1
|
Han E, Kopf SH, Maloney AE, Ai XE, Sigman DM, Zhang X. Nitrogen stable isotope fractionation by biological nitrogen fixation reveals cellular nitrogenase is diffusion limited. PNAS NEXUS 2025; 4:pgaf061. [PMID: 40099223 PMCID: PMC11913218 DOI: 10.1093/pnasnexus/pgaf061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/21/2025] [Indexed: 03/19/2025]
Abstract
Biological fixation of dinitrogen (N2), the primary natural source of new bioavailable nitrogen (N) on Earth, is catalyzed by the enzyme nitrogenase through a complex mechanism at its active site metal cofactor. How this reaction functions in cellular environments, including its rate-limiting step, and how enzyme structure affects functioning remain unclear. Here, we investigated cellular N2 fixation through its N isotope effect (15εfix), measured as the difference between the 15N/14N ratios of diazotroph net new fixed N and N2 substrate. The value of 15εfix underpins N cycle reconstructions and differs between diazotrophs using molybdenum-containing and molybdenum-free nitrogenases. By examining 15εfix for Azotobacter vinelandii strains with natural and mutated nitrogenases, we determined if 15εfix reflects enzyme-scale isotope effects and, thus, N2 use efficiency. Distinct and relatively stable 15εfix values for wild-type molybdenum- and vanadium-nitrogenase isoforms (2.5‰ and 5.8-6.6‰, respectively), despite changing cellular growth rate and electron availability, support 15εfix as a proxy for isoform type among extant nitrogenases. Structural mutation of active site N2 access altered molybdenum-nitrogenase 15εfix (3.0-6.8‰ for α-70VI mutant). Structure-function and isotopic modeling results indicated cellular N2 reduction is rate-limited by N2 diffusion inside nitrogenase due to highly efficient catalysis by the active site cofactor, exemplifying 15εfix as a tool to probe N2 fixation mechanisms. Diffusion-constrained reactions could reflect structural tradeoffs that protect the oxygen-sensitive cofactor from oxygen inactivation. This suggests that nitrogenase function is optimized for modern oxygenated environments and that pre-Great Oxidative Event nitrogenases were less diffusion-limited and potentially exhibited larger 15εfix values.
Collapse
Affiliation(s)
- Eunah Han
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
| | - Sebastian H Kopf
- Department of Geological Sciences, UCB 399, University of Colorado, Boulder, CO 80309, USA
| | - Ashley E Maloney
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
| | - Xuyuan Ellen Ai
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
| | - Daniel M Sigman
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
| | - Xinning Zhang
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
- High Meadows Environmental Institute, Guyot Hall, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
2
|
Payne D, Keller LM, Larson J, Bothner B, Colman DR, Boyd ES. Alternative sources of molybdenum for Methanococcus maripaludis and their implication for the evolution of molybdoenzymes. Commun Biol 2024; 7:1337. [PMID: 39414898 PMCID: PMC11484787 DOI: 10.1038/s42003-024-07049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Molybdoenzymes are essential in global nitrogen, carbon, and sulfur cycling. To date, the only known bioavailable source of molybdenum (Mo) is molybdate. However, in the sulfidic and anoxic (euxinic) habitats that predominate in modern subsurface environments and that were pervasive prior to Earth's widespread oxygenation, Mo occurs as soluble tetrathiomolybdate ion and molybdenite mineral that is not known to be bioavailable. This presents a paradox for how organisms obtain Mo to support molybdoenzymes in these environments. Here, we show that tetrathiomolybdate and molybdenite sustain the high Mo demand of a model anaerobic methanogen, Methanococcus maripaludis, grown via Mo-dependent formate dehydrogenase, formylmethanofuran dehydrogenase, and nitrogenase. Cells grown with tetrathiomolybdate and molybdenite have similar growth kinetics, Mo content, and transcript levels of proteins involved in Mo transport and cofactor biosynthesis when compared to those grown with molybdate, implying similar mechanisms of transport and cofactor biosynthesis. These results help to reconcile the paradox of how Mo is acquired in modern and ancient anaerobes and provide new insight into how molybdoenzymes could have evolved prior to Earth's oxygenation.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
3
|
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023; 13:1443. [PMID: 37892125 PMCID: PMC10605003 DOI: 10.3390/biom13101443] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.
Collapse
Affiliation(s)
- Omar Zayed
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Omar A. Hewedy
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ali Abdelmoteleb
- Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt;
| | - Mohamed S. Youssef
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ahmed F. Roumia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Danelle Seymour
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
4
|
Martin Del Campo JS, Rigsbee J, Bueno Batista M, Mus F, Rubio LM, Einsle O, Peters JW, Dixon R, Dean DR, Dos Santos PC. Overview of physiological, biochemical, and regulatory aspects of nitrogen fixation in Azotobacter vinelandii. Crit Rev Biochem Mol Biol 2023; 57:492-538. [PMID: 36877487 DOI: 10.1080/10409238.2023.2181309] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.
Collapse
Affiliation(s)
| | - Jack Rigsbee
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, USA
| | | | - Florence Mus
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Pozuelo de Alarcón, Spain
| | - Oliver Einsle
- Department of Biochemistry, University of Freiburg, Freiburg, Germany
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Dennis R Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | | |
Collapse
|
5
|
Quantification of biological nitrogen fixation by Mo-independent complementary nitrogenases in environmental samples with low nitrogen fixation activity. Sci Rep 2022; 12:22011. [PMID: 36539445 PMCID: PMC9768154 DOI: 10.1038/s41598-022-24860-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Biological nitrogen fixation (BNF) by canonical molybdenum and complementary vanadium and iron-only nitrogenase isoforms is the primary natural source of newly fixed nitrogen. Understanding controls on global nitrogen cycling requires knowledge of the isoform responsible for environmental BNF. The isotopic acetylene reduction assay (ISARA), which measures carbon stable isotope (13C/12C) fractionation between ethylene and acetylene in acetylene reduction assays, is one of the few methods that can quantify isoform-specific BNF fluxes. Application of classical ISARA has been challenging because environmental BNF activity is often too low to generate sufficient ethylene for isotopic analyses. Here we describe a high sensitivity method to measure ethylene δ13C by in-line coupling of ethylene preconcentration to gas chromatography-combustion-isotope ratio mass spectrometry (EPCon-GC-C-IRMS). Ethylene requirements in samples with 10% v/v acetylene are reduced from > 500 to ~ 20 ppmv (~ 2 ppmv with prior offline acetylene removal). To increase robustness by reducing calibration error, single nitrogenase-isoform Azotobacter vinelandii mutants and environmental sample assays rely on a common acetylene source for ethylene production. Application of the Low BNF activity ISARA (LISARA) method to low nitrogen-fixing activity soils, leaf litter, decayed wood, cryptogams, and termites indicates complementary BNF in most sample types, calling for additional studies of isoform-specific BNF.
Collapse
|
6
|
Specificity of NifEN and VnfEN for the Assembly of Nitrogenase Active Site Cofactors in Azotobacter vinelandii. mBio 2021; 12:e0156821. [PMID: 34281397 PMCID: PMC8406325 DOI: 10.1128/mbio.01568-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nitrogen-fixing microbe Azotobacter vinelandii has the ability to produce three genetically distinct, but mechanistically similar, components that catalyze nitrogen fixation. For two of these components, the Mo-dependent and V-dependent components, their corresponding metal-containing active site cofactors, designated FeMo-cofactor and FeV-cofactor, respectively, are preformed on separate molecular scaffolds designated NifEN and VnfEN, respectively. From prior studies, and the present work, it is now established that neither of these scaffolds can replace the other with respect to their in vivo cofactor assembly functions. Namely, a strain inactivated for NifEN cannot produce active Mo-dependent nitrogenase nor can a strain inactivated for VnfEN produce an active V-dependent nitrogenase. It is therefore proposed that metal specificities for FeMo-cofactor and FeV-cofactor formation are supplied by their respective assembly scaffolds. In the case of the third, Fe-only component, its associated active site cofactor, designated FeFe-cofactor, requires neither the NifEN nor VnfEN assembly scaffold for its formation. Furthermore, there are no other genes present in A. vinelandii that encode proteins having primary structure similarity to either NifEN or VnfEN. It is therefore concluded that FeFe-cofactor assembly is completed within its cognate catalytic protein partner without the aid of an intermediate assembly site. IMPORTANCE Biological nitrogen fixation is a complex process involving the nitrogenases. The biosynthesis of an active nitrogenase involves a large number of genes and the coordinated function of their products. Understanding the details of the assembly and activation of the different nitrogen fixation components, in particular the simplest one known so far, the Fe-only nitrogenase, would contribute to the goal of transferring the necessary genetic elements of bacterial nitrogen fixation to cereal crops to endow them with the capacity for self-fertilization. In this work, we show that there is no need for a scaffold complex for the assembly of the FeFe-cofactor, which provides the active site for Fe-only nitrogenase. These results are in agreement with previously reported genetic reconstruction experiments using a non-nitrogen-fixing microbe. In aggregate, these findings provide a high degree of confidence that the Fe-only system represents the simplest and, therefore, most attractive target for mobilizing nitrogen fixation into plants.
