1
|
Choudhury SA, Asefa B, Kauler P, Chow TYK. Synergistic effect of TRM2/RNC1 and EXO1 in DNA double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biochem 2007; 304:127-34. [PMID: 17534700 DOI: 10.1007/s11010-007-9493-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 04/27/2007] [Indexed: 11/25/2022]
Abstract
In our recently published study, we provided in vitro as well as in vivo data demonstrating the involvement of TRM2/RNC1 in homologous recombination based repair (HRR) of DNA double strand breaks (DSBs), in support of such claims reported earlier. To further validate its role in DNA DSB processing, our present study revealed that the trm2 single mutant displays higher sensitivity to persistent induction of specific DSBs at the MAT locus by HO-endonuclease with higher sterility rate among the survivors compared to wild type (wt) or exo1 single mutants. Intriguingly, both sensitivity and sterility rate increased dramatically in trm2exo1 double mutants lacking both endo-exonucleases with a progressively increased sterility rate in trm2exo1 double mutants with short-induction periods, reaching a very high level of sterility with persistent DSB inductions. Mutation analysis of the mating type (MAT) locus among the sterile survivors with persistent HO-induction in trm2 and exo1 single mutants as well as in trm2exo1 double mutants revealed a similar small insertions and deletions events, characteristic of non-homologous end joining (NHEJ) that might have occurred due to the lack of proper processing function in these mutants. In addition, trm2ku80 and trm2rad52 double mutants also displayed significantly higher sterility with persistent DSB induction compared to ku80 and rad52 single mutants, respectively, exhibiting a mutation spectra that shifted from base substitution (in ku80 and rad52 single mutants) to small insertions and deletions in the double mutants (in trm2ku80 and trm2rad52 mutants). These data indicate a defective processing in absence of TRM2, with a synergistic effect of TRM2, and EXO1 in such processing.
Collapse
Affiliation(s)
- Sibgat A Choudhury
- Department of Oncology, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Ave. Cedar, Montreal, QC, Canada, H3G 1A4
| | | | | | | |
Collapse
|
2
|
Choudhury SA, Kauler P, Devic S, Chow TYK. Silencing of endo-exonuclease expression sensitizes mouse B16F10 melanoma cells to DNA damaging agents. Invest New Drugs 2007; 25:399-410. [PMID: 17492398 DOI: 10.1007/s10637-007-9056-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 04/20/2007] [Indexed: 11/25/2022]
Abstract
We previously identified an endo-exonuclease that is highly expressed in cancer cells and plays an important role in DSB repair mechanisms. A small molecular compound pentamidine, which specifically inhibited nuclease activity of the isolated endo-exonuclease from yeast as well as from mammalian cells, was capable of sensitizing tumor cells to DNA damaging agents. In this study, we investigated the effect of precisely silencing the endo-exonuclease expression by small interfering RNA (siRNA) upon treatment with a variety of DNA damaging agents in mouse B16F10 melanoma cells. A maximum of 3.6 to approximately 4-fold reduction in endo-exonuclease mRNA expression was achieved, over a period of 48-72 h of post transfection with a concomitant reduction in protein expression (approximately 4-5 fold), resulting in a substantial reduction (approximately 45-50%) of the corresponding nuclease activity. Suppressed endo-exonuclease expression conferred significant decrease in cell survival, ranging from approximately 30 to approximately 50% cell killing, in presence of DNA damaging drugs methyl methane sulfonate (MMS), cisplatin, 5-fluoro uracil (5-FU) and gamma-irradiation but not at varying dosages of ultra violet (UV) radiation. The data strongly support a role for the endo-exonuclease in repairing DNA damages, induced by MMS, cisplatin, 5-FU and gamma irradiation but not by UV radiation. The results presented in this study suggest that the endo-exonuclease siRNA could be useful as a therapeutic tool in targeting the endo-exonuclease in cancer therapy.
