1
|
Sardesai N, Foulk S, Chen W, Wu H, Etchison E, Gupta M. Coexpression of octopine and succinamopine Agrobacterium virulence genes to generate high quality transgenic events in maize by reducing vector backbone integration. Transgenic Res 2018; 27:539-550. [PMID: 30293127 DOI: 10.1007/s11248-018-0097-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
Agrobacterium-mediated transformation is a complex process that is widely utilized for generating transgenic plants. However, one of the major concerns of this process is the frequent presence of undesirable T-DNA vector backbone sequences in the transgenic plants. To mitigate this deficiency, a ternary strain of A. tumefaciens was modified to increase the precision of T-DNA border nicking such that the backbone transfer is minimized. This particular strain supplemented the native succinamopine VirD1/VirD2 of EHA105 with VirD1/VirD2 derived from an octopine source (pTi15955), the same source as the binary T-DNA borders tested here, residing on a ternary helper plasmid containing an extra copy of the succinamopine VirB/C/G operons and VirD1. Transformation of maize immature embryos was carried out with two different test constructs, pDAB101556 and pDAB111437, bearing the reporter YFP gene and insecticidal toxin Cry1Fa gene, respectively, contained in the VirD-supplemented and regular control ternary strains. Molecular analyses of ~ 700 transgenic events revealed a significant 2.6-fold decrease in events containing vector backbone sequences, from 35.7% with the control to 13.9% with the VirD-supplemented strain for pDAB101556 and from 24.9% with the control to 9.3% with the VirD-supplemented strain for pDAB111437, without compromising transformation efficiency. In addition, while the number of single copy events recovered was similar, there was a 24-26% increase in backbone-free events with the VirD-supplemented strain compared to the control strain. Thus, supplementing existing VirD1/VirD2 genes in Agrobacterium, to recognize diverse T-DNA borders, proved to be a useful tool to increase the number of high quality events in maize.
Collapse
Affiliation(s)
- Nagesh Sardesai
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA.
| | - Stephen Foulk
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Wei Chen
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Huixia Wu
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Emily Etchison
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| | - Manju Gupta
- Dow AgroSciences LLC, 9330 Zionsville Rd, Indianapolis, IN, USA
| |
Collapse
|
2
|
González-Mula A, Lang J, Grandclément C, Naquin D, Ahmar M, Soulère L, Queneau Y, Dessaux Y, Faure D. Lifestyle of the biotroph Agrobacterium tumefaciens in the ecological niche constructed on its host plant. THE NEW PHYTOLOGIST 2018; 219:350-362. [PMID: 29701262 DOI: 10.1111/nph.15164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/13/2018] [Indexed: 05/23/2023]
Abstract
Agrobacterium tumefaciens constructs an ecological niche in its host plant by transferring the T-DNA from its Ti plasmid into the host genome and by diverting the host metabolism. We combined transcriptomics and genetics for understanding the A. tumefaciens lifestyle when it colonizes Arabidopsis thaliana tumors. Transcriptomics highlighted: a transition from a motile to sessile behavior that mobilizes some master regulators (Hfq, CtrA, DivK and PleD); a remodeling of some cell surface components (O-antigen, succinoglucan, curdlan, att genes, putative fasciclin) and functions associated with plant defense (Ef-Tu and flagellin pathogen-associated molecular pattern-response and glycerol-3-phosphate and nitric oxide signaling); and an exploitation of a wide variety of host resources, including opines, amino acids, sugars, organic acids, phosphate, phosphorylated compounds, and iron. In addition, construction of transgenic A. thaliana lines expressing a lactonase enzyme showed that Ti plasmid transfer could escape host-mediated quorum-quenching. Finally, construction of knock-out mutants in A. tumefaciens showed that expression of some At plasmid genes seemed more costly than the selective advantage they would have conferred in tumor colonization. We provide the first overview of A. tumefaciens lifestyle in a plant tumor and reveal novel signaling and trophic interplays for investigating host-pathogen interactions.
Collapse
Affiliation(s)
- Almudena González-Mula
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Julien Lang
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Catherine Grandclément
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Delphine Naquin
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Mohammed Ahmar
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), INSA-Lyon, Université Lyon 1, CNRS, CPE Lyon, ICBMS, UMR5246, INSA Lyon, Villeurbanne, F-69621, France
| | - Laurent Soulère
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), INSA-Lyon, Université Lyon 1, CNRS, CPE Lyon, ICBMS, UMR5246, INSA Lyon, Villeurbanne, F-69621, France
| | - Yves Queneau
- Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires (ICBMS), INSA-Lyon, Université Lyon 1, CNRS, CPE Lyon, ICBMS, UMR5246, INSA Lyon, Villeurbanne, F-69621, France
| | - Yves Dessaux
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CNRS CEA Univ. Paris-Sud, University Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
3
|
Fuller SL, Savory EA, Weisberg AJ, Buser JZ, Gordon MI, Putnam ML, Chang JH. Isothermal Amplification and Lateral-Flow Assay for Detecting Crown-Gall-Causing Agrobacterium spp. PHYTOPATHOLOGY 2017; 107:1062-1068. [PMID: 28569126 DOI: 10.1094/phyto-04-17-0144-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Agrobacterium is a genus of soilborne gram-negative bacteria. Members carrying oncogenic plasmids can cause crown gall disease, which has significant economic costs, especially for the orchard and nursery industries. Early and rapid detection of pathogenic Agrobacterium spp. is key to the management of crown gall disease. To this end, we designed oligonucleotide primers and probes to target virD2 for use in a molecular diagnostic tool that relies on isothermal amplification and lateral-flow-based detection. The oligonucleotide tools were tested in the assay and evaluated for detection limit and specificity in detecting alleles of virD2. One set of primers that successfully amplified virD2 when used with an isothermal recombinase was selected. Both tested probes had detection limits in picogram amounts of DNA. Probe 1 could detect all tested pathogenic isolates that represented most of the diversity of virD2. Finally, the coupling of lateral-flow detection to the use of these oligonucleotide primers in isothermal amplification helped to reduce the onerousness of the process, and alleviated reliance on specialized tools necessary for molecular diagnostics. The assay is an advancement for the rapid molecular detection of pathogenic Agrobacterium spp.
