1
|
Koper K, Han SW, Pastor DC, Yoshikuni Y, Maeda HA. Evolutionary Origin and Functional Diversification of Aminotransferases. J Biol Chem 2022; 298:102122. [PMID: 35697072 PMCID: PMC9309667 DOI: 10.1016/j.jbc.2022.102122] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Aminotransferases (ATs) are pyridoxal 5′-phosphate–dependent enzymes that catalyze the transamination reactions between amino acid donor and keto acid acceptor substrates. Modern AT enzymes constitute ∼2% of all classified enzymatic activities, play central roles in nitrogen metabolism, and generate multitude of primary and secondary metabolites. ATs likely diverged into four distinct AT classes before the appearance of the last universal common ancestor and further expanded to a large and diverse enzyme family. Although the AT family underwent an extensive functional specialization, many AT enzymes retained considerable substrate promiscuity and multifunctionality because of their inherent mechanistic, structural, and functional constraints. This review summarizes the evolutionary history, diverse metabolic roles, reaction mechanisms, and structure–function relationships of the AT family enzymes, with a special emphasis on their substrate promiscuity and multifunctionality. Comprehensive characterization of AT substrate specificity is still needed to reveal their true metabolic functions in interconnecting various branches of the nitrogen metabolic network in different organisms.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sang-Woo Han
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Yasuo Yoshikuni
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido 060-8589, Japan
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
2
|
Open Issues for Protein Function Assignment in Haloferax volcanii and Other Halophilic Archaea. Genes (Basel) 2021; 12:genes12070963. [PMID: 34202810 PMCID: PMC8305020 DOI: 10.3390/genes12070963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Annotation ambiguities and annotation errors are a general challenge in genomics. While a reliable protein function assignment can be obtained by experimental characterization, this is expensive and time-consuming, and the number of such Gold Standard Proteins (GSP) with experimental support remains very low compared to proteins annotated by sequence homology, usually through automated pipelines. Even a GSP may give a misleading assignment when used as a reference: the homolog may be close enough to support isofunctionality, but the substrate of the GSP is absent from the species being annotated. In such cases, the enzymes cannot be isofunctional. Here, we examined a variety of such issues in halophilic archaea (class Halobacteria), with a strong focus on the model haloarchaeon Haloferax volcanii. Results: Annotated proteins of Hfx. volcanii were identified for which public databases tend to assign a function that is probably incorrect. In some cases, an alternative, probably correct, function can be predicted or inferred from the available evidence, but this has not been adopted by public databases because experimental validation is lacking. In other cases, a probably invalid specific function is predicted by homology, and while there is evidence that this assigned function is unlikely, the true function remains elusive. We listed 50 of those cases, each with detailed background information, so that a conclusion about the most likely biological function can be drawn. For reasons of brevity and comprehension, only the key aspects are listed in the main text, with detailed information being provided in a corresponding section of the Supplementary Materials. Conclusions: Compiling, describing and summarizing these open annotation issues and functional predictions will benefit the scientific community in the general effort to improve the evaluation of protein function assignments and more thoroughly detail them. By highlighting the gaps and likely annotation errors currently in the databases, we hope this study will provide a framework for experimentalists to systematically confirm (or disprove) our function predictions or to uncover yet more unexpected functions.
Collapse
|
3
|
Isolation and Molecular Identification of Auxotrophic Mutants to Develop a Genetic Manipulation System for the Haloarchaeon Natrinema sp. J7-2. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:483194. [PMID: 26089742 PMCID: PMC4454726 DOI: 10.1155/2015/483194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/30/2015] [Accepted: 04/23/2015] [Indexed: 12/11/2022]
Abstract
Our understanding of the genus Natrinema is presently limited due to the lack of available genetic tools. Auxotrophic markers have been widely used to construct genetic systems in bacteria and eukaryotes and in some archaeal species. Here, we isolated four auxotrophic mutants of Natrinema sp. J7-2, via 1-methyl-3-nitro-1-nitroso-guanidin mutagenesis, and designated them as J7-2-1, J7-2-22, J7-2-26, and J7-2-52, respectively. The mutant phenotypes were determined to be auxotrophic for leucine (J7-2-1), arginine (J7-2-22 and J7-2-52), and lysine (J7-2-26). The complete genome and the biosynthetic pathways of amino acids in J7-2 identified that the auxotrophic phenotype of three mutants was due to gene mutations in leuB (J7-2-1), dapD (J7-2-26), and argC (J7-2-52). These auxotrophic phenotypes were employed as selectable makers to establish a transformation method. The transformation efficiencies were determined to be approximately 10(3) transformants per µg DNA. And strains J7-2-1 and J7-2-26 were transformed into prototrophic strains with the wild type genomic DNA, amplified fragments of the corresponding genes, or the integrative plasmids carrying the corresponding genes. Additionally, exogenous genes, bgaH or amyH gene, were expressed successfully in J7-2-1. Thus, we have developed a genetic manipulation system for the Natrinema genus based on the isolated auxotrophic mutants of Natrinema sp. J7-2.