Collapse
Affiliation(s)
- Sibgat A Choudhury
- Department of Oncology, Faculty of Medicine, McGill University, 845 Sherbrooke St., Montreal, QC, H3A 2T5, Canada
| | | | | | | |
Collapse
|
3
|
Choudhury SA, Asefa B, Webb A, Ramotar D, Chow TYK. Functional and genetic analysis of the Saccharomyces cerevisiae RNC1/TRM2: evidences for its involvement in DNA double-strand break repair. Mol Cell Biochem 2007; 300:215-26. [PMID: 17205207 DOI: 10.1007/s11010-006-9386-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 11/21/2006] [Indexed: 10/23/2022]
Abstract
We previously isolated the RNC1/TRM2 gene and provided evidence that it encodes a protein with a possible role in DNA double strand break repair. RNC1 was independently re-isolated as the TRM2 gene encoding a methyl transferase involved in tRNA maturation. Here we show that Trm2p purified as a fusion protein displayed 5' --> 3' exonuclease activity on double-strand (ds) DNA, and endonuclease activity on single-strand (ss) DNA, properties characteristic of previously isolated endo-exonucleases. A variant of Trm2p, Trm2p(ctDelta76aa) lacking 76 amino acids at the C-terminus retained nuclease activities but not the methyl transferase activity. Both the native and the variant exhibited sensitivity to the endo-exonuclease inhibitor pentamidine. The Saccharomyces cerevisiae trm2(Delta232-1920nt) mutant (containing only the first 231 nucleotides of the TRM2 gene) displayed low sensitivity to methyl methane sulfonate (MMS) and suppressed the MMS sensitivity of rad52 mutants in trm2(Delta232-1920nt)rad52 double mutants. The deletion of KU80, in trm2(Delta232-1920nt) mutant background displayed higher MMS sensitivity supporting the view of the possible role of Trm2p in a competing repair pathway separate from NHEJ. In addition, trm2 exo1 double mutants were synergistically more sensitive to MMS and ionizing radiation than either of the single mutant suggesting that TRM2 and EXO1 can functionally complement each other. However, the C-terminal portion, required for its methyl transferase activity was found not important for DNA repair. These results propose an important role for TRM2 in DNA repair with a potential involvement of its nuclease function in homologous recombination based repair of DNA DSBs.
Collapse
Affiliation(s)
- Sibgat A Choudhury
- Department of Oncology, Faculty of Medicine, McGill University, Montreal General Hospital, 1650 Avenue Cedar, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
4
|
Lee JW, Cho E, Aghaian E, Aghaian E, Der J, Wisnieski BJ. Characterization of a cloned temperature-sensitive construct of the diphtheria toxin A domain. Biochemistry 2005; 44:2555-65. [PMID: 15709768 DOI: 10.1021/bi048317p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our goal was to determine how the DTM mutant construct of the A domain of diphtheria toxin (DTx) causes temperature-sensitive effects in Drosophila and yeast [Bellen, H. J., D'Evelyn, D., Harvey, M., Elledge, S. J. (1992) Development 114, 787-796]. Because DTM fortuitously bears the same point mutation as found in the A chain of CRM197, an ADP-ribosyltransferase (ADPrT)-deficient form of DTx, we hypothesized that the dramatic low-temperature-sensitive effects did not stem from ADP-ribosylation of elongation factor 2 (EF-2). To rule out acquisition of ADPrT activity at low temperatures, we assayed mutant forms of the A domain of DTx produced by in vitro transcription/translation and found that DTM has no ability to ADP-ribosylate EF-2 at 18 or 30 degrees C. Because the DTM gene results in a protein with a 23-amino acid missense carboxy-terminal extension, we also constructed a form without this extension. Assays for nuclease activity revealed that nuclease activity comigrated with the two distinguishable E. coli-cloned mutant proteins DTM and DTM-23, regardless of whether electrophoresis was conducted under denaturing or nondenaturing conditions in gels embedded with DNA. Studies with CRM197 showed that Ca(2+) and Mg(2+) promote single-strand DNA nicks, whereas Mn(2+) promotes double-strand DNA breaks. Evidence that the cation-dependent nuclease and NAD-dependent ADPrT enzymic sites are distinct is that NAD protected only the A domain of DTx from proteolytic cleavage, whereas DNA protected the A domains of both DTx and CRM197. We conclude that the nuclease activity of DTM is responsible for the temperature-sensitive effects associated with its expression in both yeast and Drosophila.
Collapse
Affiliation(s)
- Jason W Lee
- Department of Microbiology, Immunology, and Molecular Genetics, Molecular Biology Institute, and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
5
|
Chow TYK, Choudhury SA. DNA repair protein: endo-exonuclease as a new frontier in cancer therapy. Future Oncol 2005; 1:265-71. [PMID: 16555998 DOI: 10.1517/14796694.1.2.265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
DNA repair mechanisms are essential for cellular survival in mammals. A rapid repair of DNA breaks ensures faster growth of normal cells as well as cancer cells, making DNA repair machinery, a potential therapeutic target. Although efficiency of these repair processes substantially decrease the efficacy of cancer chemotherapies that target DNA, compromised DNA repair contributes to mutagenesis and genomic instability leading to carcinogenesis. Thus, an ideal target in DNA repair mechanisms would be one that specifically kills the rapidly dividing cancer cells without further mutagenesis and does not affect normal cells. Endo-exonucleases play a pivotal role in nucleolytic processing of DNA ends in different DNA repair mechanisms especially in homologous recombination repair (HRR) which mainly repairs damaged DNA in S and G2 phases of the cell cycle in rapidly dividing cells. HRR machinery has also been implicated in cell signaling and regulatory functions in response to DNA damage that is essential for cell viability in mammalian cells where as the predominant nonhomologous end-joining pathway is constitutive. Although HRR is thought to be involved at other stages of the cell cycle, it is predominant in growing phases (S and G2) of the cell cycle. The faster growing cells are believed to carryout more HRR in replicative stages of the cell cycle where homologous DNA is available for HRR. Targeting endo-exonucleases specifically involved in HRR will make the normal cells less prone to mutagenesis, rendering the fast growing tumor cells more susceptible to DNA-damaging agents, used in cancer chemotherapy.