Collapse
Affiliation(s)
- Skylar L Fuller
- All authors: Department of Botany and Plant Pathology; first and seventh authors: Molecular and Cellular Biology Program; and seventh author: Center for Genomic Research and Biocomputing, Oregon State University, Corvallis 97331
| | - Elizabeth A Savory
- All authors: Department of Botany and Plant Pathology; first and seventh authors: Molecular and Cellular Biology Program; and seventh author: Center for Genomic Research and Biocomputing, Oregon State University, Corvallis 97331
| | - Alexandra J Weisberg
- All authors: Department of Botany and Plant Pathology; first and seventh authors: Molecular and Cellular Biology Program; and seventh author: Center for Genomic Research and Biocomputing, Oregon State University, Corvallis 97331
| | - Jessica Z Buser
- All authors: Department of Botany and Plant Pathology; first and seventh authors: Molecular and Cellular Biology Program; and seventh author: Center for Genomic Research and Biocomputing, Oregon State University, Corvallis 97331
| | - Michael I Gordon
- All authors: Department of Botany and Plant Pathology; first and seventh authors: Molecular and Cellular Biology Program; and seventh author: Center for Genomic Research and Biocomputing, Oregon State University, Corvallis 97331
| | - Melodie L Putnam
- All authors: Department of Botany and Plant Pathology; first and seventh authors: Molecular and Cellular Biology Program; and seventh author: Center for Genomic Research and Biocomputing, Oregon State University, Corvallis 97331
| | - Jeff H Chang
- All authors: Department of Botany and Plant Pathology; first and seventh authors: Molecular and Cellular Biology Program; and seventh author: Center for Genomic Research and Biocomputing, Oregon State University, Corvallis 97331
| |
Collapse
|
4
|
Subramoni S, Nathoo N, Klimov E, Yuan ZC. Agrobacterium tumefaciens responses to plant-derived signaling molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:322. [PMID: 25071805 PMCID: PMC4086400 DOI: 10.3389/fpls.2014.00322] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 06/18/2014] [Indexed: 05/24/2023]
Abstract
As a special phytopathogen, Agrobacterium tumefaciens infects a wide range of plant hosts and causes plant tumors also known as crown galls. The complexity of Agrobacterium-plant interaction has been studied for several decades. Agrobacterium pathogenicity is largely attributed to its evolved capabilities of precise recognition and response to plant-derived chemical signals. Agrobacterium perceives plant-derived signals to activate its virulence genes, which are responsible for transferring and integrating its Transferred DNA (T-DNA) from its Tumor-inducing (Ti) plasmid into the plant nucleus. The expression of T-DNA in plant hosts leads to the production of a large amount of indole-3-acetic acid (IAA), cytokinin (CK), and opines. IAA and CK stimulate plant growth, resulting in tumor formation. Agrobacterium utilizes opines as nutrient sources as well as signals in order to activate its quorum sensing (QS) to further promote virulence and opine metabolism. Intriguingly, Agrobacterium also recognizes plant-derived signals including γ-amino butyric acid and salicylic acid (SA) to activate quorum quenching that reduces the level of QS signals, thereby avoiding the elicitation of plant defense and preserving energy. In addition, Agrobacterium hijacks plant-derived signals including SA, IAA, and ethylene to down-regulate its virulence genes located on the Ti plasmid. Moreover, certain metabolites from corn (Zea mays) also inhibit the expression of Agrobacterium virulence genes. Here we outline the responses of Agrobacterium to major plant-derived signals that impact Agrobacterium-plant interactions.