Collapse
|
4
|
|
5
|
Madern D, Pfister C, Zaccai G. Mutation at a Single Acidic Amino Acid Enhances the Halophilic Behaviour of Malate Dehydrogenase from Haloarcula Marismortui in Physiological Salts. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.1088g.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Kurosawa N, Grogan DW. Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: properties and uses. FEMS Microbiol Lett 2005; 253:141-9. [PMID: 16243457 DOI: 10.1016/j.femsle.2005.09.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 09/17/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022] Open
Abstract
In order to quantify recombination between exogenous DNA and the Sulfolobus acidocaldarius chromosome, we electroporated pyrE (uracil-auxtotrophic) recipient strains with functional pyrE sequences and counted Pyr+ transformants by direct plating. Certain culture and post-electroporation conditions increased the yield of Pyr+ recombinants from non-replicating pyrE plasmid, whereas cognate methylation of SuaI restriction sites in the plasmid decreased it. Recombination of linear DNAs with the S. acidocaldarius genome was proportional to the length of a limiting overlap, but even synthetic oligonucleotides produced reasonable numbers of recombinants with appropriate recipient strains. To investigate uses of this latter property, we electroporated an 18-bp pyrE deletion mutant with mixtures of synthetic oligonucleotides altering glycine-55 of the orotate phosphoribosyl transferase encoded by pyrE. Pyr+ transformants were recovered in which this codon was converted to each of the alternatives encoded by the oligonucleotide mixtures, thereby identifying five amino acid substitutions tolerated at this position of the thermostable enzyme.
Collapse
Affiliation(s)
- Norio Kurosawa
- Department of Environmental Engineering for Symbiosis, Soka University, Hachioji, Tokyo 192-8577, Japan
| | | |
Collapse
|
7
|
Abstract
For decades, archaea were misclassified as bacteria because of their prokaryotic morphology. Molecular phylogeny eventually revealed that archaea, like bacteria and eukaryotes, are a fundamentally distinct domain of life. Genome analyses have confirmed that archaea share many features with eukaryotes, particularly in information processing, and therefore can serve as streamlined models for understanding eukaryotic biology. Biochemists and structural biologists have embraced the study of archaea but geneticists have been more wary, despite the fact that genetic techniques for archaea are quite sophisticated. It is time for geneticists to start asking fundamental questions about our distant relatives.
Collapse
Affiliation(s)
- Thorsten Allers
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
8
|
Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE, Hackett M, Haydock AK, Kang A, Land ML, Levy R, Lie TJ, Major TA, Moore BC, Porat I, Palmeiri A, Rouse G, Saenphimmachak C, Söll D, Van Dien S, Wang T, Whitman WB, Xia Q, Zhang Y, Larimer FW, Olson MV, Leigh JA. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 2004; 186:6956-69. [PMID: 15466049 PMCID: PMC522202 DOI: 10.1128/jb.186.20.6956-6969.2004] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome sequence of the genetically tractable, mesophilic, hydrogenotrophic methanogen Methanococcus maripaludis contains 1,722 protein-coding genes in a single circular chromosome of 1,661,137 bp. Of the protein-coding genes (open reading frames [ORFs]), 44% were assigned a function, 48% were conserved but had unknown or uncertain functions, and 7.5% (129 ORFs) were unique to M. maripaludis. Of the unique ORFs, 27 were confirmed to encode proteins by the mass spectrometric identification of unique peptides. Genes for most known functions and pathways were identified. For example, a full complement of hydrogenases and methanogenesis enzymes was identified, including eight selenocysteine-containing proteins, with each being paralogous to a cysteine-containing counterpart. At least 59 proteins were predicted to contain iron-sulfur centers, including ferredoxins, polyferredoxins, and subunits of enzymes with various redox functions. Unusual features included the absence of a Cdc6 homolog, implying a variation in replication initiation, and the presence of a bacterial-like RNase HI as well as an RNase HII typical of the Archaea. The presence of alanine dehydrogenase and alanine racemase, which are uniquely present among the Archaea, explained the ability of the organism to use L- and D-alanine as nitrogen sources. Features that contrasted with the related organism Methanocaldococcus jannaschii included the absence of inteins, even though close homologs of most intein-containing proteins were encoded. Although two-thirds of the ORFs had their highest Blastp hits in Methanocaldococcus jannaschii, lateral gene transfer or gene loss has apparently resulted in genes, which are often clustered, with top Blastp hits in more distantly related groups.