Collapse
Affiliation(s)
- Terry Y-K Chow
- Montreal General Hospital/McGill University, Department of Oncology, Division of Radiation-oncology, Montreal, Quebec H3G 1A4, Canada.
| | | |
Collapse
|
6
|
Nordlund ME, Johansson JO, von Pawel-Rammingen U, Byström AS. Identification of the TRM2 gene encoding the tRNA(m5U54)methyltransferase of Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2000; 6:844-60. [PMID: 10864043 PMCID: PMC1369962 DOI: 10.1017/s1355838200992422] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The presence of 5-methyluridine (m5U) at position 54 is a ubiquitous feature of most bacterial and eukaryotic elongator tRNAs. In this study, we have identified and characterized the TRM2 gene that encodes the tRNA(m5U54)methyltransferase, responsible for the formation of this modified nucleoside in Saccharomyces cerevisiae. Transfer RNA isolated from TRM2-disrupted yeast strains does not contain the m5U54 nucleoside. Moreover, a glutathione S-transferase (GST) tagged recombinant, Trm2p, expressed in Escherichia coli displayed tRNA(m5U54)methyltransferase activity using as substrate tRNA isolated from a trm2 mutant strain, but not tRNA isolated from a TRM2 wild-type strain. In contrast to what is found for the tRNA(m5U54)methyltransferase encoding gene trmA+ in E. coli, the TRM2 gene is not essential for cell viability and a deletion strain shows no obvious phenotype. Surprisingly, we found that the TRM2 gene was previously identified as the RNC1/NUD1 gene, believed to encode the yNucR endo-exonuclease. The expression and activity of the yNucR endo-exonuclease is dependent on the RAD52 gene, and does not respond to increased gene dosage of the RNC1/NUD1 gene. In contrast, we find that the expression of a trm2-LacZ fusion and the activity of the tRNA(m5U54)methyltransferase is not regulated by the RAD52 gene and does respond on increased gene dosage of the TRM2 (RNC1/NUD1) gene. Furthermore, there was no nuclease activity associated with a GST-Trm2 recombinant protein. The purified yNucR endo-exonuclease has been reported to have an NH2-D-E-K-N-L motif, which is not found in the Trm2p. Therefore, we suggest that the yNucR endo-exonuclease is encoded by a gene other than TRM2.
Collapse
Affiliation(s)
- M E Nordlund
- Department of Microbiology, Umeå University, Sweden
| | | | | | | |
Collapse
|
7
|
Murphy KC. Bacteriophage P22 Abc2 protein binds to RecC increases the 5' strand nicking activity of RecBCD and together with lambda bet, promotes Chi-independent recombination. J Mol Biol 2000; 296:385-401. [PMID: 10669596 DOI: 10.1006/jmbi.1999.3486] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteriophage P22 Abc2 protein binds to the RecBCD enzyme from Escherichia coli to promote phage growth and recombination. Overproduction of the RecC subunit in vivo, but not RecB or RecD, interfered with Abc2-induced UV sensitization, revealing that RecC is the target for Abc2 in vivo. UV-induced ATP crosslinking experiments revealed that Abc2 protein does not interfere with the binding of ATP to either the RecB or RecD subunits in the absence of DNA, though it partially inhibits RecBCD ATPase activity. Productive growth of phage P22 in wild-type Salmonella typhimurium correlates with the presence of Abc2, but is independent of the absolute level of ATP-dependent nuclease activity, suggesting a qualitative change in the nature of Abc2-modified RecBCD nuclease activity relative to the native enzyme. In lambda phage crosses, Abc2-modified RecBCD could substitute for lambda exonuclease in Red-promoted recombination; lambda Gam could not. In exonuclease assays designed to examine the polarity of digestion, Abc2 protein qualitatively changes the nature of RecBCD double-stranded DNA exonuclease by increasing the rate of digestion of the 5' strand. In this respect, Abc2-modified RecBCD resembles a RecBCD molecule that has encountered the recombination hotspot Chi. However, unlike Chi-modified RecBCD, Abc2-modified RecBCD still possesses 3' exonuclease activity. These results are discussed in terms of a model in which Abc2 converts the RecBCD exonuclease for use in the P22 phage recombination pathway. This mechanism of P22-mediated recombination distinguishes it from phage lambda recombination, in which the phage recombination system (Red) and its anti-RecBCD function (Gam) work independently.