Collapse
Affiliation(s)
- Sujatha Subramoni
- Southern Crop Protection and Food Research Centre, Agriculture & Agri-Food CanadaLondon, ON, Canada
| | - Naeem Nathoo
- Southern Crop Protection and Food Research Centre, Agriculture & Agri-Food CanadaLondon, ON, Canada
- Department of Biology, University of Western OntarioLondon, ON, Canada
| | - Eugene Klimov
- Southern Crop Protection and Food Research Centre, Agriculture & Agri-Food CanadaLondon, ON, Canada
| | - Ze-Chun Yuan
- Southern Crop Protection and Food Research Centre, Agriculture & Agri-Food CanadaLondon, ON, Canada
- Department of Microbiology and Immunology, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
5
|
Chumakov MI. Protein apparatus for horizontal transfer of agrobacterial T-DNA to eukaryotic cells. BIOCHEMISTRY (MOSCOW) 2013; 78:1321-32. [DOI: 10.1134/s000629791312002x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Francia MV, Varsaki A, Garcillán-Barcia MP, Latorre A, Drainas C, de la Cruz F. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 2004; 28:79-100. [PMID: 14975531 DOI: 10.1016/j.femsre.2003.09.001] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2003] [Revised: 08/28/2003] [Accepted: 09/01/2003] [Indexed: 10/27/2022] Open
Abstract
Transmissible plasmids can be classified according to their mobilization ability, as being conjugative (self-transmissible) or mobilizable (transmissible only in the presence of additional conjugative functions). Naturally occurring mobilizable plasmids carry the genetic information necessary for relaxosome formation and processing, but lack the functions required for mating pair formation. Mobilizable plasmids have a tremendous impact in horizontal gene transfer in nature, including the spread of antibiotic resistance. However, analysis of their promiscuity and diversity has attracted less attention than that of conjugative plasmids. This review will focus on the analysis of the diversity of mobilizable plasmids. For this purpose, we primarily compared the amino acid sequences of their relaxases and, when pertinent, we compared these enzymes with conjugative plasmid relaxases. In this way, we established phylogenetic relationships among the members of each superfamily. We conducted a database and literature analysis that led us to propose a classification system for small mobilizable plasmids in families and superfamilies according to their mobilization regions. This review outlines the genetic organization of each family of mobilization regions, as well as the most relevant properties and relationships among their constituent encoded proteins. In this respect, the present review constitutes a first approach to the characterization of the global gene pool of mobilization regions of small mobilizable plasmids.
Collapse
Affiliation(s)
- M Victoria Francia
- Laboratory of Biochemistry, Sector of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Dourouti 45110, Ioannina, Greece
| | | | | | | | | | | |
Collapse
|
7
|
Tzfira T, Vaidya M, Citovsky V. Increasing plant susceptibility to Agrobacterium infection by overexpression of the Arabidopsis nuclear protein VIP1. Proc Natl Acad Sci U S A 2002; 99:10435-40. [PMID: 12124400 PMCID: PMC124932 DOI: 10.1073/pnas.162304099] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2002] [Indexed: 12/21/2022] Open
Abstract
Agrobacterium is a unique model system as well as a major biotechnological tool for genetic manipulation of plant cells. It is still unknown, however, whether host cellular factors exist that are limiting for infection, and whether their overexpression in plant cells can increase the efficiency of the infection. Here, we examined the effect of overexpression in tobacco plants of an Arabidopsis gene, VIP1, which encodes a recently discovered cellular protein required for Agrobacterium infection. Our results indicate that VIP1 is imported into the plant cell nucleus via the karyopherin alphadependent pathway and that elevated intracellular levels of VIP1 render the host plants significantly more susceptible to transient and stable genetic transformation by Agrobacterium, probably because of the increased nuclear import of the transferred-DNA.
Collapse
Affiliation(s)
- Tzvi Tzfira
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | |
Collapse
|
8
|
Affiliation(s)
- G Hansen
- Novartis Agribusiness Biotechnology Research, Inc., Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
9
|
Relić B, Andjelković M, Rossi L, Nagamine Y, Hohn B. Interaction of the DNA modifying proteins VirD1 and VirD2 of Agrobacterium tumefaciens: analysis by subcellular localization in mammalian cells. Proc Natl Acad Sci U S A 1998; 95:9105-10. [PMID: 9689041 PMCID: PMC21299 DOI: 10.1073/pnas.95.16.9105] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Interaction between Agrobacterium tumefaciens and plants provides a unique example of interkingdom gene transfer. Agrobacterium, a plant pathogen, is capable to stably transform the plant cell with a segment of its own DNA called T-DNA (transferred DNA). This process depends, among others, on the specialized bacterial virulence proteins VirD1 and VirD2 that excise the T-DNA from its adjacent sequences. Subsequent to transfer to the plant cell, the virulence protein VirD2, through its nuclear localization signal (NLS), is believed to guide the T-DNA to the nucleus. The T-DNA then is integrated into the plant genome. Although both of these proteins are essential for bacterial virulence, physical interaction of them has not been analyzed so far. We studied associations between these proteins by expressing them in mammalian cells and by testing for intracellular localization and colocalization. When expressed in human cells [HeLa, human embryo kidney (HEK) 293], the VirD2 protein homogeneously distributed over the nucleoplasm. The presence of any of two NLSs, on the N and C termini of VirD2, was sufficient for its efficient nuclear localization whereas deletion of both NLSs rendered the protein cytoplasmic. However, this double NLS mutant was translocated to the nucleus in the presence of wild-type VirD2 protein, implying VirD2-VirD2 interaction. The VirD1 protein, by itself localized in the cytoplasm, moved to the nucleus when coexpressed with the VirD2 protein, suggesting VirD1-VirD2 interaction. This interaction was confirmed by coimmunoprecipitation tests. Of interest, both proteins coimported to the nucleus showed a similar, peculiar sublocalization. The data are discussed in terms of functions of the VirD proteins. In addition, coimport of proteins into nuclei is suggested as a useful system in studying individual protein-protein interactions.