Collapse
|
7
|
Yang ZY, Jimenez-Vicente E, Kallas H, Lukoyanov DA, Yang H, Martin Del Campo JS, Dean DR, Hoffman BM, Seefeldt LC. The electronic structure of FeV-cofactor in vanadium-dependent nitrogenase. Chem Sci 2021; 12:6913-6922. [PMID: 34123320 PMCID: PMC8153082 DOI: 10.1039/d0sc06561g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/26/2021] [Indexed: 01/01/2023] Open
Abstract
The electronic structure of the active-site metal cofactor (FeV-cofactor) of resting-state V-dependent nitrogenase has been an open question, with earlier studies indicating that it exhibits a broad S = 3/2 EPR signal (Kramers state) having g values of ∼4.3 and 3.8, along with suggestions that it contains metal-ions with valencies [1V3+, 3Fe3+, 4Fe2+]. In the present work, genetic, biochemical, and spectroscopic approaches were combined to reveal that the EPR signals previously assigned to FeV-cofactor do not correlate with active VFe-protein, and thus cannot arise from the resting-state of catalytically relevant FeV-cofactor. It, instead, appears resting-state FeV-cofactor is either diamagnetic, S = 0, or non-Kramers, integer-spin (S = 1, 2 etc.). When VFe-protein is freeze-trapped during high-flux turnover with its natural electron-donating partner Fe protein, conditions which populate reduced states of the FeV-cofactor, a new rhombic S = 1/2 EPR signal from such a reduced state is observed, with g = [2.18, 2.12, 2.09] and showing well-defined 51V (I = 7/2) hyperfine splitting, a iso = 110 MHz. These findings indicate a different assignment for the electronic structure of the resting state of FeV-cofactor: S = 0 (or integer-spin non-Kramers state) with metal-ion valencies, [1V3+, 4Fe3+, 3Fe2+]. Our findings suggest that the V3+ does not change valency throughout the catalytic cycle.
Collapse
Affiliation(s)
- Zhi-Yong Yang
- Department of Chemistry and Biochemistry, Utah State University Logan UT 84322 USA +1-435-797-3964
| | | | - Hayden Kallas
- Department of Chemistry and Biochemistry, Utah State University Logan UT 84322 USA +1-435-797-3964
| | - Dmitriy A Lukoyanov
- Department of Chemistry, Northwestern University Evanston IL 60208 USA +1-847-491-3104
| | - Hao Yang
- Department of Chemistry, Northwestern University Evanston IL 60208 USA +1-847-491-3104
| | | | - Dennis R Dean
- Department of Biochemistry, Virginia Tech Blacksburg VA 24061 USA +1-540-231-5895
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University Evanston IL 60208 USA +1-847-491-3104
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University Logan UT 84322 USA +1-435-797-3964
| |
Collapse
|
8
|
Parison K, Gies-Elterlein J, Trncik C, Einsle O. Expression, Isolation, and Characterization of Vanadium Nitrogenase from Azotobacter vinelandii. Methods Mol Biol 2021; 2353:97-121. [PMID: 34292546 DOI: 10.1007/978-1-0716-1605-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nitrogenases are the sole enzymes known to mediate biological nitrogen fixation, an essential process for sustaining life on earth. Among the three known variants, molybdenum nitrogenase is the best-studied to date. Recent work on the alternative vanadium nitrogenase provided important insights into the mechanism of nitrogen fixation since this enzyme differs from its molybdenum counterpart in some important aspects. Here, we present a protocol to obtain unmodified vanadium nitrogenase in high yield and purity from the paradigmatic diazotroph Azotobacter vinelandii, including procedures for cell cultivation, purification, and protein characterization.
Collapse
Affiliation(s)
- Katharina Parison
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | - Christian Trncik
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Pence N, Lewis N, Alleman AB, Seefeldt LC, Peters JW. Revealing a role for the G subunit in mediating interactions between the nitrogenase component proteins. J Inorg Biochem 2020; 214:111273. [PMID: 33086169 DOI: 10.1016/j.jinorgbio.2020.111273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/16/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Abstract
Azotobacter vinelandii contains three forms of nitrogenase known as the Mo-, V-, and Fe-nitrogenases. They are all two-component enzyme systems, where the catalytic component, referred to as NifDK, VnfDGK, and AnfDGK, associates with the reductase component, the Fe protein or NifH, VnfH, and AnfH respectively. AnfDGK and VnfDGK have an additional subunit compared to NifDK, termed gamma or AnfG and VnfG, whose role is unknown. The expression of each nitrogenase is tightly regulated by metal availability, however it is known that there is crosstalk between the Mo- and V‑nitrogenases but the Fe‑nitrogenase components cannot support substrate reduction with its Mo‑nitrogenase counterparts. Here, docking models for the nitrogenase complexes were generated in ClusPro 2.0 based on the crystal structure of the Mo‑nitrogenase and refined using the HADDOCK 2.2 refinement interface to identify structural determinants that enable crosstalk between the Mo- and V‑nitrogenase but not the Fe‑nitrogenase. Differing salt bridge interactions were identified at the binding interface of each complex. Specifically, positively charged residues of VnfG enable complementary interactions with NifH and VnfH but not AnfH. Similarly, negatively charged residues of AnfG enable interactions with AnfH but not NifH or VnfH. A role for the G subunit is revealed where VnfG could be mediating crosstalk between the Mo- and V‑nitrogenases while the AnfG subunit on AnfDGK makes interactions with NifH and VnfH unfavorable, reducing competition with NifDK and funneling electrons to the most efficient nitrogenase.
Collapse
Affiliation(s)
- Natasha Pence
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States of America
| | - Nathan Lewis
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America
| | - Alexander B Alleman
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States of America
| | - John W Peters
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, United States of America.
| |
Collapse
|
10
|
Abstract
Azotobacters have been used as biofertilizer since more than a century. Azotobacters fix nitrogen aerobically, elaborate plant hormones, solubilize phosphates and also suppress phytopathogens or reduce their deleterious effect. Application of wild type Azotobacters results in better yield of cereals like corn, wheat, oat, barley, rice, pearl millet and sorghum, of oil seeds like mustard and sunflower, of vegetable crops like tomato, eggplant, carrot, chillies, onion, potato, beans and sugar beet, of fruits like mango and sugar cane, of fiber crops like jute and cotton and of tree like oak. In addition to the structural genes of the enzyme nitrogenase and of other accessory proteins, A. vinelandii chromosomes contain the regulatory genes nifL and nifA. NifA must bind upstream of the promoters of all nif operons for enabling their expression. NifL on activation by oxygen or ammonium, interacts with NifA and neutralizes it. Nitrogen fixation has been enhanced by deletion of nifL and by bringing nifA under the control of a constitutive promoter, resulting in a strain that continues to fix nitrogen in presence of urea fertilizer. Additional copies of nifH (the gene for the Fe-protein of nitrogenase) have been introduced into A. vinelandii, thereby augmenting nitrogen fixation. The urease gene complex ureABC has been deleted, the ammonia transport gene amtB has been disrupted and the expression of the glutamine synthase gene has been regulated to enhance urea and ammonia excretion. Gluconic acid has been produced by introducing the glucose dehydrogenase gene, resulting in enhanced solubilization of phosphate.
Collapse
|
11
|
Song L, Liu P, Jiang W, Guo Q, Zhang C, Basit A, Li Y, Li J. α-Lys 424 Participates in Insertion of FeMoco to MoFe Protein and Maintains Nitrogenase Activity in Klebsiella oxytoca M5al. Front Microbiol 2019; 10:802. [PMID: 31057512 PMCID: PMC6477116 DOI: 10.3389/fmicb.2019.00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/28/2019] [Indexed: 11/13/2022] Open
Abstract
Our previous investigation of substrates reduction catalyzed by nitrogenase suggested that α-Ile423 of MoFe protein possibly functions as an electron transfer gate to Mo site of active center-"FeMoco". Amino acid residue α-Lys424 connects directly to α-Ile423, and they are located in the same α-helix (α423-431). In the present study, function of α-Lys424 was investigated by replacing it with Arg (alkaline, like Lys), Gln (neutral), Glu (acidic), and Ala (neutral) through site-directed mutagenesis and homologous recombination. The mutants were, respectively, termed 424R, 424Q, 424E, and 424A. Studies of diazotrophic cell growth, cytological, and enzymatic properties indicated that none of the substitutions altered the secondary structure of MoFe protein, or normal expression of nifA, nifL, and nifD. Substitution of alkaline amino acid (i.e., 424R) maintained acetylene (C2H2) and proton (H+) reduction activities at normal levels similar to that of wild-type (WT), because its FeMoco content did not reduce. In contrast, substitution of acidic or neutral amino acid (i.e., 424Q, 424E, 424A) impaired the catalytic activity of nitrogenase to varying degrees. Combination of MoFe protein structural simulation and the results of a series of experiments, the function of α-Lys424 in ensuring insertion of FeMoco to MoFe protein was further confirmed, and the contribution of α-Lys424 in maintaining low potential of the microenvironment causing efficient catalytic activity of nitrogenase was demonstrated.