Collapse
Affiliation(s)
- K C Murphy
- Department of Molecular Genetics, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
8
|
Healy V, Doonan S, McCarthy TV. Purification, characterization and cDNA cloning of an endo-exonuclease from the basidiomycete fungus Armillaria mellea. Biochem J 1999; 339 ( Pt 3):713-20. [PMID: 10215611 PMCID: PMC1220208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
We have purified an endo-exonuclease from the fruiting body of the basidiomycete fungus Armillaria mellea by using an ethanol fractionation step, followed by two rounds of column chromatography. The enzyme had an apparent molecular mass of 17500 Da and was shown to exist as a monomer by gel-filtration analysis. The nuclease was active on both double-stranded and single-stranded DNA but not on RNA. It was optimally active at pH8.5 and also exhibited a significant degree of thermostability. Three bivalent metal ions, Mg2+, Co2+ and Mn2+, acted as cofactors in the catalysis. It was also inhibited by high salt concentrations: activity was completely abolished at 150 mM NaCl. The nuclease possessed both endonuclease activity on supercoiled DNA and a 3'-5' (but not a 5'-3') exonuclease activity. It generated 5'-phosphomonoesters on its products that, after a prolonged incubation, were hydrolysed to a mixture of free mononucleotides and small oligonucleotides ranging in size from two to eight bases. Elucidation of its N-terminal amino acid sequence permitted the cDNA cloning of the A. mellea nuclease via a PCR-based approach. Peptide mapping of the purified enzyme generated patterns consistent with the amino acid sequence coded for by the cloned cDNA. A BLAST search of the SwissProt database revealed that A. mellea nuclease shared significant amino acid similarity with two nucleases from Bacillus subtilis, suggesting that the three might constitute a distinct class of nucleolytic enzymes.
Collapse
Affiliation(s)
- V Healy
- Department of Biochemistry, University College Cork, Lee Maltings, Prospect Row, Cork, Republic of Ireland
| | | | | |
Collapse
|
9
|
Hildebrandt E, Boykin DW, Kumar A, Tidwell RR, Dykstra CC. Identification and characterization of an endo/exonuclease in Pneumocystis carinii that is inhibited by dicationic diarylfurans with efficacy against Pneumocystis pneumonia. J Eukaryot Microbiol 1998; 45:112-21. [PMID: 9495040 DOI: 10.1111/j.1550-7408.1998.tb05078.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dicationic diarylfurans and dicationic carbazoles are under development as therapeutic agents against opportunistic infections. While their ability to bind to the minor groove of DNA has been established, the complete mechanism of action has not. We demonstrate here that an effective diarylfuran, 2,5-bis[4-(N-isopropylguanyl)phenyl]furan, inhibits an endo/exonuclease activity present in Pneumocystis carinii, Cryptococcus neoformans, Candida albicans, and Saccharomyces cerevisiae. This activity was purified from the particulate fraction of P. carinii. The enzyme requires Mg++ or Mn++, and shows preferences for single-over double stranded DNA and for AT-rich over GC-rich domains. A panel of 12 dicationic diarylfurans and eight dicationic carbazoles, previously synthesized, were evaluated for inhibition of the purified nuclease and for efficacy against Pneumocystis pneumonia in rats. Among the diarylfurans, potency of nuclease inhibition, in vivo antimicrobial activity, and DNA binding strength were all strongly correlated (p < 0.001). These findings suggest that one target for antimicrobial action of the diarylfurans may be a nucleolytic or other event requiring unpairing of DNA strands. Dicationic carbazoles which were strong nuclease inhibitors all displayed anti-Pneumocystis activity in vivo, but there were also noninhibitory carbazoles with in vivo efficacy.
Collapse
Affiliation(s)
- E Hildebrandt
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Alabama 36849, USA
| | | | | | | | | |
Collapse
|
10
|
Chamberlin M, Julin DA. Interactions of the RecBCD enzyme from Escherichia coli and its subunits with DNA, elucidated from the kinetics of ATP and DNA hydrolysis with oligothymidine substrates. Biochemistry 1996; 35:15949-61. [PMID: 8973166 DOI: 10.1021/bi961643n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Oligothymidines eight nucleotides or longer stimulate ATP hydrolysis by the RecBC and RecBCD enzymes, and they are substrates for the ATP-stimulated nuclease activity of RecBCD. The steady-state kinetics of ATP hydrolysis by the RecBC enzyme are consistent with a single ATPase and DNA binding site. Results with RecBCD and RecBCD-K177Q [an enzyme with a Lys-to-Gln mutation in the ATP binding motif of the RecD subunit [Korangy, F., & Julin, D. A. (1992) J. Biol. Chem. 267, 1727-1732]] indicate that ATP hydrolysis by the RecB subunit is stimulated by pd(T)12 binding to a high-affinity site, while the RecD subunit hydrolyzes ATP stimulated by pd(T)12 binding to a low-affinity site. The site which stimulates RecB has about 50-fold greater affinity for DNA in either RecBCD or RecBCD-K177Q than does the corresponding site in RecBC. The rates of ATP hydrolysis observed for the RecBCD enzyme at low concentrations of pd(T)12 are best explained by a mechanism where the enzyme binds to the DNA and catalyzes multiple rounds of ATP hydrolysis before dissociating. Larger DNA molecules [pd(T)25-30 and poly(dT)] are bound more tightly by RecBCD, are hydrolyzed more rapidly, and are much more effective in stimulating ATP hydrolysis than is pd(T)12. The results at low ATP concentrations where the nuclease activity is minimal (5 microM) suggest that ATP hydrolysis is stimulated by the DNA ends, but there is no evidence that the RecBCD enzyme moves along these DNA molecules in an ATP-dependent manner under these conditions.