Collapse
Affiliation(s)
- B Relić
- Friedrich Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland.
| | | | | | | | | |
Collapse
|
10
|
Affiliation(s)
- C I Kado
- Department of Plant Pathology, University of California, Davis 95616, USA
| |
Collapse
|
11
|
Bravo-Angel AM, Hohn B, Tinland B. The omega sequence of VirD2 is important but not essential for efficient transfer of T-DNA by Agrobacterium tumefaciens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 1998; 11:57-63. [PMID: 9425687 DOI: 10.1094/mpmi.1998.11.1.57] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The VirD2 protein of Agrobacterium tumefaciens contains defined sequences necessary for processing and transferring the T-DNA during transformation of plant cells. We performed a mutational analysis of the conserved omega sequence of VirD2, whose role has proven to be difficult to elucidate so far. In this report, we show that a deletion of these 5 amino acids or their replacement by 5 glycines reduced T-DNA transfer considerably, compared with wild type, demonstrating that the omega sequence is important for the efficient transfer of T-DNAs. However, the efficiency and pattern of integration of the T-DNAs were not affected by any modifications of the omega sequence. The importance of the C terminus of VirD2 for T-DNA transfer is discussed.
Collapse
|
12
|
Natural genetic engineering of plant cells: the molecular biology of crown gall and hairy root disease. World J Microbiol Biotechnol 1996; 12:327-51. [DOI: 10.1007/bf00340209] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/07/1996] [Accepted: 02/10/1996] [Indexed: 11/26/2022]
|
13
|
Haas JH, Moore LW, Ream W, Manulis S. Universal PCR primers for detection of phytopathogenic Agrobacterium strains. Appl Environ Microbiol 1995; 61:2879-84. [PMID: 7487020 PMCID: PMC167564 DOI: 10.1128/aem.61.8.2879-2884.1995] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Two PCR primer pairs, based on the virD2 and ipt genes, detected a wide variety of pathogenic Agrobacterium strains. The endonuclease domain of VirD2 protein, which cleaves transferred DNA (T-DNA) border sequences, is highly conserved; primer oligonucleotides specific for the endonuclease portion of virD2 detected all pathogenic strains of Agrobacterium tested. PCR primers corresponding to conserved sequences in ipt, the T-DNA-borne cytokinin synthesis gene, detected only Agrobacterium tumefaciens and distinguished it from Agrobacterium rhizogenes. The virD2 and ipt primer pairs did not interfere with each other when included in the same PCR amplification, and this permitted simultaneous detection of both genes in a single reaction. One nonpathogenic Agrobacterium radiobacter strain contained virD2 but not ipt; we speculate that this strain arose from a pathogenic progenitor through a deletion in the T-DNA. The virD2 primer pair appears to be universal for all pathogenic Agrobacterium species; used together, the primer sets reported here should allow unambiguous identification of Ti plasmid DNA in bacteria isolated from soil and plants.
Collapse
Affiliation(s)
- J H Haas
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331, USA
| | | | | | | |
Collapse
|
14
|
|
15
|
Pansegrau W, Schröder W, Lanka E. Concerted action of three distinct domains in the DNA cleaving-joining reaction catalyzed by relaxase (TraI) of conjugative plasmid RP4. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42011-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Pansegrau W, Schoumacher F, Hohn B, Lanka E. Site-specific cleavage and joining of single-stranded DNA by VirD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci U S A 1993; 90:11538-42. [PMID: 8265585 PMCID: PMC48019 DOI: 10.1073/pnas.90.24.11538] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As an early stage of plant transformation by Agrobacterium tumefaciens, the Ti plasmid is nicked at the border sequences that delimit the T-DNA. Cleavage results in covalent attachment of VirD2 to the 5' terminal of the nicked strand by a process resembling initiation of DNA transfer that occurs in the donor cell during bacterial conjugation. We demonstrate that this cleavage can be reproduced in vitro: VirD2 protein, the border-cleaving enzyme, was overproduced and purified. Cleavage assays were performed with single-stranded oligodeoxyribonucleotides encompassing the Ti plasmid border region or the transfer origin's nick region of the conjugative plasmid RP4. VirD2 of pTiC58 cleaves both border- and nick region-containing oligonucleotides. However, the relaxase TraI of RP4 can cut only the cognate nick regions. The respective proteins remain covalently bound to the 5' end of the cleavage sites, leaving the 3' termini unmodified. VirD2-mediated oligonucleotide cleavage was demonstrated to be an equilibrium reaction that allows specific joining of cleavage products restoring border and nick regions, respectively. The possible role of VirD2 in T-DNA integration into the plant cell's genome is discussed in terms of less stringent target-sequence requirements.
Collapse
Affiliation(s)
- W Pansegrau
- Max-Planck-Institut für Molekulare Genetik, Abteilung Schuster, Berlin-Dahlem, Federal Republic of Germany
| | | | | | | |
Collapse
|
17
|
Abstract
Mutations were constructed by site-directed mutagenesis in the relaxase operon of the broad-host-range plasmid RP4. The mutations were constructed in smaller plasmids, recombined into the 60-kb RP4 plasmid, and tested for their ability to transfer. The relaxase operon contains the transfer genes traJ, traH, and traI, which are involved in nicking at the transfer origin to generate the single strand destined to be transferred to the recipient cell. In the first mutant, the C terminus of TraI was truncated, leaving TraH intact. This mutant decreased transfer by approximately 500-fold in Escherichia coli, and the traI mutation could be complemented by a wild-type copy of traI in trans in the donor. The traI mutation similarly decreased transfer between a variety of gram-negative bacteria. A site-specific mutation was made by the polymerase chain reaction-based unique-site mutagenesis procedure to alter the start site of traH. This mutation had no effect on intraspecific E. coli transfer but reduced transfer by up to sevenfold for some gram-negative bacteria. The traH mutation had no effect on plasmid stability. Thus, neither TraH nor the C terminus of TraI is required for conjugative transfer, but both increase mating efficiency in some hosts.