Collapse
Affiliation(s)
- E L Hendrickson
- University of Washington, Dept. of Microbiology, Box 357242, Seattle, WA 98195-7242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Members of the Archaea domain are extremely diverse in their adaptation to extreme environments, yet also widespread in "normal" habitats. Altogether, among the best characterized archaeal representatives all mechanisms of gene transfer such as transduction, conjugation, and transformation have been discovered, as briefly reviewed here. For some halophiles and mesophilic methanogens, usable genetic tools were developed for in vivo studies. However, on an individual basis no single organism has evolved into the "E. coli of Archaea" as far as genetics is concerned. Currently, and unfortunately, most of the genome sequences available are those of microorganisms which are either not amenable to gene transfer or not among the most promising candidates for genetic studies.
Collapse
Affiliation(s)
- Y Luo
- Institute of Microbiology, Swiss Federal Institute of Technology Zürich
| | | |
Collapse
|
10
|
Graham DE, Kyrpides N, Anderson IJ, Overbeek R, Whitman WB. Genome of Methanocaldococcus (Methanococcus) jannaschii. Methods Enzymol 2001; 330:40-123. [PMID: 11210518 DOI: 10.1016/s0076-6879(01)30370-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- D E Graham
- Department of Biochemistry, Virginia Polytechnical Institute & State University, Blackburg, Virginia 24061-0308, USA
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Abstract
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
13
|
Jensen RA, Gu W. Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases. J Bacteriol 1996; 178:2161-71. [PMID: 8636014 PMCID: PMC177921 DOI: 10.1128/jb.178.8.2161-2171.1996] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- R A Jensen
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, USA
| | | |
Collapse
|
14
|
Alifano P, Fani R, Liò P, Lazcano A, Bazzicalupo M, Carlomagno MS, Bruni CB. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev 1996; 60:44-69. [PMID: 8852895 PMCID: PMC239417 DOI: 10.1128/mr.60.1.44-69.1996] [Citation(s) in RCA: 155] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P Alifano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare L. Califano, Università degli Studi di Napoli Federico II, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The available sequences of genes encoding the enzymes associated with histidine biosynthesis suggest that this is an ancient metabolic pathway that was assembled prior to the diversification of the Bacteria, Archaea, and Eucarya. Paralogous duplications, gene elongation, and fusion events involving different his genes have played a major role in shaping this biosynthetic route. Evidence that the hisA and the hisF genes and their homologous are the result of two successive duplication events that apparently took place before the separation of the three cellular lineages is extended. These two successive gene duplication events as well as the homology between the hisH genes and the sequences encoding the TrpG-type amidotransferases support the idea that during the early stages of metabolic evolution at least parts of the histidine biosynthetic pathway were mediated by enzymes of broader substrate specificities. Maximum likelihood trees calculated for the available sequences of genes encoding these enzymes have been obtained. Their topologies support the possibility of an evolutionary proximity of archaebacteria with low GC Gram-positive bacteria. This observation is consistent with those detected by other workers using the sequences of heat-shock proteins (HSP70), glutamine synthetases, glutamate dehydrogenases, and carbamoylphosphate synthetases.