Collapse
Affiliation(s)
- Lina Song
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pengxi Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Jiang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qingjuan Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chunxi Zhang
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Abdul Basit
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Taulé C, Luizzi H, Beracochea M, Mareque C, Platero R, Battistoni F. The Mo- and Fe-nitrogenases of the endophyte Kosakonia sp. UYSO10 are necessary for growth promotion of sugarcane. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01466-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
13
|
Navarro-Rodríguez M, Buesa JM, Rubio LM. Genetic and Biochemical Analysis of the Azotobacter vinelandii Molybdenum Storage Protein. Front Microbiol 2019; 10:579. [PMID: 30984129 PMCID: PMC6448029 DOI: 10.3389/fmicb.2019.00579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
The N2 fixing bacterium Azotobacter vinelandii carries a molybdenum storage protein, referred to as MoSto, able to bind 25-fold more Mo than needed for maximum activity of its Mo nitrogenase. Here we have investigated a plausible role of MoSto as obligate intermediate in the pathway that provides Mo for the biosynthesis of nitrogenase iron-molybdenum cofactor (FeMo-co). The in vitro FeMo-co synthesis and insertion assay demonstrated that purified MoSto functions as Mo donor and that direct interaction with FeMo-co biosynthetic proteins stimulated Mo donation. The phenotype of an A. vinelandii strain lacking the MoSto subunit genes (ΔmosAB) was analyzed. Consistent with its role as storage protein, the ΔmosAB strain showed severe impairment to accumulate intracellular Mo and lower resilience than wild type to Mo starvation as demonstrated by decreased in vivo nitrogenase activity and competitive growth index. In addition, it was more sensitive than the wild type to diazotrophic growth inhibition by W. The ΔmosAB strain was found to readily derepress vnfDGK upon Mo step down, in contrast to the wild type that derepressed Vnf proteins only after prolonged Mo starvation. The ΔmosAB mutation was then introduced in a strain lacking V and Fe-only nitrogenase structural genes (Δvnf Δanf) to investigate possible compensations from these alternative systems. When grown in Mo-depleted medium, the ΔmosAB and mosAB + strains showed low but similar nitrogenase activities regardless of the presence of Vnf proteins. This study highlights the selective advantage that MoSto confers to A. vinelandii in situations of metal limitation as those found in many soil ecosystems. Such a favorable trait should be included in the gene complement of future nitrogen fixing plants.
Collapse
Affiliation(s)
- Mónica Navarro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - José María Buesa
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
14
|
Jimenez-Vicente E, Yang ZY, Ray WK, Echavarri-Erasun C, Cash VL, Rubio LM, Seefeldt LC, Dean DR. Sequential and differential interaction of assembly factors during nitrogenase MoFe protein maturation. J Biol Chem 2018; 293:9812-9823. [PMID: 29724822 PMCID: PMC6016461 DOI: 10.1074/jbc.ra118.002994] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/24/2018] [Indexed: 11/06/2022] Open
Abstract
Nitrogenases reduce atmospheric nitrogen, yielding the basic inorganic molecule ammonia. The nitrogenase MoFe protein contains two cofactors, a [7Fe-9S-Mo-C-homocitrate] active-site species, designated FeMo-cofactor, and a [8Fe-7S] electron-transfer mediator called P-cluster. Both cofactors are essential for molybdenum-dependent nitrogenase catalysis in the nitrogen-fixing bacterium Azotobacter vinelandii. We show here that three proteins, NafH, NifW, and NifZ, copurify with MoFe protein produced by an A. vinelandii strain deficient in both FeMo-cofactor formation and P-cluster maturation. In contrast, two different proteins, NifY and NafY, copurified with MoFe protein deficient only in FeMo-cofactor formation. We refer to proteins associated with immature MoFe protein in the following as “assembly factors.” Copurifications of such assembly factors with MoFe protein produced in different genetic backgrounds revealed their sequential and differential interactions with MoFe protein during the maturation process. We found that these interactions occur in the order NafH, NifW, NifZ, and NafY/NifY. Interactions of NafH, NifW, and NifZ with immature forms of MoFe protein preceded completion of P-cluster maturation, whereas interaction of NafY/NifY preceded FeMo-cofactor insertion. Because each assembly factor could independently bind an immature form of MoFe protein, we propose that subpopulations of MoFe protein–assembly factor complexes represent MoFe protein captured at different stages of a sequential maturation process. This suggestion was supported by separate isolation of three such complexes, MoFe protein–NafY, MoFe protein–NifY, and MoFe protein–NifW. We conclude that factors involved in MoFe protein maturation sequentially bind and dissociate in a dynamic process involving several MoFe protein conformational states.
Collapse
Affiliation(s)
| | - Zhi-Yong Yang
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, and
| | - W Keith Ray
- From the Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Carlos Echavarri-Erasun
- the Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM Pozuelo de Alarcón, Madrid 28223, Spain
| | - Valerie L Cash
- From the Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061
| | - Luis M Rubio
- the Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM Pozuelo de Alarcón, Madrid 28223, Spain
| | - Lance C Seefeldt
- the Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, and
| | - Dennis R Dean
- From the Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061,
| |
Collapse
|
15
|
Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW. Exploring the alternatives of biological nitrogen fixation. Metallomics 2018; 10:523-538. [DOI: 10.1039/c8mt00038g] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Most biological nitrogen fixation (BNF) results from the activity of the molybdenum nitrogenase (Mo-nitrogenase, Nif), an oxygen-sensitive metalloenzyme complex found in all known diazotrophs.
Collapse
Affiliation(s)
- Florence Mus
- Institute of Biological Chemistry, Washington State University
- Pullman
- USA
| | | | - Natasha Pence
- Department of Chemistry and Biochemistry, Montana State University
- Bozeman
- USA
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry, Utah State University
- Logan
- USA
| | - John W. Peters
- Institute of Biological Chemistry, Washington State University
- Pullman
- USA
| |
Collapse
|
16
|
Sippel D, Einsle O. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat Chem Biol 2017; 13:956-960. [PMID: 28692069 PMCID: PMC5563456 DOI: 10.1038/nchembio.2428] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022]
Abstract
Nitrogenases catalyze the reduction of N2 gas to ammonium at a complex heterometallic cofactor. Most commonly this is the FeMo cofactor (FeMoco), a [Mo:7Fe:9S:C] cluster whose exact reactivity and substrate binding mode remain unknown. Alternative nitrogenases replace molybdenum with either vanadium or iron and differ in reactivity, prominently in the ability of vanadium nitrogenase to reduce CO to hydrocarbons. Here we report the 1.35 Å structure of vanadium nitrogenase from Azotobacter vinelandii. The 240 kDa protein contains an additional α-helical subunit not present in molybdenum nitrogenase. The FeV cofactor (FeVco) is a [V:7Fe:8S:C] cluster with a homocitrate ligand to vanadium. Unexpectedly, it lacks one sulfide ion compared to FeMoco that is replaced by a bridging ligand, likely a μ-1,3-carbonate. The anion fits into a pocket within the protein that is obstructed in molybdenum nitrogenase, and its different chemical character helps to rationalize the altered chemical properties of this unique N2- and CO-fixing enzyme.
Collapse
Affiliation(s)
- Daniel Sippel
- Lehrstuhl Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg Research Institute for Advanced Studies (FRIAS), and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Oliver Einsle
- Lehrstuhl Biochemie, Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg Research Institute for Advanced Studies (FRIAS), and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| |
Collapse
|
17
|
Jiménez-Vicente E, Navarro-Rodríguez M, Poza-Carrión C, Rubio LM. Role of Azotobacter vinelandii FdxN in FeMo-co biosynthesis. FEBS Lett 2013; 588:512-6. [PMID: 24374338 DOI: 10.1016/j.febslet.2013.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 11/20/2022]
Abstract
Biosynthesis of metal clusters for the nitrogenase component proteins NifH and NifDK involves electron donation events. Yet, electron donors specific to the biosynthetic pathways of the [4Fe-4S] cluster of NifH, or the P-cluster and the FeMo-co of NifDK, have not been identified. Here we show that an Azotobacter vinelandii mutant lacking fdxN was specifically impaired in FeMo-co biosynthesis. The ΔfdxN mutant produced 5-fold less NifB-co, an early FeMo-co biosynthetic intermediate, than wild type. As a consequence, it accumulated FeMo-co-deficient apo-NifDK and was impaired in NifDK activity. We conclude that FdxN plays a role in FeMo-co biosynthesis, presumably by donating electrons to support NifB-co synthesis by NifB. This is the first role in nitrogenase biosynthesis unequivocally assigned to any A. vinelandii ferredoxin.
