1
|
Metzger M, Hacobian A, Karner L, Krausgruber L, Grillari J, Dungel P. Resistance of Bacteria toward 475 nm Blue Light Exposure and the Possible Role of the SOS Response. Life (Basel) 2022; 12:1499. [PMID: 36294934 PMCID: PMC9605056 DOI: 10.3390/life12101499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2023] Open
Abstract
The increase in antibiotic resistance represents a major global challenge for our health systems and calls for alternative treatment options, such as antimicrobial light-based therapies. Blue light has shown promising results regarding the inactivation of a variety of microorganisms; however, most often, antimicrobial blue light (aBL) therapy is performed using wavelengths close to the UV range. Here we investigated whether inactivation was possible using blue light with a wavelength of 475 nm. Both Gram-positive and -negative bacterial strains were treated with blue light with fluences of 7.5-45 J/cm2. Interestingly, only some bacterial strains were susceptible to 475 nm blue light, which was associated with the lack of RecA, i.e., a fully functional DNA repair mechanism. We demonstrated that the insertion of the gene recA reduced the susceptibility of otherwise responsive bacterial strains, indicating a protective mechanism conveyed by the bacterial SOS response. However, mitigating this pathway via three known RecA inhibiting molecules (ZnAc, curcumin, and Fe(III)-PcTs) did not result in an increase in bactericidal action. Nonetheless, creating synergistic effects by combining a multitarget therapy, such as aBL, with an RecA targeting treatment could be a promising strategy to overcome the dilemma of antibiotic resistance in the future.
Collapse
Affiliation(s)
- Magdalena Metzger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Lisa Karner
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Leonie Krausgruber
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Peter Dungel
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
2
|
Regulation and function of tetrapyrrole biosynthesis in plants and algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:968-85. [PMID: 25979235 DOI: 10.1016/j.bbabio.2015.05.007] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/21/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Tetrapyrroles are macrocyclic molecules with various structural variants and multiple functions in Prokaryotes and Eukaryotes. Present knowledge about the metabolism of tetrapyrroles reflects the complex evolution of the pathway in different kingdoms of organisms, the complexity of structural and enzymatic variations of enzymatic steps, as well as a wide range of regulatory mechanisms, which ensure adequate synthesis of tetrapyrrole end-products at any time of development and environmental condition. This review intends to highlight new findings of research on tetrapyrrole biosynthesis in plants and algae. In the course of the heme and chlorophyll synthesis in these photosynthetic organisms, glutamate, one of the central and abundant metabolites, is converted into highly photoreactive tetrapyrrole intermediates. Thereby, several mechanisms of posttranslational control are thought to be essential for a tight regulation of each enzymatic step. Finally, we wish to discuss the potential role of tetrapyrroles in retrograde signaling and point out perspectives of the formation of macromolecular protein complexes in tetrapyrrole biosynthesis as an efficient mechanism to ensure a fine-tuned metabolic flow in the pathway. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
3
|
Unifying principles in homodimeric type I photosynthetic reaction centers: Properties of PscB and the FA, FB and FX iron–sulfur clusters in green sulfur bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1535-44. [DOI: 10.1016/j.bbabio.2008.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 11/23/2022]
|
4
|
Abstract
This review is concerned specifically with the structures and biosynthesis of hemes in E. coli and serovar Typhimurium. However, inasmuch as all tetrapyrroles share a common biosynthetic pathway, much of the material covered here is applicable to tetrapyrrole biosynthesis in other organisms. Conversely, much of the available information about tetrapyrrole biosynthesis has been gained from studies of other organisms, such as plants, algae, cyanobacteria, and anoxygenic phototrophs, which synthesize large quantities of these compounds. This information is applicable to E. coli and serovar Typhimurium. Hemes play important roles as enzyme prosthetic groups in mineral nutrition, redox metabolism, and gas-and redox-modulated signal transduction. The biosynthetic steps from the earliest universal precursor, 5-aminolevulinic acid (ALA), to protoporphyrin IX-based hemes constitute the major, common portion of the pathway, and other steps leading to specific groups of products can be considered branches off the main axis. Porphobilinogen (PBG) synthase (PBGS; also known as ALA dehydratase) catalyzes the asymmetric condensation of two ALA molecules to form PBG, with the release of two molecules of H2O. Protoporphyrinogen IX oxidase (PPX) catalyzes the removal of six electrons from the tetrapyrrole macrocycle to form protoporphyrin IX in the last biosynthetic step that is common to hemes and chlorophylls. Several lines of evidence converge to support a regulatory model in which the cellular level of available or free protoheme controls the rate of heme synthesis at the level of the first step unique to heme synthesis, the formation of GSA by the action of GTR.
