellular matrix proteins remain understudied. Multiple proteomic analyses of the P. aeruginosa soluble biofilm matrix and outer membrane vesicles, which are a component of the matrix, have identified OprF as an abundant matrix protein. To date, the few reports on the effects of oprF mutations on biofilm formation are conflicting, and little is known about the potential role of OprF in the biofilm matrix. The majority of OprF studies focus on the protein as a cell-associated porin. As a component of the outer membrane, OprF assumes dual conformations and is involved in solute transport, as well as cell envelope integrity. Here, we review the current literature on OprF in P. aeruginosa, discussing how the structure and function of the cell-associated and matrix-associated protein may affect biofilm formation and pathogenesis in order to inform future research on this understudied matrix protein.
Collapse
|
13
|
CmpX Affects Virulence in Pseudomonas aeruginosa Through the Gac/Rsm Signaling Pathway and by Modulating c-di-GMP Levels. J Membr Biol 2017; 251:35-49. [DOI: 10.1007/s00232-017-9994-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
|
14
|
Mittal R, Lisi CV, Kumari H, Grati M, Blackwelder P, Yan D, Jain C, Mathee K, Weckwerth PH, Liu XZ. Otopathogenic Pseudomonas aeruginosa Enters and Survives Inside Macrophages. Front Microbiol 2016; 7:1828. [PMID: 27917157 PMCID: PMC5114284 DOI: 10.3389/fmicb.2016.01828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/31/2016] [Indexed: 12/21/2022] Open
Abstract
Otitis media (OM) is a broad term describing a group of infectious and inflammatory disorders of the middle ear. Despite antibiotic therapy, acute OM can progress to chronic suppurative otitis media (CSOM) characterized by ear drum perforation and purulent discharge. Pseudomonas aeruginosa is the most common pathogen associated with CSOM. Although, macrophages play an important role in innate immune responses but their role in the pathogenesis of P. aeruginosa-induced CSOM is not known. The objective of this study is to examine the interaction of P. aeruginosa with primary macrophages. We observed that P. aeruginosa enters and multiplies inside human and mouse primary macrophages. This bacterial entry in macrophages requires both microtubule and actin dependent processes. Transmission electron microscopy demonstrated that P. aeruginosa was present in membrane bound vesicles inside macrophages. Interestingly, deletion of oprF expression in P. aeruginosa abrogates its ability to survive inside macrophages. Our results suggest that otopathogenic P. aeruginosa entry and survival inside macrophages is OprF-dependent. The survival of bacteria inside macrophages will lead to evasion of killing and this lack of pathogen clearance by phagocytes contributes to the persistence of infection in CSOM. Understanding host-pathogen interaction will provide novel avenues to design effective treatment modalities against OM.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Christopher V Lisi
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Hansi Kumari
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami FL, USA
| | - M'hamed Grati
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Patricia Blackwelder
- Chemistry Department, Center for Advanced Microscopy, University of Miami, Coral GablesFL, USA; Rosenstiel School of Marine and Atmospheric Science, University of Miami, Key BiscayneFL, USA
| | - Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Chaitanya Jain
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami FL, USA
| | - Kalai Mathee
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, MiamiFL, USA; Global Health Consortium and Biomolecular Science Institute, Florida International University, MiamiFL, USA
| | - Paulo H Weckwerth
- Health Sciences Department, University of Sagrado Coração Bauru, Brazil
| | - Xue Z Liu
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami FL, USA
| |
Collapse
|
15
|
Colmer-Hamood JA, Dzvova N, Kruczek C, Hamood AN. In Vitro Analysis of Pseudomonas aeruginosa Virulence Using Conditions That Mimic the Environment at Specific Infection Sites. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:151-91. [PMID: 27571695 DOI: 10.1016/bs.pmbts.2016.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes chronic lung infection in patients with cystic fibrosis (CF) and acute systemic infections in severely burned patients and immunocompromised patients including cancer patients undergoing chemotherapy and HIV infected individuals. In response to the environmental conditions at specific infection sites, P. aeruginosa expresses certain sets of cell-associated and extracellular virulence factors that produce tissue damage. Analyzing the mechanisms that govern the production of these virulence factors in vitro requires media that closely mimic the environmental conditions within the infection sites. In this chapter, we review studies based on media that closely resemble three in vivo conditions, the thick mucus accumulated within the lung alveoli of CF patients, the serum-rich wound bed and the bloodstream. Media resembling the CF alveolar mucus include standard laboratory media supplemented with sputum obtained from CF patients as well as prepared synthetic mucus media formulated to contain the individual components of CF sputum. Media supplemented with serum or individual serum components have served as surrogates for the soluble host components of wound infections, while whole blood has been used to investigate the adaptation of pathogens to the bloodstream. Studies using these media have provided valuable information regarding P. aeruginosa gene expression in different host environments as varying sets of genes were differentially regulated during growth in each medium. The unique effects observed indicate the essential role of these in vitro media that closely mimic the in vivo conditions in providing accurate information regarding the pathogenesis of P. aeruginosa infections.
Collapse
Affiliation(s)
- J A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, United States.
| | - N Dzvova
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - C Kruczek
- Honors College, Texas Tech University, Lubbock, TX, United States
| | - A N Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, United States; Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
16
|
Mittal R, Grati M, Yan D, Liu XZ. Pseudomonas aeruginosa Activates PKC-Alpha to Invade Middle Ear Epithelial Cells. Front Microbiol 2016; 7:255. [PMID: 26973629 PMCID: PMC4777741 DOI: 10.3389/fmicb.2016.00255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022] Open
Abstract
Otitis media (OM) is a group of complex inflammatory disorders affecting the middle ear which can be acute or chronic. Chronic suppurative otitis media (CSOM) is a form of chronic OM characterized by tympanic membrane perforation and discharge. Despite the significant impact of CSOM on human population, it is still an understudied and unexplored research area. CSOM is a leading cause of hearing loss and life-threatening central nervous system complications. Bacterial exposure especially Pseudomonas aeruginosa is the most common cause of CSOM. Our previous studies have demonstrated that P. aeruginosa invades human middle ear epithelial cells (HMEECs). However, molecular mechanisms leading to bacterial invasion of HMEECs are not known. The aim of this study is to characterize the role of PKC pathway in the ability of P. aeruginosa to colonize HMEECs. We observed that otopathogenic P. aeruginosa activates the PKC pathway, specifically phosphorylation of PKC-alpha (PKC-α) in HMEECs. The ability of otopathogenic P. aeruginosa to phosphorylate PKC-α depends on bacterial OprF expression. The activation of PKC-α was associated with actin condensation. Blocking the PKC pathway attenuated the ability of bacteria to invade HMEECs and subsequent actin condensation. This study, for the first time, demonstrates that the host PKC-α pathway is involved in invasion of HMEECs by P. aeruginosa and subsequently to cause OM. Characterizing the role of the host signaling pathway in the pathogenesis of CSOM will provide novel avenues to design effective treatment modalities against the disease.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami Florida, USA
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami Florida, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami Florida, USA
| | - Xue Z Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, MiamiFlorida, USA; Department of Biochemistry, University of Miami Miller School of Medicine, MiamiFL, USA; Department of Human Genetics, University of Miami Miller School of Medicine, MiamiFL, USA; Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
17
|
Fowler RC, Hanson ND. The OpdQ porin of Pseudomonas aeruginosa is regulated by environmental signals associated with cystic fibrosis including nitrate-induced regulation involving the NarXL two-component system. Microbiologyopen 2015; 4:967-82. [PMID: 26459101 PMCID: PMC4694141 DOI: 10.1002/mbo3.305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen that causes chronic infections in immunocompromised hosts. Multiple porins modulate outer membrane permeability under various environmental conditions. The lung environment of cystic fibrosis (CF) patients is unique with changes occurring in nutrient availability, osmolarity, and oxygen content. Although P. aeruginosa gene expression is modified under these conditions, little is known about how they influence porin regulation. In this study, we evaluated the regulation of the outer membrane porin OpdQ, a member of the OprD family of porins, with regard to oxygen, nitrate, and/or NaCl levels. We demonstrated using promoter::fusion clones of P. aeruginosa PAO1 and clinical strains collected from CF patients that OpdQ was transcriptionally repressed under low oxygen but increased in the presence of nitrate. The nitrate‐induced regulation of OpdQ was found to be dependent on the transcription factor NarL via the NarXL two‐component system. In addition, NaCl‐induced osmotic stress increased OpdQ production among most of the clinical strains evaluated. In conclusion, these data identify for the first time that specific environmental cues associated with the CF microenvironment influence porin regulation, and that the nitrate‐induced regulation of OpdQ is associated with nitrate metabolism via the NarXL two‐component system of P. aeruginosa.