Collapse
Affiliation(s)
- Emilio Jiménez-Vicente
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Mónica Navarro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Pozuelo de Alarcón 28223, Madrid, Spain
| | - César Poza-Carrión
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Pozuelo de Alarcón 28223, Madrid, Spain
| | - Luis M Rubio
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Pozuelo de Alarcón 28223, Madrid, Spain.
| |
Collapse
|
18
|
Howard JB, Kechris KJ, Rees DC, Glazer AN. Multiple amino acid sequence alignment nitrogenase component 1: insights into phylogenetics and structure-function relationships. PLoS One 2013; 8:e72751. [PMID: 24019874 PMCID: PMC3760896 DOI: 10.1371/journal.pone.0072751] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/18/2013] [Indexed: 02/05/2023] Open
Abstract
Amino acid residues critical for a protein's structure-function are retained by natural selection and these residues are identified by the level of variance in co-aligned homologous protein sequences. The relevant residues in the nitrogen fixation Component 1 α- and β-subunits were identified by the alignment of 95 protein sequences. Proteins were included from species encompassing multiple microbial phyla and diverse ecological niches as well as the nitrogen fixation genotypes, anf, nif, and vnf, which encode proteins associated with cofactors differing at one metal site. After adjusting for differences in sequence length, insertions, and deletions, the remaining >85% of the sequence co-aligned the subunits from the three genotypes. Six Groups, designated Anf, Vnf , and Nif I-IV, were assigned based upon genetic origin, sequence adjustments, and conserved residues. Both subunits subdivided into the same groups. Invariant and single variant residues were identified and were defined as “core” for nitrogenase function. Three species in Group Nif-III, Candidatus Desulforudis audaxviator, Desulfotomaculum kuznetsovii, and Thermodesulfatator indicus, were found to have a seleno-cysteine that replaces one cysteinyl ligand of the 8Fe:7S, P-cluster. Subsets of invariant residues, limited to individual groups, were identified; these unique residues help identify the gene of origin (anf, nif, or vnf) yet should not be considered diagnostic of the metal content of associated cofactors. Fourteen of the 19 residues that compose the cofactor pocket are invariant or single variant; the other five residues are highly variable but do not correlate with the putative metal content of the cofactor. The variable residues are clustered on one side of the cofactor, away from other functional centers in the three dimensional structure. Many of the invariant and single variant residues were not previously recognized as potentially critical and their identification provides the bases for new analyses of the three-dimensional structure and for mutagenesis studies.
Collapse
Affiliation(s)
- James B. Howard
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (JBH); (KJK); (DCR); (ANG)
| | - Katerina J. Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, Colorado, United States of America
- * E-mail: (JBH); (KJK); (DCR); (ANG)
| | - Douglas C. Rees
- Division of Chemistry and Chemical Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (JBH); (KJK); (DCR); (ANG)
| | - Alexander N. Glazer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail: (JBH); (KJK); (DCR); (ANG)
| |
Collapse
|
19
|
Abstract
The asymmetric oxidation product [((Ph)L)Fe3(μ-Cl)]2 [(Ph)LH6 = MeC(CH2NHPh-o-NHPh)3], where each trinuclear core is comprised of an oxidized diiron unit [Fe2](5+) and an isolated trigonal pyramidal ferrous site, reacts with MCl2 salts to afford heptanuclear bridged structures of the type ((Ph)L)2Fe6M(μ-Cl)4(thf)2, where M = Fe or Co. Zero-field, (57)Fe Mössbauer analysis revealed the Co resides within the trinuclear core subunits, not at the octahedral, halide-bridged MCl4(thf)2 position indicating Co migration into the trinuclear subunits has occurred. Reaction of [((Ph)L)Fe3(μ-Cl)]2 with CoCl2 (2 or 5 equivalents) followed by precipitation via addition of acetonitrile afforded trinuclear products where one or two irons, respectively, can be substituted within the trinuclear core. Metal atom substitution was verified by (1)H NMR, (57)Fe Mossbauer, single crystal X-ray diffraction, X-ray fluorescence, and magnetometry analysis. Spectroscopic analysis revealed that the Co atom(s) substitute(s) into the oxidized dimetal unit ([M2](5+)), while the M(2+) site remains iron-substituted. Magnetic data acquired for the series are consistent with this analysis revealing the oxidized dimetal unit comprises a strongly coupled S = 1 unit ([FeCo](5+)) or S = 1/2 ([Co2](5+)) that is weakly antiferromagnetically coupled to the high spin (S = 2) ferrous site. The kinetic pathway for metal substitution was probed via reaction of [((Ph)L)Fe3(μ-Cl)]2 with isotopically enriched (57)FeCl2(thf)2, the results of which suggest rapid equilibration of (57)Fe into both the M(2+) site and oxidized diiron site, achieving a 1:1 mixture.
Collapse
Affiliation(s)
- Emily V Eames
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | | | | |
Collapse
|
20
|
Abstract
Advances in sequencing technology in the past decade have enabled the sequencing of genomes of thousands of organisms including diazotrophs. Genomics have enabled thorough analysis of the gene organization of nitrogen-fixing species, the identification of new genes involved in nitrogen fixation, and the identification of new diazotrophic species. This chapter reviews key characteristics of nitrogen-fixing genomes and methods to identify and analyze genomes of new diazotrophs using genome scanning. This chapter refers to Azotobacter vinelandii, a well-studied nitrogen-fixing organism, as a model for studying nitrogen-fixing genomes. We discuss the main nitrogen fixation genes as well as accessory genes that contribute to diazotrophy. We also review approaches that can be used to modify genomes in order to study nitrogen fixation at the genetic, biochemical, and biophysical level.
Collapse
|
21
|
Hamilton TL, Ludwig M, Dixon R, Boyd ES, Dos Santos PC, Setubal JC, Bryant DA, Dean DR, Peters JW. Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii. J Bacteriol 2011; 193:4477-86. [PMID: 21724999 PMCID: PMC3165507 DOI: 10.1128/jb.05099-11] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/25/2011] [Indexed: 11/20/2022] Open
Abstract
Most biological nitrogen (N(2)) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandii cultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N(2) fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N(2) fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo.
Collapse
Affiliation(s)
- Trinity L. Hamilton
- Department of Chemistry and Biochemistry and Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717
| | - Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Eric S. Boyd
- Department of Chemistry and Biochemistry and Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717
| | | | - João C. Setubal
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Donald A. Bryant
- Department of Chemistry and Biochemistry and Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Dennis R. Dean
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - John W. Peters
- Department of Chemistry and Biochemistry and Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana 59717
- Department of Microbiology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
22
|
Bellenger JP, Wichard T, Xu Y, Kraepiel AML. Essential metals for nitrogen fixation in a free-living N₂-fixing bacterium: chelation, homeostasis and high use efficiency. Environ Microbiol 2011; 13:1395-411. [PMID: 21392197 DOI: 10.1111/j.1462-2920.2011.02440.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biological nitrogen fixation, the main source of new nitrogen to the Earth's ecosystems, is catalysed by the enzyme nitrogenase. There are three nitrogenase isoenzymes: the Mo-nitrogenase, the V-nitrogenase and the Fe-only nitrogenase. All three types require iron, and two of them also require Mo or V. Metal bioavailability has been shown to limit nitrogen fixation in natural and managed ecosystems. Here, we report the results of a study on the metal (Mo, V, Fe) requirements of Azotobacter vinelandii, a common model soil diazotroph. In the growth medium of A. vinelandii, metals are bound to strong complexing agents (metallophores) excreted by the bacterium. The uptake rates of the metallophore complexes are regulated to meet the bacterial metal requirement for diazotrophy. Under metal-replete conditions Mo, but not V or Fe, is stored intracellularly. Under conditions of metal limitation, intracellular metals are used with remarkable efficiency, with essentially all the cellular Mo and V allocated to the nitrogenase enzymes. While the Mo-nitrogenase, which is the most efficient, is used preferentially, all three nitrogenases contribute to N₂ fixation in the same culture under metal limitation. We conclude that A. vinelandii is well adapted to fix nitrogen in metal-limited soil environments.