Collapse
Affiliation(s)
- R Fani
- Dipartimento di Biologia Animale e Genetica, Università degli Studi di Firenze, Italy
| | | | | |
Collapse
|
16
|
Madern D, Pfister C, Zaccai G. Mutation at a single acidic amino acid enhances the halophilic behaviour of malate dehydrogenase from Haloarcula marismortui in physiological salts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:1088-95. [PMID: 7601139 DOI: 10.1111/j.1432-1033.1995.tb20659.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In a statistical analysis of the amino acid compositions of 26 halophilic proteins, 24 showed an increase in acidic amino acids and a decrease in basic ones when compared to their non-halophilic homologues. The role of acidic residues in halophilic adaptation was investigated by site-directed mutagenesis of malate dehydrogenase (MalDH) from Haloarcula marismortui. In all of 40 non-halophilic homologous proteins, the position aligned with E243 in halophilic MalDH is occupied by a non-acidic amino acid, most frequently by arginine. The E243R mutant of halophilic MalDH was constructed, over-expressed in Escherichia coli, renatured and purified. Its salt-dependent catalytic activity was not affected compared to the wild-type enzyme and both proteins have the same Km values for their substrates. The resistance to denaturation of the mutant was compared to that of the wild-type protein in different physiological salt (NaCl or KCl) and temperature conditions and interpreted in terms of classical quasi-thermodynamic parameters. The mutant is more halophilic than the wild-type protein; it is more sensitive to temperature and requires significantly higher concentrations of NaCl or KCl for equivalent stability. These results highlight the role of acidic amino acids in halophilic behaviour and are in agreement with a model in which these amino acids act cooperatively to organise hydrated ion binding to the protein.
Collapse
Affiliation(s)
- D Madern
- Institut de Biologie Structurale, Grenoble, France
| | | | | |
Collapse
|
17
|
Gu W, Zhao G, Eddy C, Jensen RA. Imidazole acetol phosphate aminotransferase in Zymomonas mobilis: molecular genetic, biochemical, and evolutionary analyses. J Bacteriol 1995; 177:1576-84. [PMID: 7883715 PMCID: PMC176775 DOI: 10.1128/jb.177.6.1576-1584.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
hisH encodes imidazole acetol phosphate (IAP) aminotransferase in Zymomonas mobilis and is located immediately upstream of tyrC, a gene which codes for cyclohexadienyl dehydrogenase. A plasmid containing hisH was able to complement an Escherichia coli histidine auxotroph which lacked the homologous aminotransferase. DNA sequencing of hisH revealed an open reading frame of 1,110 bp, encoding a protein of 40,631 Da. The cloned hisH product was purified from E. coli and estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a molecular mass of 40,000 Da. Since the native enzyme had a molecular mass of 85,000 Da as determined by gel filtration, the active enzyme species must be a homodimer. The purified enzyme was able to transaminate aromatic amino acids and histidine in addition to histidinol phosphate. The existence of a single protein having broad substrate specificity was consistent with the constant ratio of activities obtained with different substrates following a variety of physical treatments (such as freeze-thaw, temperature inactivation, and manipulation of pyridoxal 5'-phosphate content). The purified enzyme did not require addition of pyridoxal 5'-phosphate, but dependence upon this cofactor was demonstrated following resolution of the enzyme and cofactor by hydroxylamine treatment. Kinetic data showed the classic ping-pong mechanism expected for aminotransferases. Km values of 0.17, 3.39, and 43.48 mM for histidinol phosphate, tyrosine, and phenylalanine were obtained. The gene structure around hisH-tyrC suggested an operon organization. The hisH-tyrC cluster in Z. mobilis is reminiscent of the hisH-tyrA component of a complex operon in Bacillus subtilis, which includes the tryptophan operon and aroE. Multiple alignment of all aminotransferase sequences available in the database showed that within the class I superfamily of aminotransferases, IAP aminotransferases (family I beta) are closer to the I gamma family (e.g., rat tyrosine aminotransferase) than to the I alpha family (e.g., rat aspartate aminotransferase or E. coli AspC). Signature motifs which distinguish the IAP aminotransferase family were identified in the region of the active-site lysine and in the region of the interdomain interface.
Collapse
Affiliation(s)
- W Gu
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611
| | | | | | | |
Collapse
|
18
|
López-García P, St Jean A, Amils R, Charlebois RL. Genomic stability in the archaeae Haloferax volcanii and Haloferax mediterranei. J Bacteriol 1995; 177:1405-8. [PMID: 7868620 PMCID: PMC176752 DOI: 10.1128/jb.177.5.1405-1408.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Through hybridization of available probes, we have added nine genes to the macrorestriction map of the Haloferax mediterranei chromosome and five genes to the contig map of Haloferax volcanii. Additionally, we hybridized 17 of the mapped cosmid clones from H. volcanii to the H. mediterranei genome. The resulting 35-point chromosomal comparison revealed only two inversions and a few translocations. Forces known to promote rearrangement, common in the haloarchaea, have been ineffective in changing global gene order throughout the nearly 10(7) years of these species' divergent evolution.