Collapse
Affiliation(s)
- Randal C Fowler
- Department of Medical Microbiology and Immunology, Center for Research in Anti-Infectives and Biotechnology, Creighton University School of Medicine, 2500 California Plaza, Omaha, Nebraska, 68178
| | - Nancy D Hanson
- Department of Medical Microbiology and Immunology, Center for Research in Anti-Infectives and Biotechnology, Creighton University School of Medicine, 2500 California Plaza, Omaha, Nebraska, 68178
| |
Collapse
|
18
|
Leneveu-Jenvrin C, Bouffartigues E, Maillot O, Cornelis P, Feuilloley MGJ, Connil N, Chevalier S. Expression of the translocator protein (TSPO) from Pseudomonas fluorescens Pf0-1 requires the stress regulatory sigma factors AlgU and RpoH. Front Microbiol 2015; 6:1023. [PMID: 26441945 PMCID: PMC4585239 DOI: 10.3389/fmicb.2015.01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is an evolutionary conserved protein that is found in many Eukarya, Archae, and Bacteria, in which it plays several important functions including for example membrane biogenesis, signaling, and stress response. A tspo homolog gene has been identified in several members of the Pseudomonas genus, among which the soil bacterium P. fluorescens Pf0-1. In this bacterium, the tspo gene is located in the vicinity of a putative hybrid histidine kinase-encoding gene. Since tspo has been involved in water stress related response in plants, we explored the effects of hyperosmolarity and temperature on P. fluorescens Pf0-1 tspo expression using a strategy based on lux-reporter fusions. We show that the two genes Pfl01_2810 and tspo are co-transcribed forming a transcription unit. The expression of this operon is growth phase-dependent and is increased in response to high concentrations of NaCl, sucrose and to a D-cycloserine treatment, which are conditions leading to activity of the major cell wall stress responsive extracytoplasmic sigma factor AlgU. Interestingly, the promoter region activity is strongly lowered in a P. aeruginosa algU mutant, suggesting that AlgU may be involved at least partly in the molecular mechanism leading to Pfl01_2810-tspo expression. In silico analysis of this promoter region failed to detect an AlgU consensus binding site; however, a putative binding site for the heat shock response RpoH sigma factor was detected. Accordingly, the promoter activity of the region containing this sequence is increased in response to high growth temperature and slightly lowered in a P. aeruginosa rpoH mutant strain. Taken together, our data suggest that P. fluorescens tspo gene may belong at least partly to the cell wall stress response.
Collapse
Affiliation(s)
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Nathalie Connil
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| |
Collapse
|
19
|
Bouffartigues E, Moscoso JA, Duchesne R, Rosay T, Fito-Boncompte L, Gicquel G, Maillot O, Bénard M, Bazire A, Brenner-Weiss G, Lesouhaitier O, Lerouge P, Dufour A, Orange N, Feuilloley MGJ, Overhage J, Filloux A, Chevalier S. The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level. Front Microbiol 2015; 6:630. [PMID: 26157434 PMCID: PMC4477172 DOI: 10.3389/fmicb.2015.00630] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/09/2015] [Indexed: 11/13/2022] Open
Abstract
OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joana A Moscoso
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Rachel Duchesne
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Thibaut Rosay
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Laurène Fito-Boncompte
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Gwendoline Gicquel
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Olivier Maillot
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), Institute for Research and Innovation in Biomedicine, University of Rouen Mont-Saint-Aignan, France
| | - Alexis Bazire
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Olivier Lesouhaitier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Patrice Lerouge
- Glyco-MeV Laboratory, University of Rouen, Normandy University Mont-Saint-Aignan, France
| | - Alain Dufour
- EA 3884-Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, Université de Bretagne-Sud Lorient, France
| | - Nicole Orange
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Marc G J Feuilloley
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| | - Joerg Overhage
- Institute of Functional Interfaces, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London London, UK
| | - Sylvie Chevalier
- EA 4312-Laboratory of Microbiology Signals and Microenvironment, University of Rouen - Normandy University Evreux, France
| |
Collapse
|
20
|
Hemamalini R, Khare S. A proteomic approach to understand the role of the outer membrane porins in the organic solvent-tolerance of Pseudomonas aeruginosa PseA. PLoS One 2014; 9:e103788. [PMID: 25089526 PMCID: PMC4121210 DOI: 10.1371/journal.pone.0103788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/07/2014] [Indexed: 01/09/2023] Open
Abstract
Solvent-tolerant microbes have the unique ability to thrive in presence of organic solvents. The present study describes the effect of increasing hydrophobicity (log Pow values) of organic solvents on the outer membrane proteome of the solvent-tolerant Pseudomonas aeruginosa PseA cells. The cells were grown in a medium containing 33% (v/v) alkanes of increasing log Pow values. The outer membrane proteins were extracted by alkaline extraction from the late log phase cells and changes in the protein expression were studied by 2-D gel electrophoresis. Seven protein spots showed significant differential expression in the solvent exposed cells. The tryptic digest of the differentially regulated proteins were identified by LC-ESI MS/MS. The identity of these proteins matched with porins OprD, OprE, OprF, OprH, Opr86, LPS assembly protein and A-type flagellin. The reported pI values of these proteins were in the range of 4.94-8.67 and the molecular weights were in the range of 19.5-104.5 kDa. The results suggest significant down-regulation of the A-type flagellin, OprF and OprD and up-regulation of OprE, OprH, Opr86 and LPS assembly protein in presence of organic solvents. OprF and OprD are implicated in antibiotic uptake and outer membrane stability, whereas A-type flagellin confers motility and chemotaxis. Up-regulated OprE is an anaerobically-induced porin while Opr86 is responsible for transport of small molecules and assembly of the outer membrane proteins. Differential regulation of the above porins clearly indicates their role in adaptation to solvent exposure.