Collapse
|
5
|
Srivastava A, Beale SI. Glutamyl-tRNA reductase of Chlorobium vibrioforme is a dissociable homodimer that contains one tightly bound heme per subunit. J Bacteriol 2005; 187:4444-50. [PMID: 15968053 PMCID: PMC1151790 DOI: 10.1128/jb.187.13.4444-4450.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Accepted: 03/10/2005] [Indexed: 11/20/2022] Open
Abstract
delta-Aminolevulinic acid, the biosynthetic precursor of tetrapyrroles, is synthesized from glutamate via the tRNA-dependent five-carbon pathway in the green sulfur bacterium Chlorobium vibrioforme. The enzyme glutamyl-tRNA reductase (GTR), encoded by the hemA gene, catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. To characterize the GTR protein, the hemA gene from C. vibrioforme was cloned into expression plasmids that added an N-terminal His(6) tag to the expressed protein. The His-tagged GTR protein was purified using Ni affinity column chromatography. GTR was observable as a 49-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. The native molecular mass, as determined by gel filtration chromatography, appeared to be approximately 40 kDa, indicating that native GTR is a monomer. However, when the protein was mixed with 5% (vol/vol) glycerol, the product had an apparent molecular mass of 95 kDa, indicating that the protein is a dimer under these conditions. Purified His(6)-GTR was catalytically active in vitro when it was incubated with Escherichia coli glutamyl-tRNA(Glu) and purified recombinant Chlamydomonas reinhardtii glutamate-1-semialdehyde aminotransferase. The expressed GTR contained 1 mol of tightly bound heme per mol of pep tide subunit. The heme remained bound to the protein throughout purification and was not removed by anion- or cation-exchange column chromatography. However, the bound heme was released during SDS-PAGE if the protein was denatured in the presence of beta-mercaptoethanol. Added heme did not inhibit the activity of purified expressed GTR in vitro. However, when the GTR was expressed in the presence of 3-amino-2,3- dihydrobenzoic acid (gabaculine), an inhibitor of heme synthesis, the purified GTR had 60 to 70% less bound heme than control GTR, and it was inhibited by hemin in vitro.
Collapse
Affiliation(s)
- Alaka Srivastava
- Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
6
|
Srivastava A, Lake V, Nogaj LA, Mayer SM, Willows RD, Beale SI. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-trna reductase: structure of the gene and properties of the expressed enzyme. PLANT MOLECULAR BIOLOGY 2005; 58:643-58. [PMID: 16158240 DOI: 10.1007/s11103-005-6803-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 04/29/2005] [Indexed: 05/04/2023]
Abstract
Plants, algae, cyanobacteria and many other bacteria synthesize the tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate by means of a tRNAGlu-mediated pathway. The enzyme glutamyl-tRNA reductase (GTR) catalyzes the first committed step in this pathway, which is the reduction of tRNA-bound glutamate to produce glutamate 1-semialdehyde. Chlamydomonas reinhardtii mRNA encoding gtr was sequenced from a cDNA and genomic libraries. The 3179-bp gtr cDNA contains a 1566-bp open reading frame that encodes a 522-amino acid polypeptide. After removal of the predicted transit peptide, the mature 480-residue GTR has a calculated molecular weight of 52,502. The deduced C. reinhardtii mature GTR amino acid sequence has more than 55% identity to a GTR sequence of Arabidopsis thaliana, and significant similarity to GTR proteins of other plants and prokaryotes. Southern blot analysis of C. reinhardtii genomic DNA indicates that C. reinhardtii has only one gtr gene. Genomic DNA sequencing revealed the presence of a small intron near the putative transit peptide cleavage site. Expression constructs for the full-length initial gtr translation product, the mature protein after transit peptide removal, and the coding sequence of the second exon were cloned into expression vector that also introduced a C-terminal His6 tag. All of these constructs were expressed in E. coli, and both the mature protein and the exon 2 translation product complemented a hemA mutation. The expressed proteins were purified by Ni-affinity column chromatography to yield active GTR. Purified mature GTR was not inhibited by heme, but heme inhibition was restored upon addition of C. reinhardtii soluble proteins.
