1
|
Fomenkov A, Sun Z, Murray IA, Ruse C, McClung C, Yamaichi Y, Raleigh EA, Roberts RJ. Plasmid replication-associated single-strand-specific methyltransferases. Nucleic Acids Res 2021; 48:12858-12873. [PMID: 33270887 PMCID: PMC7736820 DOI: 10.1093/nar/gkaa1163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Analysis of genomic DNA from pathogenic strains of Burkholderia cenocepacia J2315 and Escherichia coli O104:H4 revealed the presence of two unusual MTase genes. Both are plasmid-borne ORFs, carried by pBCA072 for B. cenocepacia J2315 and pESBL for E. coli O104:H4. Pacific Biosciences SMRT sequencing was used to investigate DNA methyltransferases M.BceJIII and M.EcoGIX, using artificial constructs. Mating properties of engineered pESBL derivatives were also investigated. Both MTases yield promiscuous m6A modification of single strands, in the context SAY (where S = C or G and Y = C or T). Strikingly, this methylation is asymmetric in vivo, detected almost exclusively on one DNA strand, and is incomplete: typically, around 40% of susceptible motifs are modified. Genetic and biochemical studies suggest that enzyme action depends on replication mode: DNA Polymerase I (PolI)-dependent ColE1 and p15A origins support asymmetric modification, while the PolI-independent pSC101 origin does not. An MTase-PolI complex may enable discrimination of PolI-dependent and independent plasmid origins. M.EcoGIX helps to establish pESBL in new hosts by blocking the action of restriction enzymes, in an orientation-dependent fashion. Expression and action appear to occur on the entering single strand in the recipient, early in conjugal transfer, until lagging-strand replication creates the double-stranded form.
Collapse
Affiliation(s)
| | - Zhiyi Sun
- New England Biolabs Inc., 240 County Road, Ipswich, MA, USA
| | - Iain A Murray
- New England Biolabs Inc., 240 County Road, Ipswich, MA, USA
| | - Cristian Ruse
- New England Biolabs Inc., 240 County Road, Ipswich, MA, USA
| | | | - Yoshiharu Yamaichi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | | | | |
Collapse
|
2
|
Sitaraman R, Leppla SH. Methylation-dependent DNA restriction in Bacillus anthracis. Gene 2011; 494:44-50. [PMID: 22178763 DOI: 10.1016/j.gene.2011.11.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 10/28/2011] [Accepted: 11/21/2011] [Indexed: 11/28/2022]
Abstract
Bacillus anthracis, the causative agent of anthrax, is poorly transformed with DNA that is methylated on adenine or cytosine. Here we characterize three genetic loci encoding type IV methylation-dependent restriction enzymes that target DNA containing C5-methylcytosine (m5C). Strains in which these genes were inactivated, either singly or collectively, showed increased transformation by methylated DNA. Additionally, a triple mutant with an ~30-kb genomic deletion could be transformed by DNA obtained from Dam(+)Dcm(+)E. coli, although at a low frequency of ~10(-3) transformants/10(6)cfu. This strain of B. anthracis can potentially serve as a preferred host for shuttle vectors that express recombinant proteins, including proteins to be used in vaccines. The gene(s) responsible for the restriction of m6A-containing DNA in B. anthracis remain unidentified, and we suggest that poor transformation by such DNA could in part be a consequence of the inefficient replication of hemimethylated DNA in B. anthracis.
Collapse
Affiliation(s)
- Ramakrishnan Sitaraman
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
3
|
Douraid D, Ahmed L. SeqA, the Escherichia coli origin sequestration protein, can regulate the replication of the pBR322 plasmid. Plasmid 2010; 65:15-9. [PMID: 20875449 DOI: 10.1016/j.plasmid.2010.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 11/25/2022]
Abstract
The pBR322 plasmid origin replication and oriC show similar responses to adenine methylation. Both are subject to sequestration by membrane fractions. In fact, like the host origin oriC, the RNA II promoter region of pBR322 is regulated by methylation of three GATC adenine methylation sites. The SeqA gene product acts in the negative control of oriC by sequestration. We suggest that the role of SeqA protein in sequestration is similar to oriC region DNA. Hence, SeqA recognize the methylation state of the pBR322RNA II promoter region by direct DNA binding in vitro. Using the pOC42 plasmid, we show that SeqA binds exclusively to the hemimethylated form of the replication origin of the pBR322 plasmid. In addition, we suggested that the SeqA protein could modulate periodically the initiation of replication of the pBR322 plasmid. The later could be fixed by its origin sequence, on a hemimethylated state, during the initiation of the replication.