Collapse
Affiliation(s)
- R. Hemamalini
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
| | - Sunil Khare
- Enzyme and Microbial Biochemistry Lab, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi, India
- * E-mail:
| |
Collapse
|
21
|
Niemirowicz K, Swiecicka I, Wilczewska AZ, Misztalewska I, Kalska-Szostko B, Bienias K, Bucki R, Car H. Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. Int J Nanomedicine 2014; 9:2217-24. [PMID: 24855358 PMCID: PMC4020905 DOI: 10.2147/ijn.s56588] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) and their derivatives (aminosilane and gold-coated) have been widely investigated in numerous medical applications, including their potential to act as antibacterial drug carriers that may penetrate into bacteria cells and biofilm mass. Pseudomonas aeruginosa is a frequent cause of infection in hospitalized patients, and significant numbers of currently isolated clinical strains are resistant to standard antibiotic therapy. Here we describe the impact of three types of SPIONs on the growth of P. aeruginosa during long-term bacterial culture. Their size, structure, and physicochemical properties were determined using transmission electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectroscopy. We observed significant inhibition of P. aeruginosa growth in bacterial cultures continued over 96 hours in the presence of gold-functionalized nanoparticles (Fe₃O₄@Au). At the 48-hour time point, growth of P. aeruginosa, as assessed by the number of colonies grown from treated samples, showed the highest inhibition (decreased by 40%). These data provide strong evidence that Fe₃O₄@Au can dramatically reduce growth of P. aeruginosa and provide a platform for further study of the antibacterial activity of this nanomaterial.
Collapse
Affiliation(s)
- Katarzyna Niemirowicz
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland ; Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Izabela Swiecicka
- Department of Microbiology, University of Bialystok, Bialystok, Poland
| | | | | | | | - Kamil Bienias
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| | - Robert Bucki
- Department of Microbiological and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland ; Faculty of Health Sciences, Jan Kochanowski University, Kielce, Poland ; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
22
|
Khatua B, Van Vleet J, Choudhury BP, Chaudhry R, Mandal C. Sialylation of outer membrane porin protein D: a mechanistic basis of antibiotic uptake in Pseudomonas aeruginosa. Mol Cell Proteomics 2014; 13:1412-28. [PMID: 24643970 DOI: 10.1074/mcp.m113.030999] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is an environmentally ubiquitous, extracellular, opportunistic pathogen, associated with severe infections of immune-compromised host. We demonstrated earlier the presence of both α2,3- and α2,6-linked sialic acids (Sias) on PA (PA(+Sias)) and normal human serum is their source of Sias. PA(+Sias) showed decreased complement deposition and exhibited enhanced association with immune-cells through sialic acid binding immunoglobulin like lectins (Siglecs). Such Sias-siglec-9 interaction between PA(+Sias) and neutrophils helped to subvert host immunity. Additionally, PA(+Sias) showed more resistant to β-lactam antibiotics as reflected in their minimum inhibitory concentration required to inhibit the growth of 50% than PA(-Sias). Accordingly, we have affinity purified sialoglycoproteins of PA(+Sias). They were electrophoresed and identified by matrix-assisted laser desorption-ionization time-of-flight/time-of-flight mass spectrometry analysis. Sequence study indicated the presence of a few α2,6-linked, α2,3-linked, and both α2,3- and α2,6-linked sialylated proteins in PA. The outer membrane porin protein D (OprD), a specialized channel-forming protein, responsible for uptake of β-lactam antibiotics, is one such identified sialoglycoprotein. Accordingly, sialylated (OprD(+Sias)) and non-sialylated (OprD(-Sias)) porin proteins were separately purified by using anion exchange chromatography. Sialylation of purified OprD(+Sias) was confirmed by several analytical and biochemical procedures. Profiling of glycan structures revealed three sialylated N-glycans and two sialylated O-glycans in OprD(+Sias). In contrast, OprD(-Sias) exhibit only one sialylated N-glycans. OprD(-Sias) interacts with β-lactam antibiotics more than OprD(+Sias) as demonstrated by surface plasmon resonance study. Lyposome-swelling assay further exhibited that antibiotics have more capability to penetrate through OprD(-Sias) purified from four clinical isolates of PA. Taken together, it may be envisaged that sialic acids on OprD protein play important role toward the uptake of commonly used antibiotics in PA(+Sias). This might be one of the new mechanisms of PA for β-lactam antibiotic uptake.
Collapse
Affiliation(s)
- Biswajit Khatua
- From the ‡Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India
| | - Jeremy Van Vleet
- §Glycobiology Core Resources, Regents of the University of California, USCD, 9500 Gilman Drive (MC-0687), La Jolla, California, 92093-0687
| | - Biswa Pronab Choudhury
- §Glycobiology Core Resources, Regents of the University of California, USCD, 9500 Gilman Drive (MC-0687), La Jolla, California, 92093-0687
| | - Rama Chaudhry
- ¶Microbiology Department, All India Institute of Medical Sciences, Ansari Nagar East, Gautam Nagar, New Delhi, Delhi 110029
| | - Chitra Mandal
- From the ‡Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata-700 032, India;
| |
Collapse
|
23
|
Emergence of carbapenem resistance due to the novel insertion sequence ISPa8 in Pseudomonas aeruginosa. PLoS One 2014; 9:e91299. [PMID: 24614163 PMCID: PMC3948848 DOI: 10.1371/journal.pone.0091299] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 02/09/2014] [Indexed: 11/19/2022] Open
Abstract
Chronic lung infections due to the persistence of Pseudomonas aeruginosa in cystic fibrosis patients are typically associated with the emergence of antibiotic resistance. The purpose of this study was to investigate the mechanisms responsible for the emergence of carbapenem resistance when a clinical isolate of P. aeruginosa collected from a patient with cystic fibrosis was challenged with meropenem. Nine carbapenem-resistant mutants were selected with subinhibitory concentrations of meropenem from a clinical isolate of P. aeruginosa and characterized for carbapenem resistance. Increased carbapenem MICs were associated with the identification of the novel insertion sequence ISPa8 within oprD or its promoter region in all the mutants. The position of ISPa8 was different for each of the mutants evaluated. In addition, Southern blot analyses identified multiple copies of ISPa8 within the genomes of the mutants and their parent isolate. These data demonstrate that transposition of IS elements within the Pseudomonas genome can influence antibiotic susceptibility. Understanding the selective pressures associated with the emergence of antibiotic resistance is critical for the judicious use of antimicrobial chemotherapy and the successful treatment of bacterial infections.
Collapse
|
24
|
Gicquel G, Bouffartigues E, Bains M, Oxaran V, Rosay T, Lesouhaitier O, Connil N, Bazire A, Maillot O, Bénard M, Cornelis P, Hancock REW, Dufour A, Feuilloley MGJ, Orange N, Déziel E, Chevalier S. The extra-cytoplasmic function sigma factor sigX modulates biofilm and virulence-related properties in Pseudomonas aeruginosa. PLoS One 2013; 8:e80407. [PMID: 24260387 PMCID: PMC3832394 DOI: 10.1371/journal.pone.0080407] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/02/2013] [Indexed: 11/23/2022] Open
Abstract
SigX, one of the 19 extra-cytoplasmic function sigma factors of P. aeruginosa, was only known to be involved in transcription of the gene encoding the major outer membrane protein OprF. We conducted a comparative transcriptomic study between the wildtype H103 strain and its sigX mutant PAOSX, which revealed a total of 307 differentially expressed genes that differed by more than 2 fold. Most dysregulated genes belonged to six functional classes, including the “chaperones and heat shock proteins”, “antibiotic resistance and susceptibility”, “energy metabolism”, “protein secretion/export apparatus”, and “secreted factors”, and “motility and attachment” classes. In this latter class, the large majority of the affected genes were down-regulated in the sigX mutant. In agreement with the array data, the sigX mutant was shown to demonstrate substantially reduced motility, attachment to biotic and abiotic surfaces, and biofilm formation. In addition, virulence towards the nematode Caenorhabditis elegans was reduced in the sigX mutant, suggesting that SigX is involved in virulence-related phenotypes.