Collapse
Affiliation(s)
- M Chamberlin
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, USA
| | | |
Collapse
|
11
|
Biswas I, Maguin E, Ehrlich SD, Gruss A. A 7-base-pair sequence protects DNA from exonucleolytic degradation in Lactococcus lactis. Proc Natl Acad Sci U S A 1995; 92:2244-8. [PMID: 7892255 PMCID: PMC42460 DOI: 10.1073/pnas.92.6.2244] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Linear DNA molecules are subject to degradation by various exonucleases in vivo unless their ends are protected. It has been demonstrated that a specific 8-bp sequence, 5'-GCTGGTGG-3', named Chi, can protect linear double-stranded DNA from the major Escherichia coli exonuclease RecBCD. Chi protects linear replication products of rolling-circle plasmids from RecBCD degradation in vivo, in agreement with observations in vitro. A unique 7-bp sequence, 5'-GCGCGTG-3', is shown to protect similar replication products from degradation in Lactococcus lactis strains but not in more distantly related Gram-positive bacteria. The properties of this sequence in L. lactis correspond to those of a Chi site. Linear plasmid replication products have been detected in numerous prokaryotes, suggesting the widespread existence of short species-specific sequences that preserve linear DNA from extensive degradation by host cell exonucleases.
Collapse
Affiliation(s)
- I Biswas
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | | | | |
Collapse
|
12
|
Gerschenson M, Houmiel KL, Low RL. Endonuclease G from mammalian nuclei is identical to the major endonuclease of mitochondria. Nucleic Acids Res 1995; 23:88-97. [PMID: 7870594 PMCID: PMC306634 DOI: 10.1093/nar/23.1.88] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two Mg(2+)-dependent DNA endonucleases have been isolated from mammalian cells which have a strong preference to nick within long tracts of guanine residues in vitro. One endonuclease activity is mitochondrial (mt). The other endonuclease, called Endonuclease G, is associated with isolated nuclei, and is released when the nuclear chromatin is exposed to moderate ionic strength. Our laboratory has previously purified the mt endonuclease to near homogeneity from mitochondria of bovine heart and reported the enzyme to be a homodimer of a approximately 29 kDa polypeptide [Cummings, O. W. et al. (1987) J. Biol. Chem., 262, 2005-2015]. Although the purified mt endonuclease will extensively fragment M13 viral ssDNA and plasmid dsDNAs in vitro, the enzyme displays an unusually strong preference to nick within a (dG)12:(dC)12 sequence tract which resides just upstream from the origin of DNA replication in the mitochondrial genome. The nuclear Endonuclease G first identified from its selective targeting of several (dG)n:(dC)n tracts in vitro (where N = 3-29), was subsequently purified from calf thymus nuclei and shown to be a homodimer of a approximately 26-kDa polypeptide [Côté, J. et al. (1989) J. Biol. Chem., 264, 3301-3310]. In the present study, we find that Endonuclease G partially purified from calf thymus nuclei will extensively degrade both viral ss- and dsDNAs in vitro, and that the enzyme possesses biochemical properties and specificity for nucleotide sequences in DNA that are strongly related or identical to those of the mt endonuclease. These findings and the discovery of sequence identity between the proteins strengthen the conclusion that the nuclear Endonuclease G is the same enzyme as the mt endonuclease.
Collapse
Affiliation(s)
- M Gerschenson
- Department of Pathology, University of Colorado Health Sciences Center, Denver 80262-0216
| | | | | |
Collapse
|
13
|
Abstract
Endo-exonucleases from E. coli to man, although very different proteins, are multifunctional enzymes with similar enzymatic activities. They probably have two common but opposing biological roles. On the one hand, they promote survival of the organism by acting in recombination and recombinational DNA repair to diversify and help preserve the genome intact. On the other hand, they degrade the genomic DNA when it is damaged beyond repair. This ensures elimination of heavily mutagenized cells from the population.