Collapse
Affiliation(s)
- Alaka Srivastava
- Division of Biology and Medicine, Brown University, 02912, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
7
|
Petersen BL, Jensen PE, Gibson LC, Stummann BM, Hunter CN, Henningsen KW. Reconstitution of an active magnesium chelatase enzyme complex from the bchI, -D, and -H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. J Bacteriol 1998; 180:699-704. [PMID: 9457877 PMCID: PMC106941 DOI: 10.1128/jb.180.3.699-704.1998] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Magnesium-protoporphyrin chelatase, the first enzyme unique to the (bacterio)chlorophyll-specific branch of the porphyrin biosynthetic pathway, catalyzes the insertion of Mg2+ into protoporphyrin IX. Three genes, designated bchI, -D, and -H, from the strictly anaerobic and obligately phototrophic green sulfur bacterium Chlorobium vibrioforme show a significant level of homology to the magnesium chelatase-encoding genes bchI, -D, and -H and chlI, -D, and -H of Rhodobacter sphaeroides and Synechocystis strain PCC6803, respectively. These three genes were expressed in Escherichia coli; the subsequent purification of overproduced BchI and -H proteins on an Ni2+-agarose affinity column and denaturation of insoluble BchD protein in 6 M urea were required for reconstitution of Mg-chelatase activity in vitro. This work therefore establishes that the magnesium chelatase of C. vibrioforme is similar to the magnesium chelatases of the distantly related bacteria R. sphaeroides and Synechocystis strain PCC6803 with respect to number of subunits and ATP requirement. In addition, reconstitution of an active heterologous magnesium chelatase enzyme complex was obtained by combining the C. vibrioforme BchI and -D proteins and the Synechocystis strain PCC6803 ChlH protein. Furthermore, two versions, with respect to the N-terminal start of the bchI gene product, were expressed in E. coli, yielding ca. 38- and ca. 42-kDa versions of the BchI protein, both of which proved to be active. Western blot analysis of these proteins indicated that two forms of BchI, corresponding to the 38- and the 42-kDa expressed proteins, are also present in C. vibrioforme.
Collapse
Affiliation(s)
- B L Petersen
- Department of Ecology and Molecular Biology, Royal Veterinary and Agricultural University, Frederiksberg C, Denmark
| | | | | | | | | | | |
Collapse
|
8
|
Rhie G, Avissar YJ, Beale SI. Structure and expression of the Chlorobium vibrioforme hemB gene and characterization of its encoded enzyme, porphobilinogen synthase. J Biol Chem 1996; 271:8176-82. [PMID: 8626508 DOI: 10.1074/jbc.271.14.8176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Plasmids containing DNA from the green photosynthetic bacterium Chlorobium vibrioforme complement a heme-requiring Escherichia coli hemB mutant that is deficient in porphobilinogen (PBG) synthase activity. PBG synthase activity was detected in extract of complemented cells but not in that of cells transformed with control plasmid. The sequence of the C. vibrioforme hemB gene predicts a HemB protein that contains 328 amino acids, has a molecular weight of 36,407, and is 53% identical to the homologous proteins of Synechocystis sp. PCC 6301 and Rhodobacter capsulatus. The response of C. vibrioforme PBG synthase to divalent metals is unlike that of any previously described PBG synthase; Mg2+ stimulates but is not required for activity, and Zn2+ neither stimulates nor is required. This response correlates with predicted sequences of two putative variable metal binding regions of C. vibrioforme HemB. The C. vibrioforme hemB open reading frame begins 1585 bases downstream from the end of the hemD open reading frame and is transcribed in the same direction as hemA, hemC, and hemD. However, hemB is not part of the same transcription unit as these genes, and the hemB transcript is approximately the same size as the hemB gene alone. Between hemD and hemB there is an intervening open reading frame that is oriented in the opposite direction and encodes a protein with a predicted amino acid sequence significantly similar to that of inositol monophosphatase, an enzyme that is not involved in tetrapyrrole biosynthesis. The gene order within hem gene clusters is highly conserved in phylogenetically diverse prokaryotic organisms. This conservation suggests that there are functional constraints on the relative order of the hem genes.