Collapse
Affiliation(s)
- Gwendoline Gicquel
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Emeline Bouffartigues
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Manjeet Bains
- Centre for Microbal Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Virginie Oxaran
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Thibaut Rosay
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Olivier Lesouhaitier
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Nathalie Connil
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UEB), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Olivier Maillot
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), IRIB, Faculty of Sciences, University of Rouen, Mont-Saint-Aignan, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research group Microbiology, VIB Department of Structural Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Robert E. W. Hancock
- Centre for Microbal Diseases and Immunity Research, University of British Columbia, Vancouver, Canada
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UEB), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Marc G. J. Feuilloley
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Nicole Orange
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Québec, Canada
| | - Sylvie Chevalier
- Normandie Université, Université de Rouen, Laboratoire de Microbiologie Signaux et Micro-environnement EA 4312, Evreux, France
- * E-mail:
| |
Collapse
|
25
|
Duchesne R, Bouffartigues E, Oxaran V, Maillot O, Bénard M, Feuilloley MGJ, Orange N, Chevalier S. A proteomic approach of SigX function in Pseudomonas aeruginosa outer membrane composition. J Proteomics 2013; 94:451-9. [PMID: 24332064 DOI: 10.1016/j.jprot.2013.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/29/2013] [Accepted: 10/17/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED SigX is one of the 19 extracytoplasmic function sigma factors that have been predicted in the human opportunistic pathogen Pseudomonas aeruginosa genome. SigX is involved in the transcription of oprF, encoding the major outer membrane protein OprF, a pleiotropic porin that contributes to the maintaining of the wall structure, and is essential to P. aeruginosa virulence. This study aimed to get further insights into the functions of SigX. We performed here an outer membrane subproteome of a sigX mutant. Proteomic investigations revealed lower production of 8 porins among which 4 gated channels involved in iron or hem uptake, OprF, and the three substrate-specific proteins OprD, OprQ and OprE. On the other side, the glucose-specific porin OprB and the lipid A 3-O-deacylase that is involved in LPS modification were up-regulated. Our results indicate that SigX may be involved in the control and/or regulation of the outer membrane composition. BIOLOGICAL SIGNIFICANCE A proteomic approach was used herein to get further insights into SigX functions in P. aeruginosa. The data presented here suggest that SigX is involved in the outer membrane protein composition, and could be linked to a regulatory network involved in OM homeostasis.
Collapse
Affiliation(s)
- Rachel Duchesne
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Virginie Oxaran
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Olivier Maillot
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Magalie Bénard
- Cell Imaging Platform of Normandy (PRIMACEN), IRIB, Faculty of Sciences, University of Rouen, Mont-Saint-Aignan F-76821, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Nicole Orange
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signal and Microenvironment (LMSM) EA 4312, University of Rouen, GRRs SeSa, IRIB, Evreux F-27000, France.
| |
Collapse
|
26
|
Proteomic approach to Pseudomonas aeruginosa adaptive resistance to benzalkonium chloride. J Proteomics 2013; 89:273-9. [DOI: 10.1016/j.jprot.2013.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/06/2013] [Accepted: 04/26/2013] [Indexed: 11/19/2022]
|
27
|
Hao W. Unrecognized fine-scale recombination can mimic the effects of adaptive radiation. Gene 2013; 518:483-8. [PMID: 23337592 DOI: 10.1016/j.gene.2012.12.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/19/2012] [Accepted: 12/25/2012] [Indexed: 11/17/2022]
Abstract
Gene sequences can undergo accelerated nucleotide changes and rapid diversification. The rapid sequence changes can then potentially lead to phylogenetic incongruence. Recently, Bodilis et al. (2011) observed artificial phylogenetic incongruence using the Pseudomonas surface protein gene oprF, and hypothesized that it was the result of a long-branch attraction artifact ultimately caused by adaptive radiation. In this study, an alternative hypothesis, namely fine-scale recombination, was tested on the same dataset. The results reveal that regions in oprF are of different evolutionary origins, and the mosaic gene structure resulted in confounding phylogenetic signals. These findings demonstrate that unrecognized fine-scale recombination can confound the phylogenetic interpretation and emphasize the limitation of using whole genes as the unit of phylogenetic analysis.
Collapse
Affiliation(s)
- Weilong Hao
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
28
|
Saito R, Matsuoka S, Fujinami Y, Nonaka S, Ichinose S, Kubota T, Okamura N. Role of Moraxella catarrhalis outer membrane protein CD in bacterial cell morphology and autoaggregation. Res Microbiol 2013; 164:236-43. [DOI: 10.1016/j.resmic.2012.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
|
29
|
Ritter A, Com E, Bazire A, Goncalves MDS, Delage L, Pennec GL, Pineau C, Dreanno C, Compère C, Dufour A. Proteomic studies highlight outer-membrane proteins related to biofilm development in the marine bacterium Pseudoalteromonas sp. D41. Proteomics 2012; 12:3180-92. [DOI: 10.1002/pmic.201100644] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 07/27/2012] [Accepted: 08/04/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Andrés Ritter
- Laboratoire de Biotechnologie et Chimie Marines; Université de Bretagne-Sud (UEB), IUEM; Lorient France
- IFREMER; Service Interfaces et Capteurs; Plouzané France
| | - Emmanuelle Com
- Proteomics Core Facility BIOGENOUEST; IRSET - Inserm U1085; Campus de Beaulieu; Rennes France
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines; Université de Bretagne-Sud (UEB), IUEM; Lorient France
| | | | - Ludovic Delage
- CNRS, UPMC; UMR 7139 Végétaux Marins et Biomolécules; Station Biologique; Roscoff France
| | - Gaël Le Pennec
- Laboratoire de Biotechnologie et Chimie Marines; Université de Bretagne-Sud (UEB), IUEM; Lorient France
| | - Charles Pineau
- Proteomics Core Facility BIOGENOUEST; IRSET - Inserm U1085; Campus de Beaulieu; Rennes France
| | | | | | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines; Université de Bretagne-Sud (UEB), IUEM; Lorient France
| |
Collapse
|
30
|
Transcription of the oprF gene of Pseudomonas aeruginosa is dependent mainly on the SigX sigma factor and is sucrose induced. J Bacteriol 2012; 194:4301-11. [PMID: 22685281 DOI: 10.1128/jb.00509-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The OprF porin is the major outer membrane protein of Pseudomonas aeruginosa. OprF is involved in several crucial functions, including cell structure, outer membrane permeability, environmental sensing, and virulence. The oprF gene is preceded by the sigX gene, which encodes the poorly studied extracytoplasmic function (ECF) sigma factor SigX. Three oprF promoters were previously identified. Two intertwined promoters dependent on σ(70) and SigX are located in the sigX-oprF intergenic region, whereas a promoter dependent on the ECF AlgU lies within the sigX gene. An additional promoter was found in the cmpX-sigX intergenic region. In this study, we dissected the contribution of each promoter region and of each sigma factor to oprF transcription using transcriptional fusions. In Luria-Bertani (LB) medium, the oprF-proximal region (sigX-oprF intergenic region) accounted for about 80% of the oprF transcription, whereas the AlgU-dependent promoter had marginal activity. Using the sigX mutant PAOSX, we observed that the SigX-dependent promoter was largely predominant over the σ(70)-dependent promoter. oprF transcription was increased in response to low NaCl or high sucrose concentrations, and this induced transcription was strongly impaired in the absence of SigX. The lack of OprF itself increased oprF transcription. Since these conditions led to cell wall alterations, oprF transcription could be activated by signals triggered by perturbation of the cell envelope.