Collapse
Affiliation(s)
- M J Fraser
- Children's Leukaemia and Cancer Research Centre, University of New South Wales, Randwick, Sydney, Australia
| |
Collapse
|
14
|
Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994; 58:401-65. [PMID: 7968921 PMCID: PMC372975 DOI: 10.1128/mr.58.3.401-465.1994] [Citation(s) in RCA: 787] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.
Collapse
Affiliation(s)
- S C Kowalczykowski
- Division of Biological Sciences, University of California, Davis 95616-8665
| | | | | | | | | |
Collapse
|
15
|
Eker AP, Yajima H, Yasui A. DNA photolyase from the fungus Neurospora crassa. Purification, characterization and comparison with other photolyases. Photochem Photobiol 1994; 60:125-33. [PMID: 7938208 DOI: 10.1111/j.1751-1097.1994.tb05078.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A phr-gene from the filamentous fungus Neurospora crassa was overexpressed in Escherichia coli cells, yielding a biologically active photolyase. After purification till apparent homogeneity, the 66 kDa protein was found to contain equimolar amounts of 5,10-methenyltetrahydrofolic acid (MTHF) and FAD, classifying it as an MTHF-type photolyase. Compared to other MTHF photolyases the absorption maximum of Neurospora photolyase is shifted from ca 380 nm to 391 nm (epsilon = 34,800), while an additional shoulder is present at 465 nm. In dark-adapted enzyme the FAD chromophore is predominantly present in the oxidized form, in contrast with E. coli and Saccharomyces cerevisiae photolyase, which contain mainly semiquinone or fully reduced FAD, respectively. Preillumination or dithionite treatment converted oxidized FAD in Neurospora photolyase into the fully reduced form, with a concomitant shift of the absorption maximum from 391 to 396 nm and disappearance of the 465 nm shoulder. The action spectrum of photoreactivation coincides with the absorption spectrum of preilluminated (reduced) photolyase, extending the spectral region of MTHF-type photolyases from 380 till 396 nm. A quantum yield of 0.57 was obtained for the overall repair reaction. Comparison of spectral properties of FAD in Neurospora photolyase and the model compound lumiflavin points to an apolar microenvironment of photolyase-bound FAD. Neurospora photolyase has distinct advantages over E. coli photolyase as it is more stable and contains a full complement of chromophores.
Collapse
Affiliation(s)
- A P Eker
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | |
Collapse
|
16
|
Moore PD, Simon JR, Wallace LJ, Chow TY. In-vitro recombination in rad and rnc mutants of Saccharomyces cerevisiae. Curr Genet 1993; 23:1-8. [PMID: 8428378 DOI: 10.1007/bf00336741] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Extracts of S. cerevisiae cells can catalyze homologous recombination between plasmids in vitro. Extracts prepared from rad50, rad52 or rad54 disruption mutants all have reduced recombinational activity compared to wild-type. The rad52 and rad54 extracts are more impaired in the recombination of plasmids containing double-strand breaks than of intact plasmids, whereas rad50 extracts are deficient equally for both types of substrate. The nuclease RhoNuc (previously designated yNucR), encoded by the RNC1 (previously designated NUC2) gene and regulated by the RAD52 gene, is not required for recombination when one substrate is single-stranded but is essential for the majority of recombination events when both substrates are double-stranded. Furthermore, elimination of this nuclease restores recombination in rad52 extracts to levels comparable to those in wild-type extracts.
Collapse
Affiliation(s)
- P D Moore
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago 60612
| | | | | | | |
Collapse
|
17
|
Abstract
In fungi, most mitotic recombination and at least some meiotic recombination appear to stem from a process of double-strand break repair. During this repair, recombination occurs by conversion caused by the process of double-strand gap filling, by conversion related to heteroduplex formation where homologous molecules interact by complementary base pairing, and by crossing-over which is probably an occasional byproduct of the repair process. From a review of the genetic and biochemical data and the published models of the process of recombination, the following view emerges: broken ends may be acted upon by nucleases and helicases to produce a recombinagenic end which may have both 3' and 5' single-stranded tails. These postulated split-ends may then act independently to find regions of homology with which to react. Invasion by both ends forms two splice-junctions which prime DNA synthesis towards each other to replace lost information, using the homologous sequences as templates. This process would lead to a structure which consists of a double Holliday junction which may be resolved endonucleolytically, sometimes giving a crossover, or by another means such as the action of topoisomerase, to dissolve the structure without a crossover having been formed.