Collapse
Affiliation(s)
- G Rhie
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
9
|
Nakayashiki T, Nishimura K, Tanaka R, Inokuchi H. Partial inhibition of protein synthesis accelerates the synthesis of porphyrin in heme-deficient mutants of Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 249:139-46. [PMID: 7500934 DOI: 10.1007/bf00290359] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mutants of Escherichia coli defective in the HemA protein grow extremely poorly as the result of heme deficiency. A novel hemA mutant was identified whose rate of growth was dramatically enhanced by addition to the medium of low concentrations of translational inhibitors, such as chloramphenicol and tetracycline. This mutant (H110) carries mutation at position 314 in the hemA gene, which resulted in diminished activity of the encoded protein. Restoration of growth of H110 upon addition of the drugs mentioned above was due to activation of the synthesis of porphyrin. However, this activation was not characteristic exclusively of cells with this mutant hemA gene since it was also observed in a heme-deficient strain bearing the wild-type hemA gene. The activation did not depend on the promoter activity of the hemA gene, as indicated by studies with fusion genes. It appears that partial inhibition of protein synthesis via inhibition of peptidyltransferase can promote the synthesis of porphyrin by providing an increased supply of glutamyl-tRNA for porphyrin synthesis. Glutamyl-tRNA is the common substrate for peptidyltransferase and HemA.
Collapse
Affiliation(s)
- T Nakayashiki
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | | | |
Collapse
|
10
|
Bollivar DW, Elliott T, Beale SI. Anaerobic protoporphyrin biosynthesis does not require incorporation of methyl groups from methionine. J Bacteriol 1995; 177:5778-83. [PMID: 7592323 PMCID: PMC177398 DOI: 10.1128/jb.177.20.5778-5783.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
It was recently reported (H. Akutsu, J.-S. Park, and S. Sano, J. Am. Chem. Soc. 115:12185-12186, 1993) that in the strict anaerobe Desulfovibrio vulgaris methyl groups from exogenous L-methionine are incorporated specifically into the 1 and 3 positions (Fischer numbering system) on the heme groups of cytochrome c3. It was suggested that under anaerobic conditions, protoporphyrin IX biosynthesis proceeds via a novel pathway that does not involve coproporphyrinogen III as a precursor but instead may use precorrin-2 (1,3-dimethyluroporphyrinogen III), a siroheme and vitamin B12 precursor which is known to be derived from uroporphyrinogen III via methyl transfer from S-adenosyl-L-methionine. We have critically tested this hypothesis by examining the production of protoporphyrin IX-based tetrapyrroles in the presence of exogenous [14C]methyl-L-methionine under anaerobic conditions in a strict anaerobe (Chlorobium vibrioforme) and a facultative anaerobe (Rhodobacter capsulatus). In both organisms, 14C was incorporated into the bacteriochlorophyll precursor, Mg-protoporphyrin IX monomethyl ester. However, most of the label was lost upon base hydrolysis of this compound to yield Mg-protoporphyrin IX. These results indicate that although the administered [14C]methyl-L-methionine was taken up, converted into S-adenosyl-L-methionine, and used for methyl transfer reactions, including methylation of the 6-propionate of Mg-protoporphyrin IX, methyl groups were not transferred to the porphyrin nucleus of Mg-protoporphyrin IX. In other experiments, a cysG strain of Salmonella typhimurium, which cannot synthesize precorrin-2 because the gene encoding the enzyme that catalyzes methylation of uroporphyrinogen III at positions 1 and 3 is disrupted, was capable of heme-dependent anaerobic nitrate respiration and growth on the nonfermentable substrate glycerol, indicating that anaerobic biosynthesis of protoporphyrin IX-based hemes does not require the ability to methylate uroporphyrinogen III. Together, these results indicate that incorporation of L-methionine-deprived methyl groups into porphyrins or their precursors is not generally necessary for the anaerobic biosynthesis of protoporphyrin IX-based tetrapyrroles.