Collapse
Affiliation(s)
- J-P Bellenger
- Department of Geosciences, PEI, Guyot Hall, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
23
|
Dos Santos PC, Dean DR. Co-ordination and fine-tuning of nitrogen fixation in Azotobacter vinelandii. Mol Microbiol 2011; 79:1132-5. [DOI: 10.1111/j.1365-2958.2011.07541.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Patel MN, Chhasatia MR, Patel SH, Bariya HS, Thakkar VR. DNA cleavage, binding and intercalation studies of drug-based oxovanadium(IV) complexes. J Enzyme Inhib Med Chem 2009; 24:715-21. [DOI: 10.1080/14756360802361423] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- M. N. Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - M. R. Chhasatia
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - S. H. Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - H. S. Bariya
- B & R Doshi School of Biosciences, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| | - V. R. Thakkar
- B & R Doshi School of Biosciences, Sardar Patel University, Vallabh Vidyanagar, 388 120, Gujarat, India
| |
Collapse
|
25
|
Masukawa H, Zhang X, Yamazaki E, Iwata S, Nakamura K, Mochimaru M, Inoue K, Sakurai H. Survey of the distribution of different types of nitrogenases and hydrogenases in heterocyst-forming cyanobacteria. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:397-409. [PMID: 19005727 DOI: 10.1007/s10126-008-9156-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 10/07/2008] [Indexed: 05/26/2023]
Abstract
As a first step toward developing the methodology for screening large numbers of heterocyst-forming freshwater cyanobacteria strains for the presence of various types of nitrogenases and hydrogenases, we surveyed the distribution of these genes and their activities in 14 strains from culture collections. The nitrogenase genes include nif1 encoding a Mo-type nitrogenase expressed in heterocysts, nif2 expressed in vegetative cells and heterocysts under anaerobic conditions, and vnf encoding a V-type nitrogenase expressed in heterocysts. Two methods proved to be valuable in surveying the distribution of nitrogenase types. The first method was Southern blot hybridization of DNA digested with two different endonucleases and hybridized with nifD1, nifD2, and vnfD probes. The second method was ethane formation from acetylene to detect the presence of active V-nitrogenase. We found that all 14 strains have nifD1 genes, and eight strains also have nifD2 genes. Four of the strains have vnfD genes, in addition to nifD2 genes. It is curious that three of these four strains had similar hybridization patterns with all of the nifD1, nifD2, and vnfD probes, suggesting that there could be some bias in strains used in the present study or in strains held in culture collections. This point will need to be assessed in the future. For surveying the distribution of hydrogenases, Southern blot hybridization was an effective method. All strains surveyed had hup genes, with the majority of them also having hox genes.
Collapse
Affiliation(s)
- Hajime Masukawa
- Department of Biological Sciences, Kanagawa University, Hiratsuka, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Betancourt DA, Loveless TM, Brown JW, Bishop PE. Characterization of diazotrophs containing Mo-independent nitrogenases, isolated from diverse natural environments. Appl Environ Microbiol 2008; 74:3471-80. [PMID: 18378646 PMCID: PMC2423014 DOI: 10.1128/aem.02694-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 03/22/2008] [Indexed: 11/20/2022] Open
Abstract
Molybdenum-independent nitrogenases were first described in the nitrogen-fixing bacterium Azotobacter vinelandii and have since been described in other diazotrophic bacteria. Previously, we reported the isolation of seven diazotrophs with Mo-independent nitrogenases from aquatic environments. In the present study, we extend these results to include diazotrophs isolated from wood chip mulch, soil, "paraffin dirt," and sediments from mangrove swamps. Mo-deficient, N-free media under both aerobic and anaerobic conditions were used for the isolations. A total of 26 isolates were genetically and physiologically characterized. Their phylogenetic placement was determined using 16S rRNA gene sequence analysis. Most of the isolates are members of the gamma subdivision of the class Proteobacteria and appear to be specifically related to fluorescent pseudomonads and azotobacteria. Two other isolates, AN1 and LPF4, are closely related to Enterobacter spp. and Paenibacillus spp., respectively. PCR and/or Southern hybridization were used to detect the presence of nitrogenase genes in the isolates. PCR amplification of vnfG and anfG was used to detect the genetic potential for the expression of the vanadium-containing nitrogenase and the iron-only nitrogenase in the isolates. This study demonstrates that diazotrophs with Mo-independent nitrogenases can be readily isolated from diverse natural environments.
Collapse
Affiliation(s)
- Doris A Betancourt
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
The iron-molybdenum cofactor (FeMo-co), located at the active site of the molybdenum nitrogenase, is one of the most complex metal cofactors known to date. During the past several years, an intensive effort has been made to purify the proteins involved in FeMo-co synthesis and incorporation into nitrogenase. This effort is starting to provide insights into the structures of the FeMo-co biosynthetic intermediates and into the biochemical details of FeMo-co synthesis.
Collapse
Affiliation(s)
- Luis M Rubio
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.
| | | |
Collapse
|
28
|
Mortenson LE, Seefeldt LC, Morgan TV, Bolin JT. The role of metal clusters and MgATP in nitrogenase catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 67:299-374. [PMID: 8322617 DOI: 10.1002/9780470123133.ch4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L E Mortenson
- Center for Metalloenzyme Studies, University of Georgia, Athens
| | | | | | | |
Collapse
|
29
|
Pratte BS, Eplin K, Thiel T. Cross-functionality of nitrogenase components NifH1 and VnfH in Anabaena variabilis. J Bacteriol 2006; 188:5806-11. [PMID: 16885448 PMCID: PMC1540069 DOI: 10.1128/jb.00618-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anabaena variabilis fixes nitrogen under aerobic growth conditions in differentiated cells called heterocysts using either a Mo nitrogenase or a V nitrogenase. The nifH1 gene, which encodes the dinitrogenase reductase of the Mo nitrogenase that is expressed only in heterocysts, is cotranscribed with nifD1 and nifK1, which together encode the Mo dinitrogenase. These genes were expressed in the presence or absence of molybdate or vanadate. The vnfH gene, which encodes the dinitrogenase reductase of the V nitrogenase, was located about 23 kb from vnfDGK, which encodes the V dinitrogenase; however, like vnfDGK, vnfH was expressed only in the absence of molybdate, with or without vanadate. Like nifH1, the vnfH gene was expressed exclusively in heterocysts under either aerobic or anaerobic growth conditions and thus is under the control of developmental factors. The vnfH mutant was able to grow diazotrophically using the V nitrogenase, because NifH1, which was also made in cells starved for molybdate, could substitute for VnfH. Under oxic conditions, the nifH1 mutant grew in the absence of molybdate but not in its presence, using VnfH, while the nifH1 vnfH double mutant did not grow diazotrophically with or without molybdate or vanadate. A nifH1 mutant that expressed nifDK and vnfH but not vnfDGK was able to grow and fix nitrogen normally, indicating that VnfH could substitute for NifH in the Mo nitrogenase and that these dinitrogenase reductases are not involved in determining the metal specificity of the Mo nitrogenase or the V nitrogenase.
Collapse
Affiliation(s)
- Brenda S Pratte
- Department of Biology, University of Missouri-St. Louis, One University Blvd., St. Louis, MO 63121-4499, USA
| | | | | |
Collapse
|
30
|
Hu Y, Corbett MC, Fay AW, Webber JA, Hedman B, Hodgson KO, Ribbe MW. Nitrogenase reactivity with P-cluster variants. Proc Natl Acad Sci U S A 2005; 102:13825-30. [PMID: 16166259 PMCID: PMC1236593 DOI: 10.1073/pnas.0506967102] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrogenase is a multicomponent metalloenzyme that catalyzes the conversion of atmospheric dinitrogen to ammonia. For decades, it has been generally believed that the [8Fe-7S] P-cluster of nitrogenase component 1 is indispensable for nitrogenase activity. In this study, we identified two catalytically active P-cluster variants by activity assays, metal analysis, and EPR spectroscopic studies. Further, we showed that both P-cluster variants resemble [4Fe-4S]-like centers based on x-ray absorption spectroscopic experiments. We believe that our findings challenge the dogma that the standard P-cluster is the only cluster species capable of supporting substrate reduction at the FeMo cofactor and provide important insights into the general mechanism of nitrogenase catalysis and assembly.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697-3900, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- Luis M Rubio
- Department of Plant and Microbial Biology, University of California-Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, USA.
| | | |
Collapse
|
32
|
Dos Santos PC, Dean DR, Hu Y, Ribbe MW. Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem Rev 2004; 104:1159-73. [PMID: 14871152 DOI: 10.1021/cr020608l] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Qurollo BA, Bishop PE, Hassan HM. Characterization of the iron superoxide dismutase gene of Azotobacter vinelandii: sodB may be essential for viability. Can J Microbiol 2004; 47:63-71. [PMID: 15049451 DOI: 10.1139/w00-126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Azotobacter vinelandii contains two superoxide dismutases (SODs), a cytoplasmic iron-containing enzyme (FeSOD), and a periplasmic copper/zinc-containing enzyme (CuZnSOD). In this study, the FeSOD was found to be constitutive, while the activity of CuZnSOD increased as the culture entered the stationary phase. Total SOD (units/mg protein) in stationary phase cells grown under nitrogen-fixing conditions was not significantly different from those grown under non-nitrogen-fixing conditions. The gene encoding FeSOD (sodB) was isolated from an A. vinelandii cosmid library. A 1-kb fragment containing the coding region and 400 base pairs of upstream sequence was cloned and sequenced. The nucleotide sequence and the deduced amino acid sequence had a high degree of homology with other bacterial FeSODs, particularly with P. aeruginosa. Attempts to construct a sodB mutant by recombination of a sodB::kan insertion mutation into the multicopy chromosome of A. vinelandii were unsuccessful even in the presence of SOD mimics or nutritional supplements. These results suggest that FeSOD may be essential for the growth and survival of A. vinelandii, and that the periplasmic CuZnSOD cannot replace the function of FeSOD.