Collapse
Affiliation(s)
- P J Hastings
- Department of Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Chow TY, Perkins EL, Resnick MA. Yeast RNC1 encodes a chimeric protein, RhoNUC, with a human rho motif and deoxyribonuclease activity. Nucleic Acids Res 1992; 20:5215-21. [PMID: 1408836 PMCID: PMC334307 DOI: 10.1093/nar/20.19.5215] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The yeast Saccharomyces cerevisiae contains an endoexonuclease yNucR that has been implicated in both recombination and repair. We describe the isolation and characterization of the corresponding gene. Within the predicted N-terminal half of the protein there is extensive homology (approximately 50%) with human rho genes, which are related to the ras oncogene, particularly in the proposed GTP-binding region. The C-terminal region, which is related to the Escherichia coli recC protein, presumably encodes the endoexonuclease activity. The yNucR may thus represent a new class of GTP-binding proteins. Because of the chimeric nature of the polypeptide, this protein is renamed RhoNUC (rather than the original yNucR) and the gene is RNC1 for Rho-associated-NuClease. Over expression of the gene leads to altered cell growth and nuclear morphology. We propose that the gene plays an important role in cell development as well as DNA repair/recombination.
Collapse
Affiliation(s)
- T Y Chow
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine, University of Sherbrooke, Quebec, Canada
| | | | | |
Collapse
|
19
|
Couture C, Chow TY. Purification and characterization of a mammalian endo-exonuclease. Nucleic Acids Res 1992; 20:4355-61. [PMID: 1324480 PMCID: PMC334147 DOI: 10.1093/nar/20.16.4355] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An endo-exonuclease has been purified from cultured monkey (CV-1) cells. The enzyme which was purified to near homogeneity to be a 65 kDa monomeric protein. The single-strand DNase activity is endonucleolytic and nonprocessive, whereas the double-strand DNase activity is exonucleolytic and processive. The enzyme was also found to have RNase activity using poly-rA as substrate. The pH optimum for ss-DNase is 8 and for ds-DNase it is 7.5. Both DNase activities require a divalent metal ion (Mg2+, Mn2+, Ca2+, Zn2+) for activity and exhibit the same kinetics of heat inactivation. The purified protein binds to and cleaves a synthetic Holliday junction substrate. The overall enzymatic characteristics of the mammalian protein are very similar to the putative recombination endo-exonucleases purified from Neurospora crassa, Aspergillus nidulans and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- C Couture
- Department of Nuclear Medicine, Faculty of Medicine, Université de Sherbrooke, Quebec, Canada
| | | |
Collapse
|
20
|
Zhao P, Kafer E. Effects of mutagen-sensitive mus mutations on spontaneous mitotic recombination in Aspergillus. Genetics 1992; 130:717-28. [PMID: 1582555 PMCID: PMC1204923 DOI: 10.1093/genetics/130.4.717] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Methyl methane-sulfonate (MMS)-sensitive, radiation-induced mutants of Aspergillus were shown to define nine new DNA repair genes, musK to musS. To test mus mutations for effects on mitotic recombination, intergenic crossing over was assayed between color markers and their centromeres, and intragenic recombination between two distinguishable adE alleles. Of eight mutants analyzed, four showed significant deviations from mus+ controls in both tests. Two mutations, musK and musL, reduced recombination, while musN and musQ caused increases. In contrast, musO diploids produced significantly higher levels only for intragenic recombination. Effects were relatively small, but averages between hypo- and hyperrec mus differed 15-20-fold. In musL diploids, most of the rare color segregants resulted from mitotic malsegregation rather than intergenic crossing over. This indicates that the musL gene product is required for recombination and that DNA lesions lead to chromosome loss when it is deficient. In addition, analysis of the genotypes of intragenic (ad+) recombinants showed that the musL mutation specifically reduced single allele conversion but increased complex conversion types (especially recombinants homozygous for ad+). Similar analysis revealed differences between the effects of two hyperrec mutations; musN apparently caused high levels solely of mitotic crossing over, while musQ increased various conversion types but not reciprocal crossovers. These results suggest that mitotic gene conversion and crossing over, while generally associated, are affected differentially in some of the mus strains of Aspergillus nidulans.
Collapse
Affiliation(s)
- P Zhao
- Department of Biology, McGill University, Montreal, Canada
| | | |
Collapse
|
21
|
Shuai K, Das Gupta CK, Hawley RS, Chase JW, Stone KL, Williams KR. Purification and characterization of an endo-exonuclease from adult flies of Drosophila melanogaster. Nucleic Acids Res 1992; 20:1379-85. [PMID: 1313969 PMCID: PMC312186 DOI: 10.1093/nar/20.6.1379] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An endo-exonuclease (designated nuclease III) has been purified to near homogeneity from adult flies of Drosophila melanogaster. The enzyme degrades single- and double-stranded DNA and RNA. It has a sedimentation co-efficient of 3.1S and a strokes radius of 27A The native form of the purified enzyme appears to be a monomer of 33,600 dalton. It has a pH optimum of 7-8.5 and requires Mg2+ or Mn2+ but not Ca2+ or Co2+ for its activity. The enzyme activity on double-stranded DNA was inhibited 50% by 30 mM NaCl, while its activity on single-stranded DNA required 100 mM NaCl for 50% inhibition. Under the latter conditions, its activity on double-stranded DNA was inhibited approximately 98%. The enzyme degrades DNA to complete acid soluble products which are a mixture of mono- and oligonucleotides with 5'-P and 3'-OH termini. Supercoiled DNA was converted by the enzyme to nicked and subsequently to linear forms in a stepwise fashion under the condition in which the enzyme works optimally on single-stranded DNA. The amino acid composition and amino acid sequencing of tryptic peptides from purified nuclease III is also reported.