Collapse
Affiliation(s)
- S P Cole
- Department of Medicine, University of California San Diego Medical Center 92103-8416
| | | | | |
Collapse
|
18
|
Lin TS, Kado CI. The virD4 gene is required for virulence while virD3 and orf5 are not required for virulence of Agrobacterium tumefaciens. Mol Microbiol 1993; 9:803-12. [PMID: 8231811 DOI: 10.1111/j.1365-2958.1993.tb01739.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The virD operon of the resident Ti plasmid of Agrobacterium tumefaciens contains loci involved in T-DNA processing and undefined virulence functions. Nucleotide sequence of the entire virD operon of pTiC58 revealed similarities to the virD operon of the root-inducing plasmid pRiA4b and to that of the octopine-type plasmid pTiA6NC. However, comparative sequence data show that virD of pTiC58 is more akin to that of the pRiA4b than to that of the pTiA6NC. T7f10::virD gene fusions were used to generate polypeptides that confirm the presence of four open reading frames virD1, virD2, virD3, and virD4 within virD which have a coding capacity for proteins of 16.1, 49.5, 72.6, and 73.5 kDa, respectively. virD3 therefore encodes a polypeptide 3.4 times larger (72.6 versus 21.3 kDa) than that encoded by virD3 of octopine Ti plasmids. Non-polar virD4 mutants could not be complemented by a distant homologue, TraG protein of plasmid RP4. An independently regulated fifth ORF (orf5) is located immediately downstream of 3' end of virD4 and encodes a polypeptide of 97.4 kDa. The expression of orf5 is dependent on its own promoter and is independent of acetosyringone induction in A. tumefaciens. Recently, it has been shown that virD3 of octopine Ri or Ti plasmids is not required for virulence. In this report, we confirm and extend these findings on a nopaline Ti plasmid by using several virD non-polar mutants that were tested for virulence. virD3 and orf5 non-polar mutants showed no effect on tumorigenicity on 14 different plant species, while virD4 mutants lost their tumorigenicity completely on all these test plants. These data suggest that virD3 and orf5 are not essential for virulence whereas virD4 is absolutely required on a wide range of host plants.
Collapse
Affiliation(s)
- T S Lin
- Davis Crown Gall Group, University of California, Davis 95616
| | | |
Collapse
|
19
|
Dorgai L, Papp I, Papp P, Kálmán M, Orosz L. Nucleotide sequences of the sites involved in the integration of phage 16-3 of Rhizobium meliloti 41. Nucleic Acids Res 1993; 21:1671. [PMID: 8386836 PMCID: PMC309384 DOI: 10.1093/nar/21.7.1671] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- L Dorgai
- Department of Genetics, Attila József University, Szeged, Hungary
| | | | | | | | | |
Collapse
|
20
|
Koukolíková-Nicola Z, Raineri D, Stephens K, Ramos C, Tinland B, Nester EW, Hohn B. Genetic analysis of the virD operon of Agrobacterium tumefaciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration. J Bacteriol 1993; 175:723-31. [PMID: 8380800 PMCID: PMC196211 DOI: 10.1128/jb.175.3.723-731.1993] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The transferred DNA (T-DNA) is transported from Agrobacterium tumefaciens to the nucleus and is stably integrated into the genome of many plant species. It has been proposed that the VirD2 protein, tightly attached to the T-DNA, pilots the T-DNA into the plant cell nucleus and that it is involved in integration. Using agroinfection and beta-glucuronidase expression as two different very sensitive transient assays for T-DNA transfer, together with assays for stable integration, we have shown that the C-terminal half of the VirD2 protein and the VirD3 protein are not involved in T-DNA integration. However, the bipartite nuclear localization signal, which is located within the C terminus of the VirD2 protein and which has previously been shown to be able to target a foreign protein into the plant cell nucleus, was shown to be required for efficient T-DNA transfer. virD4 mutants were shown by agroinfection to be completely inactive in T-DNA transfer.
Collapse
|
21
|
Xu Y, Bu W, Li B. Metabolic factors capable of inducing Agrobacterium vir gene expression are present in rice (Oryza sativa L.). PLANT CELL REPORTS 1993; 12:160-164. [PMID: 24196854 DOI: 10.1007/bf00239098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/1992] [Revised: 09/11/1992] [Indexed: 06/02/2023]
Abstract
The effects of exudates and extracts from suspension cultures or various parts of rice (Oryza sativa L.) plants on induction of vir (virulence) gene expression in Agrobacterium tumefaciens were examined. Only leaf extracts from panicle-differentiating plants to flowering plants were able to strongly induce activation and expression of vir genes. This induction was similar to that observed with 2 μM acetosyringone (AS), yet there was no synergy between AS and rice extracts. Responses to vir-inducing metabolites and signal molecules were different among various vir loci. These results demonstrate that one or more inducing factors for vir gene expression are also present in rice, but only in specific parts and developmental stages.