Collapse
|
31
|
Sugawara E, Nagano K, Nikaido H. Alternative folding pathways of the major porin OprF of Pseudomonas aeruginosa. FEBS J 2012; 279:910-8. [PMID: 22240095 DOI: 10.1111/j.1742-4658.2012.08481.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OprF is the major porin of Pseudomonas aeruginosa and allows very slow, nonspecific, diffusion of solutes. The low permeability of this porin channel is a major factor that enhances other types of resistance mechanisms and often creates strong multidrug resistance in this nosocomial pathogen. We have previously shown that the low permeability is caused by the folding of OprF into two conformers: a majority, two-domain closed-channel conformer containing the N-terminal transmembrane β-barrel and the C-terminal periplasmic, globular domain; and a minority, one-domain open-channel conformer comprising < 5% of the protein population. Our analysis of the bifurcate folding pathway using site-directed mutagenesis showed that slowing down the folding of the two-domain conformer increases the fraction of the open, one-domain conformer. Use of outer membrane protein assembly machinery mutants showed that the absence of the Skp chaperone led to an increased proportion of open conformers. As many environmental pathogens causing nosocomial infections appear to have outer membrane protein (OmpA)/OprF homologs as the major porin, efforts to understand the low permeability of these 'slow porins' are important in our fight against these organisms.
Collapse
Affiliation(s)
- Etsuko Sugawara
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
32
|
Bodilis J, Nsigue Meilo S, Cornelis P, De Vos P, Barray S. A long-branch attraction artifact reveals an adaptive radiation in pseudomonas. Mol Biol Evol 2011; 28:2723-6. [PMID: 21504889 DOI: 10.1093/molbev/msr099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A significant proportion of protein-encoding gene phylogenies in bacteria is inconsistent with the species phylogeny. It was usually argued that such inconsistencies resulted from lateral transfers. Here, by further studying the phylogeny of the oprF gene encoding the major surface protein in the bacterial Pseudomonas genus, we found that the incongruent tree topology observed results from a long-branch attraction (LBA) artifact and not from lateral transfers. LBA in the oprF phylogeny could be explained by the faster evolution in a lineage adapted to the rhizosphere, highlighting an unexpected adaptive radiation. We argue that analysis of such artifacts in other inconsistent bacterial phylogenies could be a valuable tool in molecular ecology to highlight cryptic adaptive radiations in microorganisms.
Collapse
|
33
|
Fito-Boncompte L, Chapalain A, Bouffartigues E, Chaker H, Lesouhaitier O, Gicquel G, Bazire A, Madi A, Connil N, Véron W, Taupin L, Toussaint B, Cornelis P, Wei Q, Shioya K, Déziel E, Feuilloley MGJ, Orange N, Dufour A, Chevalier S. Full virulence of Pseudomonas aeruginosa requires OprF. Infect Immun 2011; 79:1176-86. [PMID: 21189321 PMCID: PMC3067511 DOI: 10.1128/iai.00850-10] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/10/2010] [Accepted: 12/02/2010] [Indexed: 01/26/2023] Open
Abstract
OprF is a general outer membrane porin of Pseudomonas aeruginosa, a well-known human opportunistic pathogen associated with severe hospital-acquired sepsis and chronic lung infections of cystic fibrosis patients. A multiphenotypic approach, based on the comparative study of a wild-type strain of P. aeruginosa, its isogenic oprF mutant, and an oprF-complemented strain, showed that OprF is required for P. aeruginosa virulence. The absence of OprF results in impaired adhesion to animal cells, secretion of ExoT and ExoS toxins through the type III secretion system (T3SS), and production of the quorum-sensing-dependent virulence factors pyocyanin, elastase, lectin PA-1L, and exotoxin A. Accordingly, in the oprF mutant, production of the signal molecules N-(3-oxododecanoyl)-l-homoserine lactone and N-butanoyl-l-homoserine lactone was found to be reduced and delayed, respectively. Pseudomonas quinolone signal (PQS) production was decreased, while its precursor, 4-hydroxy-2-heptylquinoline (HHQ), accumulated in the cells. Taken together, these results show the involvement of OprF in P. aeruginosa virulence, at least partly through modulation of the quorum-sensing network. This is the first study showing a link between OprF, PQS synthesis, T3SS, and virulence factor production, providing novel insights into virulence expression.
Collapse
Affiliation(s)
- Laurène Fito-Boncompte
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Annelise Chapalain
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Hichem Chaker
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Gwendoline Gicquel
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Alexis Bazire
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Amar Madi
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Nathalie Connil
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Wilfried Véron
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Laure Taupin
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Bertrand Toussaint
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Qing Wei
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Koki Shioya
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Eric Déziel
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Marc G. J. Feuilloley
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Nicole Orange
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Alain Dufour
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid, Signaux et Micro-Environnement, EA 4312, Normandie Sécurité Sanitaire, Université de Rouen, Rouen, France, Laboratoire de Biotechnologie et Chimie Marines, EA 3884, Université de Bretagne Sud, UEB, Lorient, France, Laboratory of Microbial Interactions, Department of Molecular and Cellular Interactions, Flanders Institute of Biotechnology (VIB), Vrije Universiteit Brussel, Brussels, Belgium, INRS-Institut Armand-Frappier, Laval, Québec, Canada, TIMC-IMAG, TheREx, Thérapeutiques Recombinantes Expérimentales, UMR5525 CNRS-Université Joseph Fourier, Grenoble, France
| |
Collapse
|
34
|
Yuan H, Jameson CJ, Murad S. Diffusion of gases across lipid membranes with OmpA channel: a molecular dynamics study. Mol Phys 2010. [DOI: 10.1080/00268976.2010.484396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Chen YY, Wu CH, Lin JW, Weng SF, Tseng YH. Mutation of the gene encoding a major outer-membrane protein in Xanthomonas campestris pv. campestris causes pleiotropic effects, including loss of pathogenicity. MICROBIOLOGY-SGM 2010; 156:2842-2854. [PMID: 20522496 DOI: 10.1099/mic.0.039420-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Xanthomonas campestris pv. campestris (Xcc) is the phytopathogen that causes black rot in crucifers. The xanthan polysaccharide and extracellular enzymes produced by this organism are virulence factors, the expression of which is upregulated by Clp (CRP-like protein) and DSF (diffusible signal factor), which is synthesized by RpfF. It is also known that biofilm formation/dispersal, regulated by the effect of controlled synthesis of DSF on cell-cell signalling, is required for virulence. Furthermore, a deficiency in DSF causes cell aggregation with concomitant production of a gum-like substance that can be dispersed by addition of DSF or digested by exogenous endo-beta-1,4-mannanase expressed by Xcc. In this study, Western blotting of proteins from a mopB mutant (XcMopB) showed Xcc MopB to be the major outer-membrane protein (OMP); Xcc MopB shared over 97 % identity with homologues from other members of Xanthomonas. Similarly to the rpfF mutant, XcMopB formed aggregates with simultaneous production of a gummy substance, but these aggregates could not be dispersed by DSF or endo-beta-1,4-mannanase, indicating that different mechanisms were involved in aggregation. In addition, XcMopB showed surface deformation, altered OMP composition, impaired xanthan production, increased sensitivity to stressful conditions including SDS, elevated temperature and changes in pH, reduced adhesion and motility and defects in pathogenesis. The finding that the major OMP is required for pathogenicity is unprecedented in phytopathogenic bacteria.