Collapse
Affiliation(s)
- K Shuai
- Department of Molecular Biology and Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461
| | | | | | | | | | | |
Collapse
|
22
|
Liu J, Salinas G, Gajendran N, Muthui D, Muyldermans S, Hamers R. DNA recombination associated with short direct repeats in Leishmania mexicana M379. Mol Biochem Parasitol 1992; 50:351-3. [PMID: 1741022 DOI: 10.1016/0166-6851(92)90233-a] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- J Liu
- Instituut voor Moleculaire Biologie, Vrije Universiteit Brussel, St-Genesius Rode, Belgium
| | | | | | | | | | | |
Collapse
|
23
|
Rosenberg SM, Hastings PJ. The split-end model for homologous recombination at double-strand breaks and at Chi. Biochimie 1991; 73:385-97. [PMID: 1911939 DOI: 10.1016/0300-9084(91)90105-a] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In recent years two different styles of model for homologous recombination have been discussed, depending on whether or not the recombination event occurs in the vicinity of a double-strand break in DNA. The models of Holliday and Meselson and Radding exemplify those that do not involve a break whereas the model of Szostak et al is taken as an example of those that do. Recent advances in understanding a prototypic recombination system thought to promote exchange distant from DNA ends, at Chi sites, suggest a mechanism of initiation neither like Holliday/Meselson-Radding nor like Szostak et al. In those models, only one strand of DNA may invade a homologous DNA molecule. We propose a model for Chi in which exonuclease degrades DNA from a double-strand break to the Chi site; the exonuclease is converted into a helicase upon interaction with Chi; unwinding produces a recombinagenic split-end, and both 3'- and 5'-ending strands at the split-end are capable of invading a homologue. Different genetic consequences are proposed to result from invasion by each. We review evidence supporting the split-end model and suggest its application in at least some cases previously considered to proceed via the Meselson/Radding model and by the double-strand-break repair model of Szostak et al.
Collapse
Affiliation(s)
- S M Rosenberg
- Department of Genetics, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
24
|
Genetics and Molecular Biology of Neurospora crassa. ADVANCES IN GENETICS 1991. [DOI: 10.1016/s0065-2660(08)60106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
25
|
Sakaguchi K, Harris PV, van Kuyk R, Singson A, Boyd JB. A mitochondrial nuclease is modified in Drosophila mutants (mus308) that are hypersensitive to DNA crosslinking agents. MOLECULAR & GENERAL GENETICS : MGG 1990; 224:333-40. [PMID: 2125112 DOI: 10.1007/bf00262426] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mus308 mutants of Drosophila have previously been demonstrated to be defective in an enzyme that is designated Nuclease 3 (Boyd et al. 1990b). In this study that enzyme is shown to be present in mitochondria of both wild-type flies and embryos. Since the mus308 mutants are hypersensitive to DNA crosslinking agents. Nuclease 3 is potentially required for resistance of the mitochondrial genome to such agents. In support of this hypothesis, electron microscopic studies of mus308 mutant flies that had been exposed to nitrogen mustard revealed an increased frequency of mitochondrial abnormalities. Further investigation of the defect at the enzymological level revealed that the mutants possess a new nuclease activity that is apparently a modified form of the wild-type protein. In the earlier study, enzyme extracts from mus308 mutants were found to lack an enzyme with a pI of approximately 6.2. More precisely defined assay conditions in this study revealed the appearance of a new nuclease activity with a higher pI in extracts from mutants. This observation, together with the finding that only the normal enzyme form is present in heterozygous individuals, supports the hypothesis that the mus308 locus is not the structural gene for the enzyme. Rather, the mus308 gene product is necessary for Nuclease 3 to assume the lower pI. Nuclease 3 has been partially purified and characterized from wild-type embryos. Its activity is stimulated by Mg++ and ATP. Optimum activity is found at a pH of 5.5 and a NaCl concentration of 50-100 mM. Nuclease 3 exhibits a temperature optimum of 42 degrees C and is insensitive to N-ethylmaleimide.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Sakaguchi
- Department of Genetics, University of California, Davis 95616
| | | | | | | | | |
Collapse
|