Collapse
Affiliation(s)
- Y Xu
- Biotechnology Research Center, Zhongshan University, 510275, Guanzhou, China
| | | | | |
Collapse
|
22
|
Koukolíková-Nicola Z, Hohn B. How does the T-DNA of Agrobacterium tumefaciens find its way into the plant cell nucleus? Biochimie 1993; 75:635-8. [PMID: 8286434 DOI: 10.1016/0300-9084(93)90092-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Agrobacterium tumefaciens causes the crown gall disease in plants by transferring a piece of DNA, the T-DNA, into the genome of the plant cell. The virulence protein VirD2, tightly linked to the T-DNA, is thought to direct it to the plant cell nucleus and to assist it in integration. The VirD2 protein contains two nuclear localization signals (NLS) which are functional both in yeast and in plant cells. One signal is located in the N-terminal part of the protein and resembles a single-cluster type NLS. The second signal is near the C-terminus and is a bipartite type NLS. The involvement of the C-terminal NLS in the entry of the T-DNA into the plant cell nucleus was directly tested in vivo.
Collapse
|
23
|
Shurvinton CE, Hodges L, Ream W. A nuclear localization signal and the C-terminal omega sequence in the Agrobacterium tumefaciens VirD2 endonuclease are important for tumor formation. Proc Natl Acad Sci U S A 1992; 89:11837-41. [PMID: 1465407 PMCID: PMC50652 DOI: 10.1073/pnas.89.24.11837] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The T-DNA portion of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid integrates into plant nuclear DNA. Direct repeats define the T-DNA ends; transfer begins when the VirD2 endonuclease produces a site-specific nick in the right-hand border repeat and attaches to the 5' end of the nicked strand. Subsequent events generate linear single-stranded VirD2-bound DNA molecules that include the entire T-DNA (T-strands). VirD2 protein contains a nuclear localization signal (NLS) near the C terminus and may direct bound T-strands to plant nuclei. We constructed mutations in virD2 and showed that the NLS was important for tumorigenesis, although T-strand production occurred normally in its absence. A tobacco etch virus NLS, substituted for the VirD2 NLS, restored tumor-inducing activity. Amino acids (the omega sequence) at the C terminus of VirD2, outside the NLS and the endonuclease domain, contributed significantly to tumorigenesis, suggesting that VirD2 may serve a third important function in T-DNA transfer.
Collapse
Affiliation(s)
- C E Shurvinton
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-6502
| | | | | |
Collapse
|
24
|
Tinland B, Koukolíková-Nicola Z, Hall MN, Hohn B. The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A 1992; 89:7442-6. [PMID: 1502156 PMCID: PMC49726 DOI: 10.1073/pnas.89.16.7442] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Agrobacterium tumefaciens causes neoplastic growth in plants by transferring a piece of DNA, called T-DNA, into the nucleus of the plant cell. The virulence protein VirD2 of A. tumefaciens is tightly linked to the T-DNA and is thought to direct it to the plant genome. Here we show that the VirD2 protein contains two nuclear localization signals that are functional both in yeast and in plant cells. One signal is located in the N-terminal part of the protein and resembles a single-cluster-type nuclear localization signal. The second signal is near the C terminus and is a bipartite-type nuclear localization signal. The involvement of these sequences in the entry of the T-DNA into the nucleus is discussed.
Collapse
Affiliation(s)
- B Tinland
- Friedrich Miescher-Institut, Basel, Switzerland
| | | | | | | |
Collapse
|
25
|
Vogel AM, Das A. The Agrobacterium tumefaciens virD3 gene is not essential for tumorigenicity on plants. J Bacteriol 1992; 174:5161-4. [PMID: 1629176 PMCID: PMC206339 DOI: 10.1128/jb.174.15.5161-5164.1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genetic studies indicate that three of the four polypeptides encoded within the virD operon of the Agrobacterium tumefaciens Ti plasmid are essential for virulence. In order to determine whether the fourth polypeptide, VirD3, has any role in virulence, complementation analysis was used. An A. tumefaciens strain, A348 delta D, which lacked the entire virD operon in the Ti plasmid pTiA6, was constructed. Plasmids containing defined regions of the virD operon were introduced into this strain, and virulence was tested by the strains' abilities to form tumors on Kalanchoe leaves, tomato stems, and potato tubers. As expected, deletion of the virD operon led to an avirulent phenotype. The virulence of this strain could be restored by providing virD1, virD2, and virD4 in trans. No requirement for virD3 in tumor formation was observed in these assays.
Collapse
Affiliation(s)
- A M Vogel
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
26
|
Abstract
The discovery in 1977 that Agrobacterium species can transfer a discrete segment of oncogenic DNA (T-DNA) to the genome of host plant cells has stimulated an intense interest in the molecular biology underlying these plant-microbe associations. This attention in turn has resulted in a series of insights about the biology of these organisms that continue to accumulate at an ever-increasing rate. This excitement was due in part to the notion that this unprecedented interkingdom DNA transfer could be exploited to create transgenic plants containing foreign genes of scientific or commercial importance. In the course of these discoveries, Agrobacterium became one of the best available models for studying the molecular interactions between bacteria and higher organisms. One extensively studied aspect of this association concerns the exchange of chemical signals between Agrobacterium spp. and host plants. Agrobacterium spp. can recognize no fewer than five classes of low-molecular-weight compounds released from plants, and other classes probably await discovery. The most widely studied of these are phenolic compounds, which stimulate the transcription of the genes needed for infection. Other compounds include specific monosaccharides and acidic environments which potentiate vir gene induction, acidic polysaccharides which induce one or more chromosomal genes, and a family of compounds called opines which are released from tumorous plant cells to the bacteria as nutrient sources. Agrobacterium spp. in return release a variety of chemical compounds to plants. The best understood is the transferred DNA itself, which contains genes that in various ways upset the balance of phytohormones, ultimately causing neoplastic cell proliferation. In addition to transferring DNA, some Agrobacterium strains directly secrete phytohormones. Finally, at least some strains release a pectinase, which degrades a component of plant cell walls.