Collapse
Affiliation(s)
- P López-García
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
19
|
Brown JR, Masuchi Y, Robb FT, Doolittle WF. Evolutionary relationships of bacterial and archaeal glutamine synthetase genes. J Mol Evol 1994; 38:566-76. [PMID: 7916055 DOI: 10.1007/bf00175876] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glutamine synthetase (GS), an essential enzyme in ammonia assimilation and glutamine biosynthesis, has three distinctive types: GSI, GSII and GSIII. Genes for GSI have been found only in bacteria (eubacteria) and archaea (archaebacteria), while GSII genes only occur in eukaryotes and a few soil-dwelling bacteria. GSIII genes have been found in only a few bacterial species. Recently, it has been suggested that several lateral gene transfers of archaeal GSI genes to bacteria may have occurred. In order to study the evolution of GS, we cloned and sequenced GSI genes from two divergent archaeal species: the extreme thermophile Pyrococcus furiosus and the extreme halophile Haloferax volcanii. Our phylogenetic analysis, which included most available GS sequences, revealed two significant prokaryotic GSI subdivisions: GSI-alpha and GSI-beta. GSI-alpha-genes are found in the thermophilic bacterium, Thermotoga maritima, the low G+C Gram-positive bacteria, and the Euryarchaeota (includes methanogens, halophiles, and some thermophiles). GSI-beta-type genes occur in all other bacteria. GSI-alpha- and GSI-beta-type genes also differ with respect to a specific 25-amino-acid insertion and adenylylation control of GS enzyme activity, both absent in the former but present in the latter. Cyanobacterial genes lack adenylylation regulation of GS and may have secondarily lost it. The GSI gene of Sulfolobus solfataricus, a member of the Crenarchaeota (extreme thermophiles), is exceptional and could not be definitely placed in either subdivision.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Halifax, Nova Scotia
| | | | | | | |
Collapse
|
20
|
Mehta PK, Hale TI, Christen P. Aminotransferases: demonstration of homology and division into evolutionary subgroups. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:549-61. [PMID: 8513804 DOI: 10.1111/j.1432-1033.1993.tb17953.x] [Citation(s) in RCA: 300] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A total of 150 amino acid sequences of vitamin B6-dependent enzymes are known to date, the largest contingent being furnished by the aminotransferases with 51 sequences of 14 different enzymes. All aminotransferase sequences were aligned by using algorithms for sequence comparison, hydropathy patterns and secondary structure predictions. The aminotransferases could be divided into four subgroups on the basis of their mutual structural relatedness. Subgroup I comprises aspartate, alanine, tyrosine, histidinol-phosphate, and phenylalanine aminotransferases; subgroup II acetylornithine, ornithine, omega-amino acid, 4-aminobutyrate and diaminopelargonate aminotransferases; subgroup III D-alanine and branched-chain amino acid aminotransferases, and subgroup IV serine and phosphoserine aminotransferases. (N-1) Profile analysis, a more stringent application of profile analysis [Gribskov, M., McLachlan, A. D. and Eisenberg, D. (1987) Proc. Natl Acad. Sci. USA 84, 4355-4358], established the homology among the enzymes of each subgroup as well as among all subgroups except subgroup III. However, similarity of active-site segments and the hydropathy patterns around invariant residues suggest that subgroup III, though most distantly related, might also be homologous with the other aminotransferases. On the basis of the comprehensive alignment, a new numbering of amino acid residues applicable to aminotransferases (AT) in general is proposed. In the multiply aligned sequences, only four out of a total of about 400 amino acid residues proved invariant in all 51 sequences, i.e. Gly(314AT)197, Asp/Glu(340AT)222, Lys(385AT)258 and Arg(562AT)386, the number not in parentheses corresponding to the structure of porcine cytosolic aspartate aminotransferase. Apparently, the aminotransferases constitute a group of homologous proteins which diverged into subgroups and, with some exceptions, into substrate-specific individual enzymes already in the universal ancestor cell.