Collapse
Affiliation(s)
- Yih-Yuan Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Chieh-Hao Wu
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Juey-Wen Lin
- Institute of Biochemistry, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Shu-Fen Weng
- Institute of Molecular Biology, National Chung Hsing University, Taichung 402, Taiwan, ROC
| | - Yi-Hsiung Tseng
- Institute of Microbiology, Immunology and Molecular Medicine, Tzu Chi University, Hualien 907, Taiwan, ROC
| |
Collapse
|
36
|
Wexler HM, Tenorio E, Pumbwe L. Characteristics of Bacteroides fragilis lacking the major outer membrane protein, OmpA. MICROBIOLOGY-SGM 2009; 155:2694-2706. [PMID: 19497947 DOI: 10.1099/mic.0.025858-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OmpA1 is the major outer membrane protein of the Gram-negative anaerobic pathogen Bacteroides fragilis. We identified three additional conserved ompA homologues (ompA2-ompA4) and three less homologous ompA-like genes (ompAs 5, 6 and 7) in B. fragilis. We constructed an ompA1 disruption mutant in B. fragilis 638R (WAL6 OmegaompA1) using insertion-mediated mutagenesis. WAL6 OmegaompA1 formed much smaller colonies and had smaller, rounder forms on Gram stain analysis than the parental strain or other unrelated disruption mutants. SDS-PAGE and Western blot analysis (with anti-OmpA1 IgY) of the OMP patterns of WAL6 OmegaompA1 grown in both high- and low-salt media did not reveal any other OmpA proteins even under osmotic stress. An ompA1 deletant (WAL186DeltaompA1) was constructed using a two-step double-crossover technique, and an ompA 'reinsertant', WAL360+ompA1, was constructed by reinserting the ompA gene into WAL186DeltaompA1. WAL186DeltaompA1 was significantly more sensitive to exposure to SDS, high salt and oxygen than the parental (WAL108) or reinsertant (WAL360+ompA1) strain. No significant change was seen in MICs of a variety of antimicrobials for either WAL6 OmegaompA1 or WAL186DeltaompA1 compared to WAL108. RT-PCR revealed that all of the ompA genes are transcribed in the parental strain and in the disruption mutant, but, as expected, ompA1 is not transcribed in WAL186DeltaompA1. Unexpectedly, ompA4 is also not transcribed in WAL186DeltaompA1. A predicted structure indicated that among the four OmpA homologues, the barrel portion is more conserved than the loops, except for specific conserved patches on loop 1 and loop 3. The presence of multiple copies of such similar genes in one organism would suggest a critical role for this protein in B. fragilis.
Collapse
Affiliation(s)
- Hannah M Wexler
- Department of Medicine, UCLA School of Medicine, 405 Hilgard Ave, Los Angeles, CA 90095, USA
- Greater Los Angeles Veterans Administration Healthcare System, University of California, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Elizabeth Tenorio
- Department of Medicine, UCLA School of Medicine, 405 Hilgard Ave, Los Angeles, CA 90095, USA
- Greater Los Angeles Veterans Administration Healthcare System, University of California, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Lilian Pumbwe
- Greater Los Angeles Veterans Administration Healthcare System, University of California, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| |
Collapse
|
37
|
Genomewide identification of genetic determinants of antimicrobial drug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 53:2522-31. [PMID: 19332674 DOI: 10.1128/aac.00035-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of antimicrobial drug resistance is of enormous public concern due to the increased risk of delayed treatment of infections, the increased length of hospital stays, the substantial increase in the cost of care, and the high risk of fatal outcomes. A prerequisite for the development of effective therapy alternatives is a detailed understanding of the diversity of bacterial mechanisms that underlie drug resistance, especially for problematic gram-negative bacteria such as Pseudomonas aeruginosa. This pathogen has impressive chromosomally encoded mechanisms of intrinsic resistance, as well as the potential to mutate, gaining resistance to current antibiotics. In this study we have screened the comprehensive nonredundant Harvard PA14 library for P. aeruginosa mutants that exhibited either increased or decreased resistance against 19 antibiotics commonly used in the clinic. This approach identified several genes whose inactivation sensitized the bacteria to a broad spectrum of different antimicrobials and uncovered novel genetic determinants of resistance to various classes of antibiotics. Knowledge of the enhancement of bacterial susceptibility to existing antibiotics and of novel resistance markers or modifiers of resistance expression may lay the foundation for effective therapy alternatives and will be the basis for the development of new strategies in the control of problematic multiresistant gram-negative bacteria.
Collapse
|
38
|
Straatsma TP, Soares TA. Characterization of the outer membrane protein OprF of Pseudomonas aeruginosa in a lipopolysaccharide membrane by computer simulation. Proteins 2009; 74:475-88. [PMID: 18655068 DOI: 10.1002/prot.22165] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The N-terminal domain of outer membrane protein OprF of Pseudomonas aeruginosa forms a membrane spanning eight-stranded antiparallel beta-barrel domain that folds into a membrane channel with low conductance. The structure of this protein has been modeled after the crystal structure of the homologous protein OmpA of Escherichia coli. A number of molecular dynamics simulations have been carried out for the homology modeled structure of OprF in an explicit molecular model for the rough lipopolysaccharide (LPS) outer membrane of P. aeruginosa. The structural stability of the outer membrane model as a result of the strong electrostatic interactions compared with simple lipid bilayers is restricting both the conformational flexibility and the lateral diffusion of the porin in the membrane. Constricting side-chain interactions within the pore are similar to those found in reported simulations of the protein in a solvated lipid bilayer membrane. Because of the strong interactions between the loop regions of OprF and functional groups in the saccharide core of the LPS, the entrance to the channel from the extracellular space is widened compared with the lipid bilayer simulations in which the loops are extruding in the solvent. The specific electrostatic signature of the LPS membrane, which results in a net intrinsic dipole across the membrane, is found to be altered by the presence of OprF, resulting in a small electrically positive patch at the position of the channel.
Collapse
Affiliation(s)
- T P Straatsma
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | |
Collapse
|
39
|
Hirche TO, Benabid R, Deslee G, Gangloff S, Achilefu S, Guenounou M, Lebargy F, Hancock RE, Belaaouaj A. Neutrophil elastase mediates innate host protection against Pseudomonas aeruginosa. THE JOURNAL OF IMMUNOLOGY 2008; 181:4945-54. [PMID: 18802098 DOI: 10.4049/jimmunol.181.7.4945] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
According to the widely accepted view, neutrophil elastase (NE), a neutrophil-specific serine protease, is a major contributor to Pseudomonas aeruginosa infection-associated host tissue inflammation and damage, which in severe cases can lead to death. Herein, we provide for the first time compelling evidence that the host rather employs NE to protect itself against P. aeruginosa infection. Using a clinically relevant model of pneumonia, targeted deficiency in NE increased the susceptibility of mice to P. aeruginosa. We found that NE was required for maximal intracellular killing of P. aeruginosa by neutrophils. In investigating the mechanism of NE-mediated killing of P. aeruginosa, we found that NE degraded the major outer membrane protein F, a protein with important functions, including porin activity, maintenance of structural integrity, and sensing of host immune system activation. Consistent with this, the use of an isogenic mutant deficient in outer membrane protein F negated the role of NE in host defense against P. aeruginosa infection.