Collapse
Affiliation(s)
- B A Qurollo
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695-7615, USA
| | | | | |
Collapse
|
34
|
Bhattacharyya S, Mukhopadhyay S, Samanta S, Weakley TJR, Chaudhury M. Synthesis, characterization, and reactivity of mononuclear O,N-chelated vanadium(IV) and -(III) complexes of methyl 2-Aminocyclopent-1-ene-1-dithiocarboxylate based ligand: reporting an example of conformational isomerism in the solid state. Inorg Chem 2002; 41:2433-40. [PMID: 11978110 DOI: 10.1021/ic0108639] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vanadium(IV) and -(III) complexes of a tetradentate N(2)OS Schiff base ligand H(2)L [derived from methyl 2-((beta-aminoethyl)amino)cyclopent-1-ene-1-dithiocarboxylate and salicylaldehyde] are reported. In all the complexes, the ligand acts in a bidentate (N,O) fashion leaving a part containing the N,S donor set uncoordinated. The oxovanadium(IV) complex [VO(HL)(2)] (1) is obtained by the reaction between [VO(acac)(2)] and H(2)L. In the solid state, compound 1 has two conformational isomers 1a and 1b; both have been characterized by X-ray crystallography. Compound 1a has the syn conformation that enforces the donor atoms around the metal center to adopt a distorted tbp structure (tau = 0.55). Isomer 1b on the other hand has an anti conformation with almost a regular square pyramidal geometry (tau = 0.06) around vanadium. In solution, however, 1 prefers to be in the square pyramidal form. A second variety of vanadyl complex [VO(L(cyclic))(2)](I(3))(2) (2) with a new bidentate O,N donor ligand involving isothiazolium moiety has been obtained by a ligand-based oxidation of the precursor complex 1 with iodine. Preliminary X-ray and FAB mass spectroscopic data of 2 have supported the formation of a heterocyclic moiety by a ring closure reaction involving a N-S bond. Vanadium(III) complex [V(acac)(HL)(2)] (3) has been obtained through partial ligand displacement of [V(acac)(3)] with H(2)L. Compound 3 has almost a regular octahedral structure completed by two bidentate HL ligands along with an acetylacetonate molecule. Electronic spectra, magnetism, EPR, and redox properties of these compounds are reported.
Collapse
Affiliation(s)
- Sudeep Bhattacharyya
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India
| | | | | | | | | |
Collapse
|
35
|
Ruttimann-Johnson C, Rangaraj P, Shah VK, Ludden PW. Requirement of homocitrate for the transfer of a 49V-labeled precursor of the iron-vanadium cofactor from VnfX to nif-apodinitrogenase. J Biol Chem 2001; 276:4522-6. [PMID: 11053414 DOI: 10.1074/jbc.m007288200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A vanadium- and iron-containing cluster has been shown previously to accumulate on VnfX in the Azotobacter vinelandii mutant strain CA11.1 (DeltanifHDKvnfDGK::spc). In the present study, we show the homocitrate-dependent transfer of (49)V label from VnfX to nif-apodinitrogenase in vitro. This transfer of radiolabel correlates with acquisition of acetylene reduction activity. Acetylene is reduced both to ethylene and ethane by the hybrid holodinitrogenase so formed, a feature characteristic of alternative nitrogenases. Structural analogues of homocitrate prevent the acetylene reduction ability of the resulting dinitrogenase. Addition of NifB cofactor (-co) or a source of vanadium (Na(3)VO(4) or VCl(3)) does not increase nitrogenase activity. Our results suggest that there is in vitro incorporation of homocitrate into the V-Fe-S cluster associated with VnfX and that the completed cluster can be inserted into nif-apodinitrogenase. The homocitrate incorporation reaction and the insertion of the cluster into nif-apodinitrogenase (alpha(2)beta(2)gamma(2)) do not require MgATP. Attempts to achieve FeV-co synthesis using extracts of other FeV-co-negative mutants were unsuccessful, showing that earlier steps in FeV-co synthesis, such as the steps requiring VnfNE or VnfH, do not occur in vitro.
Collapse
Affiliation(s)
- C Ruttimann-Johnson
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
36
|
Lei S, Pulakat L, Gavini N. Activation of vanadium nitrogenase expression in Azotobacter vinelandii DJ54 revertant in the presence of molybdenum. FEBS Lett 2000; 482:149-53. [PMID: 11018539 DOI: 10.1016/s0014-5793(00)02052-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Azotobacter vinelandii carries three different and genetically distinct nitrogenase systems on its chromosome. Expression of all three nitrogenases is repressed by high concentrations of fixed nitrogen. Expression of individual nitrogenase systems is under the control of specific metal availability. We have isolated a novel type of A. vinelandii DJ54 revertant, designated A. vinelandii BG54, which carries a defined deletion in the nifH gene and is capable of diazotrophic growth in the presence of molybdenum. Inactivation of nifDK has no effect on growth of this mutant strain in nitrogen-free medium suggesting that products of the nif system are not involved in supporting diazotrophic growth of A. vinelandii BG54. Similar to the wild type, A. vinelandii BG54 is also sensitive to 1 mM tungsten. Tn5-B21 mutagenesis to inactivate the genes specific to individual systems revealed that the structural genes for vnf nitrogenase are required for diazotrophic growth of A. vinelandii BG54. Analysis of promoter activity of different nif systems revealed that the vnf promoter is activated in A. vinelandii BG54 in the presence of molybdenum. Based on these data we conclude that A. vinelandii BG54 strain utilizes vnf nitrogenase proteins to support its diazotrophic growth.
Collapse
Affiliation(s)
- S Lei
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
| | | | | |
Collapse
|
37
|
Vlahos AT, Tolis EI, Raptopoulou CP, Tsohos A, Sigalas MP, Terzis A, Kabanos TA. Model investigations of vanadium-protein interactions: novel vanadium(III) and oxovanadium(IV) compounds with the diamidate ligand 1,2-bis(2-pyridinecarboxamide)benzene (H2bpb). Inorg Chem 2000; 39:2977-85. [PMID: 11196892 DOI: 10.1021/ic990837z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel vanadium(III) and oxovanadium(IV) compounds with the diamidate ligand 1,2-bis(2-pyridinecarboxamide)benzene (H2bpb) were synthesized and structurally characterized. H2bpb is capable of binding to vanadium in either its anionic (dianionic-monoanionic) or its neutral form, resulting in complexes of various geometries and stoichiometries. The dianionic form (bpb2-), in NHEt3(trans-[VCl2(bpb)]) (1) and [VO(bpb)(H2O)]05dmso036CH3OH013H2O (6x05dmsox036CH3OHx013H2O), acts as a planar tetradentate bis[N-amidate-N-pyridine] equatorial ligand. The monoanionic form (Hbpb-) behaves as an (Npy,Oam) or (Npy,Nam) chelator in [V(Hbpb)3]2CHCl3 (22CHCl3) as well as a mu 2-bridging-eta 4-(Npy,Oam-Npy,Nam) in [VOCl(Hbpb)](2)x2CH3NO2 (3x2CH3NO2), while the neutral H2bpb behaves as a mu 2-bridging-eta 4-bis(Npy,Oam) in [VOCl(H2bpb)](2)x104CH3OHx123thfx074H2O (4x104CH3OH123thf074H2O). Compound 4x104CH3OHx123thfx074H2O crystallizes in the triclinic system P1, with (at 25 degrees C) a = 9140(2) A, b = 11058(2) A, c = 14175(2) A, alpha = 99013(5) degrees, beta = 104728(7) degrees, gamma = 102992(7) degrees, V = 13149(4) A3, Z = 1, while compound 605dmso036CH3OH013H2O crystallizes in the monoclinic space group P2(1)/n with (at 25 degrees C) a = 11054(5) A, b = 11407(5) A, c = 16964(7) A, beta = 932(1) degrees, V = 2136(2) A3, Z = 4. Variable temperature magnetic susceptibility studies of the dimeric compounds 3x2CH3NO2 and 4x104CH3OH show g values for the V(IV) centers that are slightly smaller than 20 (as expected for d1 ions) and indicate small antiferromagnetic coupling between the two vanadium(IV) centers. Ab initio calculations were also carried out, providing results concerning the effect of the relative strength and the deformation energy involved in the eta 2-(Npy,Nam) and eta 2-(Npy,Oam) bonding modes in the ligation of Hbpb- to vanadium.