Collapse
Affiliation(s)
- P K Mehta
- Biochemisches Institut der Universität Zürich, Switzerland
| | | | | |
Collapse
|
21
|
Krebs MP, Mollaaghababa R, Khorana HG. Gene replacement in Halobacterium halobium and expression of bacteriorhodopsin mutants. Proc Natl Acad Sci U S A 1993; 90:1987-91. [PMID: 8446619 PMCID: PMC46005 DOI: 10.1073/pnas.90.5.1987] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A gene replacement method has been developed to express bacteriorhodopsin mutants in the archaeon Halobacterium halobium. Selectable plasmids carrying the bacterioopsin gene (bop) were integrated at the chromosomal bop locus of H. halobium. Under nonselective conditions, recombinants were isolated that had lost the integrated plasmid and retained a single chromosomal copy of the bop gene. This approach was used to construct a bop deletion strain. By using this strain, recombinants were obtained that express wild-type bacteriorhodopsin and mutants known to be defective in proton translocation. The expressed proteins were purified in a membrane fraction similar to purple membrane and were characterized in this form. UV/visible spectra of dark- and light-adapted bacteriorhodopsin from wild-type and Asp-96 mutants were identical to those of purple membrane. Arg-82, Asp-85, and Asp-212 mutants had 10- to 50-nm red shifts in their absorption maxima and showed altered light adaptation. The proton translocation activity of the wild-type samples and purple membrane was comparable, whereas the mutants had 0-60% of wild-type activity. These results support earlier studies of proton translocation mutants expressed in Escherichia coli.
Collapse
Affiliation(s)
- M P Krebs
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | |
Collapse
|
22
|
Fani R, Alifano P, Allotta G, Bazzicalupo M, Carlomagno MS, Gallori E, Rivellini F, Polsinelli M. The histidine operon of Azospirillum brasilense: organization, nucleotide sequence and functional analysis. Res Microbiol 1993; 144:187-200. [PMID: 8210676 DOI: 10.1016/0923-2508(93)90044-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 3457-base pair fragment of Azospirillum brasilense DNA which complemented mutations in the hisA and hisF genes of Escherichia coli was sequenced. The sequence analysis revealed the presence of six major contiguous open reading frames (ORF). The comparison of the predicted amino acid sequence of these ORF with those encoded by the eubacterial, archaebacterial and eukaryotic his genes sequenced thus far revealed that four of them have a significant degree of homology with the E. coli hisH, hisA, hisF and the C-terminal domain of the hisI gene products. S1 mapping experiments indicated that the putative transcription start site coincided with the AUG translational initiation codon of the hisBd gene, the first gene of the A. brasilense his operon. Downstream from the last ORF, a sequence was identified which functions as a Rho-independent transcription terminator. Comparison of amino acid sequences, gene order and organization and evolutionary aspects of the A. brasilense his cluster are discussed.
Collapse
Affiliation(s)
- R Fani
- Dipartimento di Biologia Animale e Genetica, Università degli Studi, Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Soppa J. Compilation of Halobacterial Protein Coding Genes, the Halobacterial Codon Usage Table and its Use. Syst Appl Microbiol 1993. [DOI: 10.1016/s0723-2020(11)80346-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Pfeifer F, Offner S, Krüger K, Ghahraman P, Englert C. Transformation of Halophilic Archaea and Investigation of Gas Vesicle Synthesis. Syst Appl Microbiol 1993. [DOI: 10.1016/s0723-2020(11)80327-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
25
|
Chapter 15 Halobacterial genes and genomes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
26
|
Takemura H, Horinouchi S, Beppu T. Suppression of an ethanol-sensitive mutation of Acetobacter pasteurianus by overexpression of the his1 gene encoding histidinol phosphate aminotransferase. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0922-338x(93)90013-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Abstract
The genes of Lactococcus lactis subsp. lactis involved in histidine biosynthesis were cloned and characterized by complementation of Escherichia coli and Bacillus subtilis mutants and DNA sequencing. Complementation of E. coli hisA, hisB, hisC, hisD, hisF, hisG, and hisIE genes and the B. subtilis hisH gene (the E. coli hisC equivalent) allowed localization of the corresponding lactococcal genes. Nucleotide sequence analysis of the 11.5-kb lactococcal region revealed 14 open reading frames (ORFs), 12 of which might form an operon. The putative operon includes eight ORFs which encode proteins homologous to enzymes involved in histidine biosynthesis. The operon also contains (i) an ORF encoding a protein homologous to the histidyl-tRNA synthetases but lacking a motif implicated in synthetase activity, which suggests that it has a role different from tRNA aminoacylation, and (ii) an ORF encoding a protein that is homologous to the 3'-aminoglycoside phosphotransferases but does not confer antibiotic resistance. The remaining ORFs specify products which have no homology with proteins in the EMBL and GenBank data bases.