Collapse
Affiliation(s)
- D W Bollivar
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
11
|
Kjærulff S, Diep DB, Okkels JS, Scheller HV, Ormerod JG. Highly efficient integration of foreign DNA into the genome of the green sulfur bacterium,Chlorobium vibrioforme by homologous recombination. PHOTOSYNTHESIS RESEARCH 1994; 41:277-283. [PMID: 24310034 DOI: 10.1007/bf02184168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/1993] [Accepted: 02/15/1994] [Indexed: 06/02/2023]
Abstract
Highly efficient and reproducible transformation ofChlorobium vibrioforme with plasmid DNA has been achieved by electroporation. Specific parameters have been optimized for the electrotransformation procedure. The method was developed using a construct containing a full copy of thepscC gene encoding the cytochromec 551 subunit of the photosynthetic reaction center complex and theaadA gene encoding streptomycin resistance as selectable marker. Southern blotting analysis showed that the tested colonies were true transformants with the plasmid integrated into the genome by single homologous recombination. No transformants were obtained using the vector without thepscC gene showing that this vector does not replicate inC. vibrioforme. Thus transformation is possible only by homologous recombination. When using constructs designed to inactivate thepscC gene by insertion no transformants were obtained, indicating that the gene is indispensable for growth. The vector pVS2 carrying genes for erythromycin and chloramphenicol resistance was shown to replicate inC. vibrioforme. The two transformations shown here, provide an important genetical tool in the further analysis of structure and function of the photosynthetic apparatus in green sulfur bacteria.
Collapse
|
12
|
Weinstein JD, Howell RW, Leverette RD, Grooms SY, Brignola PS, Mayer SM, Beale SI. Heme Inhibition of [delta]-Aminolevulinic Acid Synthesis Is Enhanced by Glutathione in Cell-Free Extracts of Chlorella. PLANT PHYSIOLOGY 1993; 101:657-665. [PMID: 12231722 PMCID: PMC160616 DOI: 10.1104/pp.101.2.657] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, algae, and many bacteria, the heme and chlorophyll precursor, [delta]-aminolevulinic acid (ALA), is synthesized from glutamate in a reaction involving a glutamyl-tRNA intermediate and requiring ATP and NADPH as cofactors. In particulate-free extracts of algae and chloroplasts, ALA synthesis is inhibited by heme. Inclusion of 1.0 mM glutathione (GSH) in an enzyme and tRNA extract, derived from the green alga Chlorella vulgaris, lowered the concentration of heme required for 50% inhibition approximately 10-fold. The effect of GSH could not be duplicated with other reduced sulfhydryl compounds, including mercaptoethanol, dithiothreitol, and cysteine, or with imidazole or bovine serum albumin, which bind to heme and dissociate heme dimers. Absorption spectroscopy indicated that heme was fully reduced in incubation medium containing dithiothreitol, and addition of GSH did not alter the heme reduction state. Oxidized GSH was as effective in enhancing heme inhibition as the reduced form. Co-protoporphyrin IX inhibited ALA synthesis nearly as effectively as heme, and 1.0 mM GSH lowered the concentration required for 50% inhibition approximately 10-fold. Because GSH did not influence the reduction state of heme in the incubation medium, and because GSH could not be replaced by other reduced sulfhydryl compounds or ascorbate, the effect of GSH cannot be explained by action as a sulfhydryl protectant or heme reductant. Preincubation of enzyme extract with GSH, followed by rapid gel filtration, could not substitute for inclusion of GSH with heme during the reaction. The results suggest that GSH must specifically interact with the enzyme extract in the presence of the inhibitor to enhance the inhibition.
Collapse
Affiliation(s)
- J. D. Weinstein
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634-1903 (J.D.W., R.W.H., R.D.L., S.Y.G., P.S.B.)