Collapse
Affiliation(s)
- Daghfous Douraid
- Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia.
| | | |
Collapse
|
4
|
Abstract
Pantoea stewartii SW2 contains 13 plasmids. One of these plasmids, pSW200, has a replicon that resembles that of ColE1. This study demonstrates that pSW200 contains a 9-bp UP element, 5'-AAGATCTTC, which is located immediately upstream of the -35 box in the RNAII promoter. A transcriptional fusion study reveals that substituting this 9-bp sequence reduces the activity of the RNAII promoter by 78%. The same mutation also reduced the number of plasmid copies from 13 to 5, as well as the plasmid stability. When a similar sequence in a ColE1 derivative, pYCW301, is mutated, the copy number of the plasmid also declines from 34 to 16 per cell. Additionally, inserting this 9-bp sequence stabilizes an unstable pSW100 derivative, pSW142K, which also contains a replicon resembling that of ColE1, indicating the importance of this sequence in maintaining the stability of the plasmid. In conclusion, the 9-bp sequence upstream of the -35 box in the RNAII promoter is required for the efficient synthesis of RNAII and maintenance of the stability of the plasmids in the ColE1 family.
Collapse
|
5
|
Waldminghaus T, Skarstad K. The Escherichia coli SeqA protein. Plasmid 2009; 61:141-50. [PMID: 19254745 DOI: 10.1016/j.plasmid.2009.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
The Escherichia coli SeqA protein contributes to regulation of chromosome replication by preventing re-initiation at newly replicated origins. SeqA protein binds to new DNA which is hemimethylated at the adenine of GATC sequences. Most of the cellular SeqA is found complexed with the new DNA at the replication forks. In vitro the SeqA protein binds as a dimer to two GATC sites and is capable of forming a helical fiber of dimers through interactions of the N-terminal domain. SeqA can also bind, with less affinity, to fully methylated origins and affect timing of "primary" initiations. In addition to its roles in replication, the SeqA protein may also act in chromosome organization and gene regulation.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | |
Collapse
|
6
|
Bogan JA, Grimwade JE, Thornton M, Zhou P, Denning GD, Helmstetter CE. P1 and NR1 plasmid replication during the cell cycle of Escherichia coli. Plasmid 2001; 45:200-8. [PMID: 11407915 DOI: 10.1006/plas.2000.1512] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Replication patterns of the miniP1 plasmid pZC176, the miniNR1 plasmid pRR933, and the high-copy miniNR1 derivative pRR942 were examined during the Escherichia coli cell division cycle and compared to the cycle-specific replication pattern of a minichromosome and the cycle nonspecific pattern of pBR322. In E. coli cells growing with doubling times of 40 and 60 min, the miniP1 plasmid was found to replicate with a slight periodicity during the division cycle. The periodicity was not nearly as pronounced as that of the minichromosome, was not affected by the presence of a minichromosome, and was not evident in cells growing more rapidly with a doubling time of 25 min. Both miniNR1 plasmids, pRR933 and pRR942, replicated with patterns indistinguishable from that of pBR322 and clearly different from that of the minichromosome. It is concluded that both P1 and NR1 plasmids can replicate at all stages of the cell cycle but that P1 displays a slight periodicity in replication probability in the cycle of slower growing cells. This periodicity does not appear to be coupled to a specific age in the cycle, but could be associated with the achievement of a specific cell mass per plasmid. During temperature shifts of a dnaC(Ts) mutant, the miniP1 plasmid and pBR322 replicated with similar patterns that differed from that of the minichromosome, but were consistent with a brief eclipse between rounds of replication.