Collapse
Affiliation(s)
- Tim O Hirche
- Institut National de la Santé et de la Recherche Médicale, Programme Avenir, IFR53, University of Reims Champagne-Ardenne, Reims, France
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Analysis of secretin-induced stress in Pseudomonas aeruginosa suggests prevention rather than response and identifies a novel protein involved in secretin function. J Bacteriol 2008; 191:898-908. [PMID: 19028883 DOI: 10.1128/jb.01443-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretins are bacterial outer membrane proteins that are important for protein export. However, they can also mislocalize and cause stress to the bacterial cell, which is dealt with by the well-conserved phage shock protein (Psp) system in a highly specific manner. Nevertheless, some bacteria have secretins but no Psp system. A notable example is Pseudomonas aeruginosa, a prolific protein secretor with the potential to produce seven different secretins. We were interested in investigating how P. aeruginosa might deal with the potential for secretin-induced stress without a Psp system. Microarray analysis revealed the absence of any transcriptional response to XcpQ secretin overproduction. However, transposon insertions in either rpoN, truB, PA4068, PA4069, or PA0943 rendered P. aeruginosa hypersensitive to XcpQ production. The PA0943 gene was studied further and found to encode a soluble periplasmic protein important for XcpQ localization to the outer membrane. Consistent with this, a PA0943 null mutation reduced the levels of type 2 secretion-dependent proteins in the culture supernatant. Therefore, this work has identified a novel protein required for normal secretin function in P. aeruginosa. Taken together, all of our data suggest that P. aeruginosa lacks a functional equivalent of the Psp stress response system. Rather, null mutations in genes such as PA0943 may cause increased secretin-induced stress to which P. aeruginosa cannot respond. Providing the PA0943 mutant with the ability to respond, in the form of critical Psp proteins from another species, alleviated its secretin sensitivity.
Collapse
|
41
|
Guyard-Nicodème M, Bazire A, Hémery G, Meylheuc T, Mollé D, Orange N, Fito-Boncompte L, Feuilloley M, Haras D, Dufour A, Chevalier S. Outer membrane Modifications of Pseudomonas fluorescens MF37 in Response to Hyperosmolarity. J Proteome Res 2008; 7:1218-25. [DOI: 10.1021/pr070539x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Muriel Guyard-Nicodème
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Alexis Bazire
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Gaëlle Hémery
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Thierry Meylheuc
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Daniel Mollé
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Nicole Orange
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Laurène Fito-Boncompte
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Dominique Haras
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Alain Dufour
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie du Froid, UPRES EA 2123,
Université de Rouen, Evreux, France, Laboratoire de Biotechnologie
et Chimie Marines, EA 3884, Université de Bretagne-Sud. Lorient,
France, Laboratoire Bioadhésion et Hygiène des Matériaux,
UMR/INRA-ENSIA, Massy, France, and INRA-Agrocampus, UMR 1253, Science
et Technologie du Lait et de l’Oeuf, Rennes, France
| |
Collapse
|
42
|
Bratu S, Landman D, Gupta J, Quale J. Role of AmpD, OprF and penicillin-binding proteins in beta-lactam resistance in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 2007; 56:809-814. [PMID: 17510267 DOI: 10.1099/jmm.0.47019-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study, the mechanisms leading to increased chromosomal AmpC beta-lactamase expression and the contributory roles of the outer-membrane protein OprF and penicillin-binding proteins were analysed in 33 characterized clinical isolates of Pseudomonas aeruginosa. The genes ampD and ampE were analysed by PCR and DNA sequencing. Expression of the gene oprF was assessed using real-time RT-PCR, and penicillin-binding proteins were analysed using a chemiluminescence assay. Several of the isolates with increased ampC expression had major deletions affecting ampD, although in some isolates the mechanism of increased ampC expression could not be ascertained. Occasional isolates had increased expression of both ampC and oprF but remained susceptible to cephalosporins, suggesting that increased beta-lactamase activity could not offset increased outer-membrane permeability. There were no discernible changes in penicillin-binding proteins. Genomic deletions in ampD were observed in selected clinical isolates of P. aeruginosa with increased expression of the AmpC beta-lactamase. For some isolates, cephalosporin resistance was dependent upon the interplay of ampC and oprF expression.
Collapse
Affiliation(s)
- Simona Bratu
- Division of Infectious Diseases, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - David Landman
- Division of Infectious Diseases, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - Jyoti Gupta
- Division of Infectious Diseases, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | - John Quale
- Division of Infectious Diseases, State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| |
Collapse
|
43
|
Begic S, Worobec EA. Site-directed mutagenesis studies to probe the role of specific residues in the external loop (L3) of OmpF and OmpC porins in susceptibility ofSerratia marcescensto antibiotics. Can J Microbiol 2007; 53:710-9. [PMID: 17668031 DOI: 10.1139/w07-018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Serratia marcescens is a nosocomial bacterium with natural resistance to a broad spectrum of antibiotics, making treatment challenging. One factor contributing to this natural antibiotic resistance is reduced outer membrane permeability, controlled in part by OmpF and OmpC porin proteins. To investigate the direct role of these porins in the diffusion of antibiotics across the outer membrane, we have created an ompF–ompC porin-deficient strain of S. marcescens. A considerable similarity between the S. marcescens porins and those from other members of Enterobacteriaceae was detected by sequence alignment, with the exception of a change in a conserved region of the third external loop (L3) of the S. marcescens OmpC protein. Serratia marcescens OmpC has aspartic acid instead of glycine in position 112, methionine instead of aspartic acid in position 114, and glutamine in position 124, while in S. marcescens OmpF this is a glycine at position 124. To investigate the role of amino acid positions 112, 114, and 124 and how the observed changes within OmpC porin may play a part in pore permeability, 2 OmpC sites were altered in the Enterobacteriaceae consensus (D112G and M114D) through site-directed mutagenesis. Also, Q124G in OmpC, G124Q in OmpF, and double mutants of these amino acid residues were constructed. Antibiotic accumulation assays and minimal inhibitory concentrations of the strains harboring the mutated porins were performed, while liposome swelling experiments were performed on purified porins. Our results demonstrate that the amino acid at position 114 is not responsible for either antibiotic size or ionic selection, the amino acid at position 112 is responsible for size selection only, and position 124 is involved in both size and ionic selection.
Collapse
Affiliation(s)
- Sanela Begic
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | |
Collapse
|
44
|
Wong RSY, Jost H, Hancock REW. Linker-insertion mutagenesis ofPseudomonas aeruginosaouter membrane protein OprF. Mol Microbiol 2006; 10:283-292. [DOI: 10.1111/j.1365-2958.1993.tb01954.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Meyer D, Bühler B, Schmid A. Process and catalyst design objectives for specific redox biocatalysis. ADVANCES IN APPLIED MICROBIOLOGY 2006; 59:53-91. [PMID: 16829256 DOI: 10.1016/s0065-2164(06)59003-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Daniel Meyer
- Department of Biochemical and Chemical Engineering, University of Dortmund, Emil-Figge-Strasse 66 D-44227 Dortmund, Germany
| | | | | |
Collapse
|
46
|
Bodilis J, Barray S. Molecular evolution of the major outer-membrane protein gene (oprF) of Pseudomonas. MICROBIOLOGY-SGM 2006; 152:1075-1088. [PMID: 16549671 DOI: 10.1099/mic.0.28656-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The major outer-membrane protein of Pseudomonas, OprF, is multifunctional. It is a non-specific porin that plays a role in maintenance of cell shape, in growth in a low-osmolarity environment, and in adhesion to various supports or molecules. OprF has been studied extensively for its utility as a vaccine component, its role in antimicrobial drug resistance, and its porin function. The authors have previously shown important differences between the OprF and 16S rDNA phylogenies: Pseudomonas fluorescens isolates split into two quite separate clusters, probably according to their ecological niche. In this study, the evolutionary history of the oprF gene was investigated further. The study of G+C content at the third codon position, synonymous codon usage (codon adaptation index, CAI) and genomic context showed no evidence of horizontal transfer or gene duplication. Similarly, a robust likelihood test of incongruence showed no significant incongruence between the oprF phylogeny and the species phylogeny. In addition, the ratio of nonsynonymous mutations to synonymous mutations (K(a)/K(s)) is high between the different clusters, especially between the two clusters containing P. fluorescens isolates, highlighting important modifications in evolutionary constraints during the history of the oprF gene. Since OprF is known as a pleiotropic protein, modifications in evolutionary constraints could have resulted from variations in cryptic functions, correlated with the ecological fingerprint. Finally, relaxed constraints and/or episodic positive evolution, especially for some P. fluorescens strains, could have led to a phylogeny reconstruction artifact.