Collapse
Affiliation(s)
- C Delorme
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | |
Collapse
|
28
|
Mankin AS, Zyrianova IM, Kagramanova VK, Garrett RA. Introducing mutations into the single-copy chromosomal 23S rRNA gene of the archaeon Halobacterium halobium by using an rRNA operon-based transformation system. Proc Natl Acad Sci U S A 1992; 89:6535-9. [PMID: 1631155 PMCID: PMC49536 DOI: 10.1073/pnas.89.14.6535] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A vector-transformation system is described that permits replacement of a portion of the single rRNA operon of the archaeon Halobacterium halobium with a homologous fragment from a vector-borne gene. The vector construct contains three functional sections: (i) an entire H. halobium rRNA operon with two selective mutations in the 23S rRNA gene, the substitutions of A----G at position 1159 conferring resistance to thiostrepton and C----U at position 2471 conferring resistance to anisomycin; (ii) the complete pHSB1 plasmid from Halobacterium sp. SB3, which interferes with vector maintenance in the transformed halobacterial cells; and (iii) a segment of the pBR322 plasmid that permits vector replication in Escherichia coli. Transformation of H. halobium with the vector plasmid generates cells resistant to both anisomycin and thiostrepton that can be selected for, and discriminated from spontaneous mutants, by a two-step selection procedure. After transformation, the plasmid recombines homologously with the chromosome so that the plasmid-borne rDNA segment with resistance markers substitutes for the corresponding region of the chromosomal rRNA operon, and the transforming plasmid is lost. Eventually, this leads to a homogeneous population of the mutant ribosomes in the cell. Other mutations that are engineered in the vector-borne rRNA sequences can be transferred to the chromosomal rRNA operon concomitantly with the selective markers. The system has considerable potential for ribosomal engineering.
Collapse
Affiliation(s)
- A S Mankin
- Belozersky Laboratory of Molecular Biology and Bioorganic Chemistry, Moscow State University, Russia
| | | | | | | |
Collapse
|
29
|
Lam WL, Logan SM, Doolittle WF. Genes for tryptophan biosynthesis in the halophilic archaebacterium Haloferax volcanii: the trpDFEG cluster. J Bacteriol 1992; 174:1694-7. [PMID: 1537810 PMCID: PMC206569 DOI: 10.1128/jb.174.5.1694-1697.1992] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Tryptophan auxotrophs of the archaebacterium Haloferax volcanii define a cluster of overlapping genes homologous to eubacterial-eukaryotic trpD, -F, -E, and -G, linked in that order and each preceded by a possible ribosome binding site. Residues involved in feedback inhibition of eubacterial anthranilate synthetases are conserved.
Collapse
Affiliation(s)
- W L Lam
- Canadian Institute for Advanced Research, Dalhousie University, Halifax, Nova Scotia
| | | | | |
Collapse
|
30
|
Cohen A, Lam WL, Charlebois RL, Doolittle WF, Schalkwyk LC. Localizing genes on the map of the genome of Haloferax volcanii, one of the Archaea. Proc Natl Acad Sci U S A 1992; 89:1602-6. [PMID: 1311844 PMCID: PMC48500 DOI: 10.1073/pnas.89.5.1602] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have assigned genetic markers to locations on the physical map of the genome of the archaeon Haloferax volcanii, using both a physical method (hybridization) and a more specific genetic technique (transformation with cosmids). Hybridizations were against restriction digests of each of 151 cosmids making up a minimally overlapping set and covering 96% of the genome. Results with a cloned insertion sequence and a tRNA probe indicated that transposable elements are concentrated on two of the four plasmids of this species, whereas regions complementary to tRNA are largely chromosomal. For a genetic analysis of genes involved in the biosynthesis of amino acids, purines, and pyrimidines, we used cosmid transformation to assign 139 of 243 ethyl methanesulfonate-induced auxotrophic mutations, generated and characterized for this study, to single cosmids or pairs of cosmids from the minimal set. Mutations affecting the biosynthesis of uracil, adenine, guanine, and 14 amino acids have been mapped in this way. All mutations mapped to the 2920-kilobase-pair chromosome of Hf. volcanii and seemed uniformly distributed around this circular replicon. In some cases, many mutations affecting a single pathway map to the same or overlapping cosmids, as would be expected were genes for the pathway linked. For other biosynthetic pathways, several unlinked genetic loci can be identified.