Collapse
Affiliation(s)
- J A Bogan
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida, 32901, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Beletskaya IV, Zakharova MV, Shlyapnikov MG, Semenova LM, Solonin AS. DNA methylation at the CfrBI site is involved in expression control in the CfrBI restriction-modification system. Nucleic Acids Res 2000; 28:3817-22. [PMID: 11000275 PMCID: PMC110769 DOI: 10.1093/nar/28.19.3817] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously found that genes of the CFR:BI restriction-modification (R-M) system from Citrobacter freundii are oriented divergently and that their promoter regions overlap. The overlapping promoters suggest regulation of gene expression at the transcriptional level. In this study the transcription regulation of CFR:BI R-M genes was analyzed in vivo and in vitro in Escherichia coli. It was shown that in the presence of CFR:BI methyltransferase (M.CFR:BI), cell galactokinase activity decreases 10-fold when the galactokinase gene (galK) is under the control of the cfrBIM promoter and increases 20-fold when galK is under the control of the cfrBIR promoter. The CFR:BI site, proven to be unique for the entire CFR:BI R-M gene sequence, is located in the -35 cfrBIM promoter region and is in close vicinity of the -10 cfrBIR promoter region. A comparison of the cfrBIM and the cfrBIR promoter activities in the in vitro transcription system using methylated and unmethylated DNA fragments as templates demonstrated that the efficiency of CFR:BI R-M gene transcription is regulated by enzymatic modification at the N-4-position of cytosine bases of the CFR:BI site by M.CFR:BI. From the results of the in vivo and in vitro experiments we suggest a new model of gene expression regulation in type II R-M systems.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Citrobacter freundii/enzymology
- Citrobacter freundii/genetics
- Cytosine/chemistry
- Cytosine/metabolism
- DNA Methylation
- DNA Modification Methylases/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- Deoxyribonucleases, Type II Site-Specific/genetics
- Escherichia coli/genetics
- Galactokinase/genetics
- Galactokinase/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial/genetics
- Genes, Reporter/genetics
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation
- Promoter Regions, Genetic/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Deletion/genetics
- Templates, Genetic
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- I V Beletskaya
- Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Malki A, Kern R, Kohiyama M, Hughes P. Inhibition of DNA synthesis at the hemimethylated pBR322 origin of replication by a cell membrane fraction. Nucleic Acids Res 1992; 20:105-9. [PMID: 1738587 PMCID: PMC310332 DOI: 10.1093/nar/20.1.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The replication of both ColE1-type plasmids and plasmids bearing the origin of replication of the Escherichia coli chromosome (oriC) has been shown to be inhibited by hemimethylation of adenine residues within GATC sequences. In the case of oriC plasmids, this inhibition was previously shown to be mediated by the specific affinity of the hemimethylated origin DNA for an outer cell membrane fraction. Here, we suggest that a similar mechanism is operating in the case of the ColE1-like plasmid pBR322 as (i) a hemimethylated DNA fragment carrying the promoter for the RNA which primes DNA synthesis (RNAII) is specifically bound by the same membrane fraction and, (ii) the addition of the membrane fraction to a soluble assay of pBR322 replication results in preferential inhibition of initiation on the hemimethylated template. We suggest that membrane sequestration of hemimethylated origin DNA and/or associated replication genes following replication may be a common element restricting DNA replication to precise moments in the cell cycle.
Collapse
Affiliation(s)
- A Malki
- Department of Molecular Biology, Institut Jacques Monod, Universite Paris VII, France
| | | | | | | |
Collapse
|
10
|
Landoulsi A, Malki A, Kern R, Kohiyama M, Hughes P. The E. coli cell surface specifically prevents the initiation of DNA replication at oriC on hemimethylated DNA templates. Cell 1990; 63:1053-60. [PMID: 2257623 DOI: 10.1016/0092-8674(90)90508-c] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A particular outer membrane fraction previously defined as possessing specific affinity for the hemimethylated form of the origin of replication of the E. coli chromosome (oriC) is shown to inhibit the initiation of DNA synthesis at this site on hemimethylated DNA templates in vitro. The replication of fully methylated or unmethylated DNA templates is not affected. Also, no inhibition is observed if initiation takes place at random sites on the hemimethylated template. The key inactivation step appears to be membrane inhibition of DnaA initiator protein binding to oriC. Remethylation of the membrane-bound hemimethylated DNA results in reactivation. Our results demonstrate direct involvement of the membrane in the control of DNA replication. We propose that association/dissociation of the origin from the cell membrane is one of the control elements governing interinitiation times in E. coli.
Collapse
Affiliation(s)
- A Landoulsi
- Institut Jacques Monod, Université Paris VII, France
| | | | | | | | | |
Collapse
|