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Okkels J, Kjaer B, Hansson O, Svendsen I, Møller B, Scheller H. A membrane-bound monoheme cytochrome c551 of a novel type is the immediate electron donor to P840 of the Chlorobium vibrioforme photosynthetic reaction center complex. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36808-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Majumdar D, Avissar YJ, Wyche JH, Beale SI. Structure and expression of the Chlorobium vibrioforme hemA gene. Arch Microbiol 1991; 156:281-9. [PMID: 1793335 DOI: 10.1007/bf00262999] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The green sulfur bacterium, Chlorobium vibrioforme, synthesizes the tetrapyrrole precursor, delta-aminolevulinic acid (ALA), from glutamate via the RNA-dependent five-carbon pathway. A 1.9-kb clone of genomic DNA from C. vibrioforme that is capable of transforming a glutamyl-tRNA reductase-deficient, ALA-dependent, hemA mutant of Escherichia coli to prototrophy was sequenced. The transforming C. vibrioforme DNA has significant sequence similarity to the E. coli, Salmonella typhimurium, and Bacillus subtilis hemA genes and contains a 1245 base open reading frame that encodes a 415 amino acid polypeptide with a calculated molecular weight of 46174. This polypeptide has over 28% amino acid identity with the polypeptides deduced from the nucleic acid sequences of the E. coli, S. typhimurium, and B. subtilis hemA genes. No sequence similarity was detected, at either the nucleic acid or the peptide level, with the Rhodobacter capsulatus or Bradyrhizobium japonicum hemA genes, which encode ALA synthase, or with the S. typhimurium hemL gene, which encodes glutamate-1-semialdehyde aminotransferase. These results establish that hemA encodes glutamyl-tRNA reductase in species that use the five-carbon ALA biosynthetic pathway. A second region of the cloned DNA, located downstream from the hemA gene, has significant sequence similarity to the E. coli and B. subtilis hemC genes. This region contains a potential open reading frame that encodes a polypeptide that has high sequence identity to the deduced E. coli and B. subtilis HemC peptides. hemC encodes the tetrapyrrole biosynthetic enzyme, porphobilinogen deaminase, in these species.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Majumdar
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | | | | | | |
Collapse
|
16
|
Chapter 4 Biochemistry of coenzyme F430, a nickel porphinoid involved in methanogenesis. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/s0167-7306(08)60111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
17
|
Oh-hama T, Stolowich NJ, Scott AI. Characterization of the process of 5-aminolevulinic acid formation from glutamate via the C5 pathway in Clostridium thermoaceticum. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1991; 23:1417-20. [PMID: 1761150 DOI: 10.1016/0020-711x(91)90284-t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. In vitro formation of 5-aminolevulinic acid (ALA) from glutamate required two enzyme fractions, separable on Blue Sepharose affinity chromatography, and a tRNA fraction, which can be replaced by Escherichia coli tRNA(Glu) in the reconstituted assay. 2. Gabaculine was shown to inhibit ALA formation in the complete assay as well as in a defined system consisting of only glutamate-1-semialdehyde and the enzyme fraction not retained on Blue Sepharose. 3. The results indicate that the enzyme system supporting ALA formation in Clostridium thermoaceticum is very similar to the tRNA(Glu)-dependent C5 pathway in plant plastids.
Collapse
Affiliation(s)
- T Oh-hama
- Department of Chemistry, Texas A & M University, College Station 77843-3255
| | | | | |
Collapse
|
18
|
Affiliation(s)
- G P O'Neill
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511
| | | | | |
Collapse
|
19
|
Friedmann HC, Klein A, Thauer RK. Structure and function of the nickel porphinoid, coenzyme F430 and of its enzyme, methyl coenzyme M reductase. FEMS Microbiol Rev 1990; 7:339-48. [PMID: 2128801 DOI: 10.1111/j.1574-6968.1990.tb04934.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- H C Friedmann
- Fachbereich Biologie, Philipps-Universität, Marburg, F.R.G
| | | | | |
Collapse
|
20
|
Beale SI. Biosynthesis of the Tetrapyrrole Pigment Precursor, delta-Aminolevulinic Acid, from Glutamate. PLANT PHYSIOLOGY 1990; 93:1273-9. [PMID: 16667613 PMCID: PMC1062668 DOI: 10.1104/pp.93.4.1273] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
delta-Aminolevulinic acid (ALA), the common biosynthetic precursor of hemes, chlorophylls, and bilins, is synthesized by two distinct routes. Among phototrophic species, purple nonsulfur bacteria form ALA by condensation of glycine with succinyl-CoA, catalyzed by ALA synthase, in a reaction identical to that occurring in the mitochondria of animals, yeast, and fungi. Most or all other phototrophic species form ALA exclusively from the intact carbon skeleton of glutamic acid in a reaction sequence that begins with activation of the alpha-carboxyl group of glutamate by an ATP-dependent ligation to tRNA(Glu), catalyzed by glutamyl-tRNA synthetase. Glutamyl-tRNA is the substrate for a pyridine nucleotide-dependent dehydrogenase reaction whose product is glutamate-1-semialdehyde or a similar reduced compound. Glutamate-1-semialdehyde is then transaminated to form ALA. Regulation of ALA formation from glutamate is exerted at the dehydrogenase step through end product feedback inhibition and induction/repression. In some species, end product inhibition of the glutamyl-tRNA synthetase step and developmental regulation of tRNA(Glu) level may also occur.