Collapse
Affiliation(s)
- A Cohen
- Department of Biochemistry, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | |
Collapse
|
31
|
Trieselmann BA, Charlebois RL. Transcriptionally active regions in the genome of the archaebacterium Haloferax volcanii. J Bacteriol 1992; 174:30-4. [PMID: 1729217 PMCID: PMC205672 DOI: 10.1128/jb.174.1.30-34.1992] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Transcriptionally active regions of the Haloferax volcanii genome were mapped by hybridization of radiolabeled cDNA to Southern blots of our minimal set of overlapping cosmid clones covering 96% of the 4.1-Mbp genome. Transcription during exponential growth occurred in nearly every region of the 2,920-kbp chromosome. Large parts of the 690- and the 86-kbp plasmids were transcribed, but the 440-kbp plasmid showed little expression. Transcription after a 40-min heat shock at 65 degrees C was generally reduced, apart from a small set of strongly expressed loci all situated on the chromosome.
Collapse
Affiliation(s)
- B A Trieselmann
- Department of Biology, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
32
|
Eisenberg H, Mevarech M, Zaccai G. Biochemical, structural, and molecular genetic aspects of halophilism. ADVANCES IN PROTEIN CHEMISTRY 1992; 43:1-62. [PMID: 1442321 DOI: 10.1016/s0065-3233(08)60553-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H Eisenberg
- Structural Biology Department, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
33
|
Charlebois RL, Schalkwyk LC, Hofman JD, Doolittle WF. Detailed physical map and set of overlapping clones covering the genome of the archaebacterium Haloferax volcanii DS2. J Mol Biol 1991; 222:509-24. [PMID: 1748993 DOI: 10.1016/0022-2836(91)90493-p] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An integrated approach of "bottom up" and "top down" mapping has produced a minimal set of overlapping cosmid clones covering 96% of the 4140 kilobase-pairs (kbp) Haloferax volcanii DS2 genome and a completely closed physical map. This genome is partitioned into five replicons: a 2920 kbp chromosome and four plasmids, of 690 kbp (pHV4), 442 kbp (pHV3), 86 kbp(pHV1) and 6.4 kbp (pHV2). A restriction map for six infrequently-cutting restriction enzymes was constructed, representing a total of 903 sites in the cloned DNA. We have placed the two ribosomal RNA operons, the genes for 7 S RNA and for RNaseP RNA and 22 protein-coding genes on the map. Restriction site frequencies show significant variation in different portions of the genome. The regions of high site density correspond to halobacterial satellite or FII DNA which includes two small regions of the chromosome, the plasmids pHV1 and pHV2, and half of pHV4, but not pHV3.
Collapse
|
34
|
Benachenhou N, Baldacci G. The gene for a halophilic glutamate dehydrogenase: sequence, transcription analysis and phylogenetic implications. MOLECULAR & GENERAL GENETICS : MGG 1991; 230:345-52. [PMID: 1766432 DOI: 10.1007/bf00280290] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have isolated and sequenced the gene for a putative NADP-dependent glutamate dehydrogenase from the extremely halophilic archaebacterium Halobacterium salinarium. This gene is transcribed as a unique RNA molecule of about 1700 nucleotides. The 5' end of the transcript contains characteristic consensus transcription initiation and promoter sequences observed in halophilic archaebacteria. The encoded polypeptide, with a predicted length of 435 amino acids, shows significant overall homology and conservation of functional domains when compared with different eubacterial and eukaryotic glutamate dehydrogenases. Surprisingly, the archaebacterial protein shares a larger number of identical amino acid residues with homologous polypeptides from higher eukaryotes than with those from unicellular eukaryotes and eubacteria.
Collapse
Affiliation(s)
- N Benachenhou
- Institut de Génétique et Microbiologie, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
35
|
Lam WL, Cohen A, Tsouluhas D, Doolittle WF. Genes for tryptophan biosynthesis in the archaebacterium Haloferax volcanii. Proc Natl Acad Sci U S A 1990; 87:6614-8. [PMID: 2118654 PMCID: PMC54587 DOI: 10.1073/pnas.87.17.6614] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent technical advances permit direct genetic approaches for isolating genes and mapping auxotrophic mutations in the halophilic archaebacterium (Archaea) Haloferax volcanii. Twenty-nine mutations in tryptophan biosynthesis mapped to two separate chromosomal locations. DNA sequencing of one gene cluster shows a unique gene order (trpCBA) and unusual potential secondary structures in the 5'-flanking region.
Collapse
Affiliation(s)
- W L Lam
- Department of Biochemistry, Dalhousie University, Halifax, NS, Canada
| | | | | | | |
Collapse
|