Collapse
Affiliation(s)
- S C Winans
- Section of Microbiology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
27
|
Howard EA, Zupan JR, Citovsky V, Zambryski PC. The VirD2 protein of A. tumefaciens contains a C-terminal bipartite nuclear localization signal: implications for nuclear uptake of DNA in plant cells. Cell 1992; 68:109-18. [PMID: 1732061 DOI: 10.1016/0092-8674(92)90210-4] [Citation(s) in RCA: 213] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here we show that the VirD2 protein of A. tumefaciens functions as a nuclear localizing protein in plant cells. The nuclear localization signal of VirD2 consists of two regions containing 4-5 basic amino acids (KRPR and RKRER), located within the C-terminal 34 amino acids. These regions conform to the KR/KXR/K motif required for numerous nuclear localized nonplant eukaryotic proteins. Each region independently directs a beta-glucuronidase reporter protein to the nucleus; however, both regions are necessary for maximum efficiency. VirD2 has been shown to be tightly bound to the 5' end of the single-stranded DNA transfer intermediate, T-strand, transferred from Agrobacterium to the plant cell genome. The present results imply that T-strand transport to the plant nucleus is mediated by the tightly attached VirD2 protein via an import pathway common to higher eukaryotes.
Collapse
Affiliation(s)
- E A Howard
- Department of Plant Biology, University of California-Berkeley 94720
| | | | | | | |
Collapse
|
28
|
Vogel AM, Das A. Mutational analysis of Agrobacterium tumefaciens virD2: tyrosine 29 is essential for endonuclease activity. J Bacteriol 1992; 174:303-8. [PMID: 1309520 PMCID: PMC205709 DOI: 10.1128/jb.174.1.303-308.1992] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Agrobacterium tumefaciens VirD2 polypeptide, in the presence of VirD1, catalyzes a site- and strand-specific nicking reaction at the T-DNA border sequences. VirD2 is found tightly attached to the 5' end of the nicked DNA. The protein-DNA complex is presumably formed via a tyrosine residue of VirD2 (F. Durrenberger, A. Crameri, B. Hohn, and Z. Koukolikova-Nicola, Proc. Natl. Acad. Sci. USA 86:9154-9158, 1989). A mutational approach was used to study whether a tyrosine residue(s) of VirD2 is required for its activity. By site-specific mutagenesis, a tyrosine (Y) residue at position 29, 68, 99, 119, 121, 160, or 195 of the octopine Ti plasmid pTiA6 VirD2 was altered to phenylalanine (F). The Y-29-F or Y-121-F mutation completely abolished nicking activity of VirD2 in vivo in Escherichia coli. Two other substitutions, Y-68-F and Y-160-F, drastically reduced VirD2 activity. A substitution at position 99, 119, or 195 had no effect on VirD2 activity. Additional mutagenesis experiments showed that at position 29, no other amino acid could substitute for tyrosine without destroying VirD2 activity. At position 121, only a tryptophan (W) residue could be substituted. This, however, yielded a mutant protein with significantly reduced VirD2 activity. The nicked DNA from strains bearing a Y-68-F, Y-99-F, Y-119-F, Y-160-F, Y-195-F, or Y-121-W mutation in VirD2 was always found to contain a tightly linked protein.
Collapse
Affiliation(s)
- A M Vogel
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
29
|
Ward JE, Dale EM, Binns AN. Activity of the Agrobacterium T-DNA transfer machinery is affected by virB gene products. Proc Natl Acad Sci U S A 1991; 88:9350-4. [PMID: 11607226 PMCID: PMC52712 DOI: 10.1073/pnas.88.20.9350] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The oriT (origin of transfer) sequence and mob (mobilization) genes of plasmid RSF1010 can functionally replace transfer DNA (T-DNA) borders to generate an RSF1010 intermediate transferable to plants through activities of the tumor-inducing (Ti)-plasmid virulence (vir) genes of Agrobacterium tumefaciens. Because the Ti plasmid virB gene products are hypothesized to form a membrane-localized T-DNA transport apparatus, we investigated whether specific virB genes were needed for RSF1010 transfer. Here we report that transformation of Nicotiana tabacum leaf explants by an RSF1010-derivative plasmid (pJW323) requires the essential virulence genes virB9, virB10, and virB11, consistent with the hypothesis that both the T-DNA and RSF1010 transfer intermediates utilize the same transport machinery. Further, while pJW323 is transferred into plant cells by Agrobacterium strains harboring both pJW323 and pTiA6, the initiation of crown gall tumors (i.e., T-DNA transfer) is greatly suppressed. Coordinate overexpression of the virB9, virB10, and virB11 gene products relieves pJW323-mediated oncogenic suppression and restores tumorigenicity, but does not increase the transfer frequency of pJW323 into plant cells. We propose that the virB9, virB10, and virB11 gene products function coordinately and stoichiometrically to enhance DNA transfer in a fashion specific for the T-DNA intermediate.