Collapse
Affiliation(s)
- S I Beale
- Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
21
|
Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol 1990; 172:1656-9. [PMID: 2407729 PMCID: PMC208645 DOI: 10.1128/jb.172.3.1656-1659.1990] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Escherichia coli SASX41B carries the hemA mutation and requires delta-aminolevulinic acid for growth. Strain SASX41B was transformed to prototrophy with pYA1, a plasmid vector carrying a 5.8-kilobase insert of genomic DNA from the green sulfur bacterium Chlorobium vibrioforme. Cell extracts prepared from transformed cells are able to catalyze transfer of label from [1-14C]glutamate or [3,4-3H]glutamyl-tRNA to delta-aminolevullinic acid at rates much higher than extracts of wild-type cells can, whereas extracts prepared from untransformed strain SASX41B cells lack both activities. By comparing the relative abilities of glutamyl-tRNAs derived from several heterologous cell types to function as substrates for the dehydrogenase reaction in extracts of HB101 and SASX41B cells transformed by pYA1, it was determined that the expressed dehydrogenase in the transformed cells resembled that of C. vibrioforme and not that of E. coli. Thus it can be concluded that plasmid pYA1 contains inserted DNA that codes for a structural component of C. vibrioforme glutamyl-tRNA dehydrogenase which confers glutamyl-tRNA substrate specificity.
Collapse
|
22
|
Ormerod JG, Nesbakken T, Beale SI. Specific inhibition of antenna bacteriochlorophyll synthesis in Chlorobium vibrioforme by anesthetic gases. J Bacteriol 1990; 172:1352-60. [PMID: 2307651 PMCID: PMC208605 DOI: 10.1128/jb.172.3.1352-1360.1990] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The green sulfur bacterium Chlorobium vibrioforme contains two types of bacteriochlorophyll (Bchl). The minor pigment, Bchl a, is associated primarily with the cell membrane and its reaction centers; and the major light-harvesting antenna pigment, Bchl d, is found primarily in the chlorosomes, which are attached to the inner surface of the cell membrane. Anesthetic gases, such as N2O, ethylene, and acetylene, were found to inhibit the synthesis of Bchl d, but not of Bchl a, thus allowing the cells to grow at high light intensities with a greatly diminished content of antenna pigment. Chlorosomes were absent or sparse in inhibited cells. Porphyrins accumulated in the inhibited cells. The major one was identified as the Bchl precursor magnesium-protoporphyrin IX monomethyl ester (Mg-PPME) by comparative absorption and fluorescence spectroscopy and thin-layer chromatography of the porphyrin and its derivatives with those of authentic protoporphyrin IX. Small amounts of Mg-PPME were present in control cells, but the addition of inhibitor caused a rapid increase in the Mg-PPME concentration, accompanying the inhibition of Bchl d synthesis. Cells grown in the presence of ethephon (as a source of ethylene) and allowed to stand in dim light for long periods accumulated large amounts of PPME and other porphyrins and excreted or released porphyrins, which accumulated as a brown precipitate in the culture. Inhibition of Bchl d synthesis was relieved upon removal of the inhibitor. These results suggest that the gases act at a step in pigment biosynthesis that affects the utilization of Mg-PPME for isocyclic ring formation. Synthesis of Bchl d and Bchl a may be differentially affected by the gases because of compartmentation of their biosynthetic apparatus or because competition for precursors favors Bchl a synthesis. An ethephon-resistant mutant strain was isolated by selection for growth in dim, long-wavelength light. The mutant cells were also resistant to acetylene, but not to N2O. The ability to reversibly generate viable Chlorobium cells that lack antenna pigments may be useful in photosynthesis research. The ethephon- and acetylene-resistant strain may be useful in the study of the enzymes and genes that are involved in the biosynthetic step that the gases affect.
Collapse
Affiliation(s)
- J G Ormerod
- Department of Biology, University of Oslo, Norway
| | | | | |
Collapse
|