Collapse
Affiliation(s)
- A T Vlahos
- Department of Chemistry, Section of Inorganic and Analytical Chemistry, University of Ioannina, 451 10 Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
38
|
Christiansen J, Cash VL, Seefeldt LC, Dean DR. Isolation and characterization of an acetylene-resistant nitrogenase. J Biol Chem 2000; 275:11459-64. [PMID: 10753963 DOI: 10.1074/jbc.275.15.11459] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A genetic strategy was developed for the isolation of a mutant strain of Azotobacter vinelandii that exhibits in vivo nitrogenase activity resistant to inhibition by acetylene. Examination of the kinetic features of the altered nitrogenase MoFe protein produced by this strain, which has serine substituted for the alpha-subunit Gly(69) residue, is consistent with other studies that indicate the MoFe protein normally contains at least two acetylene binding/reduction sites. The first of these is a high affinity site and is the one primarily accessed during typical acetylene reduction assays. Results of the present work indicate that this acetylene binding/reduction site is not directly relevant to the mechanism of nitrogen reduction because it can be eliminated or severely altered without significantly affecting nitrogen reduction. Elimination of this site also results in the manifestation of a low affinity acetylene-binding site to which both acetylene and nitrogen are able to bind with approximately the same affinity. In contrast to the normal enzyme, nitrogen and acetylene binding to the altered MoFe protein are mutually competitive. The location of the alpha-Ser(69) substitution is interpreted to indicate that the 4Fe-4S face of the FeMo cofactor capped by the alpha-subunit Val(70) residue is the most likely region within FeMo cofactor to which acetylene binds with high affinity.
Collapse
Affiliation(s)
- J Christiansen
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061-0346, USA
| | | | | | | |
Collapse
|
39
|
Lei S, Pulakat L, Gavini N. Regulated expression of the nifM of Azotobacter vinelandii in response to molybdenum and vanadium supplements in Burk's nitrogen-free growth medium. Biochem Biophys Res Commun 1999; 264:186-90. [PMID: 10527862 DOI: 10.1006/bbrc.1999.1507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Azotobacter is a diazotrophic bacterium that harbors three genetically distinct nitrogenases referred to as nif, vnf, and anf systems. The nifM is an accessory gene located in the nif gene cluster and is transcriptionally regulated by the NifA. However, Azotobacter mutants that lack NifA are known to synthesize functional NifM and this accessory protein is known to be needed for the activity of nitrogenase-2 and nitrogenase-3. To determine how the transcription of nifM is regulated when Azotobacter is grown under conditions in which nitrogenase-2 or nitrogenase-3 is expressed, we generated an Azotobacter vinelandii strain that carries a nifM:lacZ-kanamycin resistance gene cassette in its chromosome. In this strain the nifM open reading frame was disrupted by the presence of a lacZ-kanamycin resistance gene cassette so that it could not produce active NifM. Moreover, the lacZ gene was placed under the transcriptional control elements of the nifM gene so that the lacZ expression could be used as a marker to determine the extent of expression of the nifM gene under different growth conditions. Our results show that this strain was unable to grow in Burk's nitrogen-free medium supplemented with either molybdenum or vanadium or lacking both metals suggesting that in the absence of functional NifM none of the nitrogenases were active. It was also found that the nifM expression was differentially regulated when the A. vinelandii cells were grown under conditions that activate nitrogenase-2 and nitrogenase-3, as determined by liquid beta-galactosidase activity measurements. These results suggest that the transcriptional activators, VnfA and AnfA, may regulate the nifM expression.
Collapse
Affiliation(s)
- S Lei
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA
| | | | | |
Collapse
|
40
|
Loveless TM, Saah JR, Bishop PE. Isolation of nitrogen-fixing bacteria containing molybdenum-independent nitrogenases from natural environments. Appl Environ Microbiol 1999; 65:4223-6. [PMID: 10473439 PMCID: PMC99764 DOI: 10.1128/aem.65.9.4223-4226.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven diazotrophs that grow well under Mo-deficient, N(2)-fixing conditions were isolated from a variety of environments. These isolates fall in the gamma subdivision of the class Proteobacteria and have genes that encode the Mo nitrogenase (nitrogenase 1) and the V nitrogenase (nitrogenase 2). Four of the isolates also harbor genes that encode the iron-only nitrogenase (nitrogenase 3).
Collapse
Affiliation(s)
- T M Loveless
- USDA Agricultural Research Service and Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA
| | | | | |
Collapse
|
41
|
Rüttimann-Johnson C, Staples CR, Rangaraj P, Shah VK, Ludden PW. A vanadium and iron cluster accumulates on VnfX during iron-vanadium-cofactor synthesis for the vanadium nitrogenase in Azotobacter vinelandii. J Biol Chem 1999; 274:18087-92. [PMID: 10364262 DOI: 10.1074/jbc.274.25.18087] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The vnf-encoded nitrogenase from Azotobacter vinelandii contains an iron-vanadium cofactor (FeV-co) in its active site. Little is known about the synthesis pathway of FeV-co, other than that some of the gene products required are also involved in the synthesis of the iron-molybdenum cofactor (FeMo-co) of the widely studied molybdenum-dinitrogenase. We have found that VnfX, the gene product of one of the genes contained in the vnf-regulon, accumulates iron and vanadium in a novel V-Fe cluster during synthesis of FeV-co. The electron paramagnetic resonance (EPR) and metal analyses of the V-Fe cluster accumulated on VnfX are consistent with a VFe7-8Sx precursor of FeV-co. The EPR spectrum of VnfX with the V-Fe cluster bound strongly resembles that of isolated FeV-co and a model VFe3S4 compound. The V-Fe cluster accumulating on VnfX does not contain homocitrate. No accumulation of V-Fe cluster on VnfX was observed in strains with deletions in genes known to be involved in the early steps of FeV-co synthesis, suggesting that it corresponds to a precursor of FeV-co. VnfX purified from a nifB strain incapable of FeV-co synthesis has a different electrophoretic mobility in native anoxic gels than does VnfX, which has the V-Fe cluster bound. NifB-co, the Fe and S precursor of FeMo-co (and presumably FeV-co), binds to VnfX purified from the nifB strain, producing a shift in its electrophoretic mobility on anoxic native gels. The data suggest that a precursor of FeV-co that contains vanadium and iron accumulates on VnfX, and thus, VnfX is involved in the synthesis of FeV-co.
Collapse
Affiliation(s)
- C Rüttimann-Johnson
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
42
|
Loveless TM, Bishop PE. Identification of genes unique to Mo-independent nitrogenase systems in diverse diazotrophs. Can J Microbiol 1999. [DOI: 10.1139/w99-007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A number of nitrogen-fixing bacteria were screened using PCR for genes (vnfG and anfG) unique to the V-containing nitrogenase (vnf) and the Fe-only nitrogenase (anf) systems. Products with sequences similar to that of vnfG were obtained from Azotobacter paspali and Azotobacter salinestris genomic DNAs, and products with sequences similar to that of anfG were obtained from Azomonas macrocytogenes, Rhodospirillum rubrum, and Azotobacter paspali DNAs. Phylogenetic analysis of the deduced amino acid sequences of anfG and vnfG genes shows that each gene product forms a distinct cluster. Furthermore, amplification of an internal 839-bp region in anfD and vnfD yielded a product similar to anfD from Heliobacterium gestii and a product similar to vnfD from Azotobacter paspali and Azotobacter salinestris. Phylogenetic analysis of NifD, VnfD, and AnfD amino acid sequences indicates that AnfD and VnfD sequences are more closely related to each other than either is to NifD. The results of this study suggest that Azotobacter salinestris possesses the potential to express the vanadium (V)-containing nitrogenase (nitrogenase 2) and that R. rubrum, Azomonas macrocytogenes, and H. gestii possess the potential to express the Fe-only nitrogenase (nitrogenase 3). Like Azotobacter vinelandii, Azotobacter paspali appears to have the potential to express both the V-containing nitrogenase and the Fe-only nitrogenase.Key words: Mo-independent nitrogenase systems, diverse diazotrophs, vnfG, anfG.
Collapse
|
43
|
|
44
|
Chatterjee R, Allen RM, Ludden PW, Shah VK. In vitro synthesis of the iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase. Effect of substitution of VNFH for NIFH. J Biol Chem 1997; 272:21604-8. [PMID: 9261182 DOI: 10.1074/jbc.272.34.21604] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
NIFH (the nifH gene product) has several functions in the nitrogenase enzyme system. In addition to reducing dinitrogenase during nitrogenase turnover, NIFH functions in the biosynthesis of the iron-molybdenum cofactor (FeMo-co), and in the processing of alpha2beta2 apodinitrogenase 1 (a catalytically inactive form of dinitrogenase 1 that lacks the FeMo-co) to the FeMo-co-activatable alpha2beta2gamma2 form. The molybdenum-independent nitrogenase 2 (vnf-encoded) has a distinct dinitrogenase reductase protein, VNFH. We investigated the ability of VNFH to function in the in vitro biosynthesis of FeMo-co and in the maturation of apodinitrogenase 1. VNFH can replace NIFH in both the biosynthesis of FeMo-co and in the maturation of apodinitrogenase 1. These results suggest that the dinitrogenase reductase proteins do not specify the heterometal incorporated into the cofactors of the respective nitrogenase enzymes. The specificity for the incorporation of molybdenum into FeMo-co was also examined using the in vitro FeMo-co synthesis assay system.