Collapse
Affiliation(s)
- Josselin Bodilis
- LMDF (Laboratoire de Microbiologie Du Froid), UPRES 2123, ABISS (Atelier de Biologie, Informatique, Statistique et Sociolinguistinque), Université de Rouen, 76821 Mont Saint Aignan, France
| | - Sylvie Barray
- LMDF (Laboratoire de Microbiologie Du Froid), UPRES 2123, ABISS (Atelier de Biologie, Informatique, Statistique et Sociolinguistinque), Université de Rouen, 76821 Mont Saint Aignan, France
| |
Collapse
|
47
|
Sugawara E, Nestorovich EM, Bezrukov SM, Nikaido H. Pseudomonas aeruginosa porin OprF exists in two different conformations. J Biol Chem 2006; 281:16220-9. [PMID: 16595653 PMCID: PMC2846725 DOI: 10.1074/jbc.m600680200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major nonspecific porin of Pseudomonas aeruginosa, OprF, produces a large channel yet allows only a slow diffusion of various solutes. Here we provide an explanation of this apparent paradox. We first show, by introduction of tobacco etch virus protease cleavage site in the middle of OprF protein, that most of OprF population folds as a two-domain protein with an N-terminal beta-barrel domain and a C-terminal periplasmic domain rich in alpha-helices. However, sedimentation of unilamellar proteoliposomes through an iso-osmotic gradient showed that only about 5% of the OprF population produced open channels. Gel filtration showed that the open channel conformers tended to occur in oligomeric associations. Because the open channel conformer is likely to fold as a single domain protein with a large beta-barrel, we reasoned that residues near the C terminus may be exposed on cell surface in this conformer. Introduction of a cysteine residue at position 312 produced a functional mutant protein. By using bulky biotinylation reagents on intact cells, we showed that this cysteine residue was not exposed on cell surface in most of the OprF population. However, the minority OprF population that was biotinylated in such experiments was enriched for the conformer with pore-forming activity and had a 10-fold higher pore-forming specific activity than the bulk OprF population. Finally trypsin treatment, which preferentially cleaves the C-terminal domain of the two-domain conformer, did not affect the pore-forming activity of OprF nor did it digest the minority conformer whose residue 312 is exposed on cell surface.
Collapse
Affiliation(s)
- Etsuko Sugawara
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Ekaterina M. Nestorovich
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892-0924
| | - Sergey M. Bezrukov
- Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, Maryland 20892-0924
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| |
Collapse
|
48
|
Sun YH, Rolán HG, den Hartigh AB, Sondervan D, Tsolis RM. Brucella abortus virB12 is expressed during infection but is not an essential component of the type IV secretion system. Infect Immun 2005; 73:6048-54. [PMID: 16113325 PMCID: PMC1231059 DOI: 10.1128/iai.73.9.6048-6054.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Brucella abortus virB operon, consisting of 11 genes, virB1 to virB11, and two putative genes, orf12 (virB12) and orf13, encodes a type IV secretion system (T4SS) that is required for intracellular replication and persistent infection in the mouse model. This study was undertaken to determine whether orf12 (virB12) encodes an essential part of the T4SS apparatus. The virB12 gene was found to encode a 17-kDa protein, which was detected in vitro in B. abortus grown to stationary phase. Mice infected with B. abortus 2308 produced an antibody response to the protein encoded by virB12, showing that this gene is expressed during infection. Expression of virB12 was not required for survival in J774 macrophages. VirB12 was also dispensable for the persistence of B. abortus, B. melitensis, and B. suis in mice up to 4 weeks after infection, since deletion mutants lacking virB12 were recovered from splenic tissue at wild-type levels. These results show that VirB12 is not essential for the persistence of the human-pathogenic Brucella spp. in the mouse and macrophage models of infection.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Medical Microbiology and Immunology, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
49
|
Marco ML, Legac J, Lindow SE. Pseudomonas syringae genes induced during colonization of leaf surfaces. Environ Microbiol 2005; 7:1379-91. [PMID: 16104861 DOI: 10.1111/j.1462-2920.2005.00825.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The foliar pathogen and ice nucleator, Pseudomonas syringae pv. syringae B728a, demonstrates a high level of epiphytic fitness on plants. Using a promoter-trapping strategy termed habitat-inducible rescue of survival (HIRS), we identified genes of this organism that are induced during colonization of healthy bean leaf surfaces. These plant-inducible genes (pigs) encode diverse cellular functions including virulence, transcription regulation, transport, nutrient acquisition and other known and unknown loci, some of which may result in antisense transcripts to annotated P. syringae genes. Prominent among the pigs was ssuE, a gene in the sulfate-starvation regulon, indicating that sulfate is not abundant on leaf surfaces. inaZ reporter gene fusion assays of the plant-inducible loci revealed up to 300-fold higher levels of pig transcriptional activity on plant leaves compared with minimal medium. However, the maximum levels of pig transcriptional activity were typically too weak to be measured using a gfp reporter gene. One exception was orf6 in the hrp/hrc pathogenicity island which was highly induced in epiphytic P. syringae cells. Four pigs were disrupted by insertional mutagenesis. While growth of the ssuE mutant was impaired under certain conditions in laboratory medium, the epiphytic and virulence properties of the mutants on bean plants were identical to wild-type P. syringae. Our results demonstrate the utility of HIRS to identify genes expressed on leaves and provide new insight into the leaf surface environment.
Collapse
Affiliation(s)
- Maria L Marco
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
50
|
Nagano K, Read EK, Murakami Y, Masuda T, Noguchi T, Yoshimura F. Trimeric structure of major outer membrane proteins homologous to OmpA in Porphyromonas gingivalis. J Bacteriol 2005; 187:902-11. [PMID: 15659668 PMCID: PMC545718 DOI: 10.1128/jb.187.3.902-911.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major outer membrane proteins Pgm6 (41 kDa) and Pgm7 (40 kDa) of Porphyromonas gingivalis ATCC 33277 are encoded by open reading frames pg0695 and pg0694, respectively, which form a single operon. Pgm6 and Pgm7 (Pgm6/7) have a high degree of similarity to Escherichia coli OmpA in the C-terminal region and are predicted to form eight-stranded beta-barrels in the N-terminal region. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Pgm6/7 appear as bands with apparent molecular masses of 40 and 120 kDa, with and without a reducing agent, suggesting a monomer and trimer, respectively. To verify the predicted trimeric structure and function of Pgm6/7, we constructed three mutants with pg0695, pg0694, or both deleted. The double mutant produced no Pgm6/7. The single-deletion mutants appeared to contain less Pgm7 and Pgm6 and to form homotrimers that migrated slightly faster (115 kDa) and slower (130 kDa), respectively, than wild-type Pgm6/7 under nonreducing conditions. N-terminal amino acid sequencing and mass spectrometry analysis of partially digested Pgm6/7 detected only fragments from Pgm6 and Pgm7. Two-dimensional, diagonal electrophoresis and chemical cross-linking experiments with or without a reducing agent clearly showed that Pgm6/7 mainly form stable heterotrimers via intermolecular disulfide bonds. Furthermore, growth retardation and arrest of the three mutants and increased permeability of their outer membranes indicated that Pgm6/7 play an important role in outer membrane integrity. Based on results of liposome swelling experiments, these proteins are likely to function as a stabilizer of the cell wall rather than as a major porin in this organism.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, Nagoya, Aichi 464-8650, Japan
| | | | | | | | | | | |
Collapse
|