Collapse
Affiliation(s)
- J E Ward
- Plant Sciences Institute, Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018, USA
| | | | | |
Collapse
|
30
|
Shurvinton CE, Ream W. Stimulation of Agrobacterium tumefaciens T-DNA transfer by overdrive depends on a flanking sequence but not on helical position with respect to the border repeat. J Bacteriol 1991; 173:5558-63. [PMID: 1885533 PMCID: PMC208272 DOI: 10.1128/jb.173.17.5558-5563.1991] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
T-DNA transfer by Agrobacterium tumefaciens depends on the right border repeat of the T-DNA and is greatly stimulated by overdrive, an adjacent sequence. We report that the function of overdrive does not depend on helical position with respect to the border repeat. A synthetic 24-bp overdrive and a 12-bp region containing a fully conserved 8-bp core overdrive sequence stimulated virulence equally, but full function required additional bases to the left of the 24-bp sequence.
Collapse
Affiliation(s)
- C E Shurvinton
- Department of Agricultural Chemistry, Oregon State University, Corvallis 97331-6502
| | | |
Collapse
|
31
|
Rong LJ, Karcher SJ, Gelvin SB. Genetic and molecular analyses of picA, a plant-inducible locus on the Agrobacterium tumefaciens chromosome. J Bacteriol 1991; 173:5110-20. [PMID: 1860822 PMCID: PMC208202 DOI: 10.1128/jb.173.16.5110-5120.1991] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
picA is an Agrobacterium tumefaciens chromosomal locus, identified by Mu d11681 mutagenesis, that is inducible by certain acidic polysaccharides found in carrot root extract. Cloning and genetic analysis of a picA::lacZ fusion defined a region of the picA promoter that is responsible for the induction of this locus. Furthermore, we identified a possible negative regulator of picA expression upstream of the picA locus. This sequence, denoted pgl, has extensive homology to polygalacturonase genes from several organisms and inhibited the induction of the picA promoter when present in multiple copies in A. tumefaciens. DNA sequence analysis indicated at least two long open reading frames (ORFs) in the picA region. S1 nuclease mapping was used to identify the transcription initiation site of picA. Mutation of ORF1, but not ORF2, of the picA locus was responsible for an increased aggregation of A. tumefaciens, forming "ropes" in the presence of pea root cap cells. In addition, a potato tuber disk virulence assay indicated that a preinduced picA mutant was more virulent than was the wild-type control, a further indication that the picA locus regulates the surface properties of the bacterium in the presence of plant cells or plant cell extracts.
Collapse
Affiliation(s)
- L J Rong
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
32
|
|
33
|
Steck TR, Lin TS, Kado CI. VirD2 gene product from the nopaline plasmid pTiC58 has at least two activities required for virulence. Nucleic Acids Res 1990; 18:6953-8. [PMID: 2263456 PMCID: PMC332755 DOI: 10.1093/nar/18.23.6953] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Virulence genes virD1 and virD2 are required for T-DNA processing in Agrobacterium tumefaciens. The regions within virD2 contributing to T-DNA processing and virulence were investigated. Some insertional mutations in virD2 prevented T-DNA border endonucleolytic cleavage and produced an avirulent phenotype. However, a non-polar insertion immediately after bp 684 of the 1344 bp open reading frame of virD2 did not inhibit endonucleolytic cleavage but still caused a loss of virulence. This suggested that in addition to T-DNA border cleaving activity, the VirD2 protein has another virulence function which resides in the C-terminal half of the protein. Comparative nucleotide sequence analyses of virD2 showed that the first 684 bp were 81% homologous to virD2 of an octopine Ti plasmid whereas the remaining 660 bp were only 44% homologous. A plasmid containing the virD region from octopine Ti plasmid could restore both virulence and processing to a nopaline virD2 mutant. No complementation resulted when a nopaline virD2 clone containing a region similar to eukaryotic nuclear envelope transport sequences was deleted from the 3' end. These results suggest that virD1 and only the first half of virD2 are required to encode for the T-DNA processing endonuclease, and that the 3'-half of virD2 encodes a function separate from endonuclease activity that is required for virulence.
Collapse
Affiliation(s)
- T R Steck
- Department of Plant Pathology, University of California, Davis 95616
| | | | | |
Collapse
|
34
|
Herrera-Estrella A, Van Montagu M, Wang K. A bacterial peptide acting as a plant nuclear targeting signal: the amino-terminal portion of Agrobacterium VirD2 protein directs a beta-galactosidase fusion protein into tobacco nuclei. Proc Natl Acad Sci U S A 1990; 87:9534-7. [PMID: 2124696 PMCID: PMC55206 DOI: 10.1073/pnas.87.24.9534] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Agrobacterium tumefaciens is a soil bacterium capable of transferring DNA to the genome of higher plants. Of the virulence region-encoded proteins of the tumor-inducing (Ti) plasmid of A. tumefaciens, the VirD1 and VirD2 proteins are essential for T-DNA transfer to plant cells. These two proteins have been shown to be directly responsible for the formation of T-strands. VirD2 was also shown to be firmly attached to the 5' termini of T-strands; these facts have led to its postulation as a pilot protein in the T-DNA transfer process and as a nucleus-targeting signal in plants. We have constructed a chimeric gene by fusing the virD2 gene and the Escherichia coli lacZ gene. Cell fractionation and electron microscopy studies with transgenic tobacco plants containing the VirD2-LacZ fusion protein indicate that the first 292 amino acids of VirD2 are able to direct the cytoplasmic protein beta-galactosidase to the plant nucleus. This provides an example of cross-kingdom nuclear localization between two free-living organisms: a bacterial peptide is capable of acting as a eukaryotic (plant) nuclear targeting signal.
Collapse
|