Collapse
Affiliation(s)
- R Chatterjee
- Department of Biochemistry and Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
45
|
Chatterjee R, Ludden PW, Shah VK. Characterization of VNFG, the delta subunit of the vnf-encoded apodinitrogenase from Azotobacter vinelandii. Implications for its role in the formation of functional dinitrogenase 2. J Biol Chem 1997; 272:3758-65. [PMID: 9013633 DOI: 10.1074/jbc.272.6.3758] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The vnf-encoded apodinitrogenase (apodinitrogenase 2) from Azotobacter vinelandii is an alpha2beta2delta2 hexamer. The delta subunit (the VNFG protein) has been characterized in order to further delineate its function in the nitrogenase 2 enzyme system. Two species of VNFG were observed in cell-free extracts resolved on anoxic native gels; one is composed of VNFG associated with the VNFDK polypeptides, and the other is a homodimer of the VNFG protein. Both species of VNFG are observed in extracts of A. vinelandii strains that accumulate dinitrogenase 2, whereas extracts of strains impaired in the biosynthetic pathway of the iron-vanadium cofactor (FeV-co) that accumulate apodinitrogenase 2 (a catalytically inactive form of dinitrogenase 2 that lacks FeV-co) exhibit only the VNFG dimer on native gels. FeV-co and nucleotide are required for the stable association of VNFG with the VNFDK polypeptides; this stable association can be correlated with the formation of active dinitrogenase 2. The iron-molybdenum cofactor was unable to replace FeV-co in promoting the stable association of VNFG with VNFDK. FeV-co specifically associates with the VNFG dimer in vitro to form a complex of unknown stoichiometry; combination of this VNFG-FeV-co species with apodinitrogenase 2 results in its reconstitution to dinitrogenase 2. The results presented here suggest that VNFG is required for processing apodinitrogenase 2 to functional dinitrogenase 2.
Collapse
Affiliation(s)
- R Chatterjee
- Department of Biochemistry and Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
46
|
Saeki K, Tokuda KI, Fukuyama K, Matsubara H, Nadanami K, Go M, Itoh S. Site-specific mutagenesis of Rhodobacter capsulatus ferredoxin I, FdxN, that functions in nitrogen fixation. Role of extra residues. J Biol Chem 1996; 271:31399-406. [PMID: 8940149 DOI: 10.1074/jbc.271.49.31399] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
One of the two [4Fe-4S]-type clusters of the Rhodobacter capsulatus ferredoxin I, FdxN, was modified through site-specific mutagenesis of the distinctive features of the second cluster-binding motif, Cys38-X2-Cys41-X8-Cys50-X3-Cys54-X4-Cys59. First, various mutagenized products were tested to learn whether they could rescue the decreased capacity of an fdxN-null strain MSA1 to fix nitrogen: the phenotype of MSA1 was reassessed to Nifs (slow growth by nitrogen fixation) from our previous description of Nif- (Saeki, K., Suetsugu, Y., Tokuda, K., Miyatake, Y., Young, D. A., Marrs, B. L. and Matsubara, H. (1991) J. Biol. Chem. 266, 12889-12895). Substitution of Cys59 to Ser yielded an almost fully active product, while that of Cys54 did not. Gradual deletions and deletion-substitution of the 8 residues between Cys41 and Cys50 also yielded active products. Second, three of the modified FdxN proteins were subjected to purification. Only the GA protein, whose 8 residues between positions 42 and 49 were replaced by the Gly-Ala sequence, was purified. The GA protein and the authentic FdxN showed similar optical properties. The two clusters in the former had Em values of -490 and -430 mV, while those in the latter had an identical value of -490 mV, when determined by EPR analysis. It was concluded that: 1) Cys59 is not a ligand to [4Fe-4S] clusters but is important for structural integrity, 2) the residues between positions 42 and 49 may form a "loop-out" from a structure analogous to the Peptococcus aerogenes ferredoxin, and 3) the loop-out region does not have functional significance in nitrogen fixation but may be responsible for maintaining the highly negative redox potential of one of the two clusters.
Collapse
Affiliation(s)
- K Saeki
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560
| | | | | | | | | | | | | |
Collapse
|
47
|
Eady RR. Structureminus signFunction Relationships of Alternative Nitrogenases. Chem Rev 1996; 96:3013-3030. [PMID: 11848850 DOI: 10.1021/cr950057h] [Citation(s) in RCA: 553] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert R. Eady
- Nitrogen Fixation Laboratory, John Innes Institute, Colney Lane Norwich NR4 7UH U.K
| |
Collapse
|
48
|
Thiel T. Isolation and characterization of the VnfEN genes of the cyanobacterium Anabaena variabilis. J Bacteriol 1996; 178:4493-9. [PMID: 8755876 PMCID: PMC178215 DOI: 10.1128/jb.178.15.4493-4499.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The filamentous cyanobacterium Anabaena variabilis fixes nitrogen in the presence of vanadium (V) and in the absence of molybdenum (Mo), using a V-dependent nitrogenase (V-nitrogenase) encoded by the vnfDGK genes. Downstream from these genes are two genes that are similar to the vnfEN genes of Azotobacter vinelandii. Like the vnfDGK genes, the vnfEN genes were transcribed in the absence of Mo, whether or not V was present. A mutant with an insertion in the vnfN gene lacked V-nitrogenase activity; thus, the vnfEN genes were essential for the V-nitrogenase system in A. variabilis. Growth and acetylene reduction assays with wild-type and mutant strains suggested that the V-nitrogenase reduced dinitrogen better than acetylene. The similarity of the vnfEN genes of A. variabilis and A. vinelandii was not strong. The vnfEN genes of A. variabilis showed greater similarity to the vnfDK genes just upstream than to the A. vinelandii vnfEN genes. Sequence comparisons provide support for the idea that if the vnf genes were transferred laterally among bacterial strains, the vnf cluster was not transferred intact. It appears likely that the structural genes were transferred before a duplication event led to the evolution of the vnfEN genes independently in the two strains. The divergence of the vnfEN genes from the vnfDK genes suggests that this duplication, and hence the transfer of vnf genes, was an ancient event.
Collapse
Affiliation(s)
- T Thiel
- Department of Biology, University of Missouri, St. Louis, 63131, USA
| |
Collapse
|
49
|
Chatterjee R, Allen RM, Ludden PW, Shah VK. Purification and characterization of the vnf-encoded apodinitrogenase from Azotobacter vinelandii. J Biol Chem 1996; 271:6819-26. [PMID: 8636105 DOI: 10.1074/jbc.271.12.6819] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The vnf-encoded apodinitrogenase (apodinitrogenase 2) has been purified from Azotobacter vinelandii strain CA117.30 (DeltanifKDB), and is an alpha2beta2delta2 hexamer. Apodinitrogenase 2 can be activated in vitro by the addition of the iron-vanadium cofactor (FeV-co) to form holodinitrogenase 2, which functions in C2H2, H+, and N2 reduction. Under certain conditions, the alpha2beta2delta2 hexamer dissociates to yield the free delta subunit (the VNFG protein) and a form of apodinitrogenase 2 that exhibits no C2H2, H+, or N2 reduction activities in the in vitro FeV-co activation assay; however, these activities can be restored upon addition of VNFG to the FeV-co activation assay system. No other vnf-, nif-, or non-nif-encoded proteins were able to replace the function of VNFG in the in vitro processing of alpha2beta2 apodinitrogenase 2 (in the presence of FeV-co) to a form capable of substrate reduction. Apodinitrogenase 2 is also activable in vitro by the iron-molybdenum cofactor to form a hybrid enzyme with unique properties, most notably the inability to reduce N2 and insensitivity to CO inhibition of C2H2 reduction.
Collapse
Affiliation(s)
- R Chatterjee
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|
50
|
Davis R, Lehman L, Petrovich R, Shah VK, Roberts GP, Ludden PW. Purification and characterization of the alternative nitrogenase from the photosynthetic bacterium Rhodospirillum rubrum. J Bacteriol 1996; 178:1445-50. [PMID: 8631723 PMCID: PMC177820 DOI: 10.1128/jb.178.5.1445-1450.1996] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The alternative nitrogenase from a nifH mutant of the photosynthetic bacterium Rhodospirillum rubrum has been purified and characterized. The dinitrogenase protein (ANF1) contains three subunits in an apparent alpha2beta2gamma2 structure and contains Fe but no Mo or V. A factor capable of activating apo-dinitrogenase (lacking the FeMo cofactor) from Azotobacter vinelandii was extracted from the alternative dinitrogenase protein with N-methylformamide. The electron paramagnetic resonance (EPR) signal of the dinitrogenase protein is not characteristic of the EPR signals of molybdenum- or vanadium-containing dinitrogenases. The alternative dinitrogenase reductase (ANF2) was purified as an alpha2 dimer containing an Fe4S4 cluster and exhibited an EPR spectrum characteristic of dinitrogenase reductases. The enzyme complex reduces protons to H2 very well but reduces N2 to ammonium poorly. Acetylene is reduced to a mixture of ethylene and ethane.
Collapse
Affiliation(s)
- R Davis
- Department of Biochemistry, University of Wisconsin, Madison 53706, USA
| | | | | | | | | | | |
Collapse
|