1
|
Wang H, Zhang J, Toso D, Liao S, Sedighian F, Gunsalus R, Zhou ZH. Hierarchical organization and assembly of the archaeal cell sheath from an amyloid-like protein. Nat Commun 2023; 14:6720. [PMID: 37872154 PMCID: PMC10593813 DOI: 10.1038/s41467-023-42368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Certain archaeal cells possess external proteinaceous sheath, whose structure and organization are both unknown. By cellular cryogenic electron tomography (cryoET), here we have determined sheath organization of the prototypical archaeon, Methanospirillum hungatei. Fitting of Alphafold-predicted model of the sheath protein (SH) monomer into the 7.9 Å-resolution structure reveals that the sheath cylinder consists of axially stacked β-hoops, each of which is comprised of two to six 400 nm-diameter rings of β-strand arches (β-rings). With both similarities to and differences from amyloid cross-β fibril architecture, each β-ring contains two giant β-sheets contributed by ~ 450 SH monomers that entirely encircle the outer circumference of the cell. Tomograms of immature cells suggest models of sheath biogenesis: oligomerization of SH monomers into β-ring precursors after their membrane-proximal cytoplasmic synthesis, followed by translocation through the unplugged end of a dividing cell, and insertion of nascent β-hoops into the immature sheath cylinder at the junction of two daughter cells.
Collapse
Affiliation(s)
- Hui Wang
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Jiayan Zhang
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Daniel Toso
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Shiqing Liao
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Farzaneh Sedighian
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Robert Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
- The UCLA-DOE Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
2
|
Chadwick GL, Skennerton CT, Laso-Pérez R, Leu AO, Speth DR, Yu H, Morgan-Lang C, Hatzenpichler R, Goudeau D, Malmstrom R, Brazelton WJ, Woyke T, Hallam SJ, Tyson GW, Wegener G, Boetius A, Orphan VJ. Comparative genomics reveals electron transfer and syntrophic mechanisms differentiating methanotrophic and methanogenic archaea. PLoS Biol 2022; 20:e3001508. [PMID: 34986141 PMCID: PMC9012536 DOI: 10.1371/journal.pbio.3001508] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/15/2022] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
The anaerobic oxidation of methane coupled to sulfate reduction is a microbially mediated process requiring a syntrophic partnership between anaerobic methanotrophic (ANME) archaea and sulfate-reducing bacteria (SRB). Based on genome taxonomy, ANME lineages are polyphyletic within the phylum Halobacterota, none of which have been isolated in pure culture. Here, we reconstruct 28 ANME genomes from environmental metagenomes and flow sorted syntrophic consortia. Together with a reanalysis of previously published datasets, these genomes enable a comparative analysis of all marine ANME clades. We review the genomic features that separate ANME from their methanogenic relatives and identify what differentiates ANME clades. Large multiheme cytochromes and bioenergetic complexes predicted to be involved in novel electron bifurcation reactions are well distributed and conserved in the ANME archaea, while significant variations in the anabolic C1 pathways exists between clades. Our analysis raises the possibility that methylotrophic methanogenesis may have evolved from a methanotrophic ancestor. A comparative genomics study of anaerobic methanotrophic (ANME) archaea reveals the genetic "parts list" associated with the repeated evolutionary transition between methanogenic and methanotrophic metabolism in the archaeal domain of life.
Collapse
Affiliation(s)
- Grayson L. Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| | - Connor T. Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Rafael Laso-Pérez
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Andy O. Leu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Daan R. Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Connor Morgan-Lang
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Roland Hatzenpichler
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
| | - Danielle Goudeau
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Rex Malmstrom
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - William J. Brazelton
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Tanja Woyke
- US Department of Energy Joint Genome Institute, Berkeley, California, United States of America
| | - Steven J. Hallam
- Graduate Program in Bioinformatics, University of British Columbia, Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, University of British Columbia, British Columbia, Canada
- Genome Science and Technology Program, University of British Columbia, Vancouver, British Columbia, Canada
- ECOSCOPE Training Program, University of British Columbia, Vancouver, British Columbia, Canada
- Life Sciences Institute, University of British Columbia, British Columbia, Canada
| | - Gene W. Tyson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Gunter Wegener
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
| | - Antje Boetius
- Max-Planck Institute for Marine Microbiology, Bremen, Germany
- MARUM, Center for Marine Environmental Science, and Department of Geosciences, University of Bremen, Bremen, Germany
- Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Victoria J. Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (GLC); (VJO)
| |
Collapse
|
3
|
Jarrell KF, Albers SV, Machado JNDS. A comprehensive history of motility and Archaellation in Archaea. FEMS MICROBES 2021; 2:xtab002. [PMID: 37334237 PMCID: PMC10117864 DOI: 10.1093/femsmc/xtab002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/18/2021] [Indexed: 08/24/2023] Open
Abstract
Each of the three Domains of life, Eukarya, Bacteria and Archaea, have swimming structures that were all originally called flagella, despite the fact that none were evolutionarily related to either of the other two. Surprisingly, this was true even in the two prokaryotic Domains of Bacteria and Archaea. Beginning in the 1980s, evidence gradually accumulated that convincingly demonstrated that the motility organelle in Archaea was unrelated to that found in Bacteria, but surprisingly shared significant similarities to type IV pili. This information culminated in the proposal, in 2012, that the 'archaeal flagellum' be assigned a new name, the archaellum. In this review, we provide a historical overview on archaella and motility research in Archaea, beginning with the first simple observations of motile extreme halophilic archaea a century ago up to state-of-the-art cryo-tomography of the archaellum motor complex and filament observed today. In addition to structural and biochemical data which revealed the archaellum to be a type IV pilus-like structure repurposed as a rotating nanomachine (Beeby et al. 2020), we also review the initial discoveries and subsequent advances using a wide variety of approaches to reveal: complex regulatory events that lead to the assembly of the archaellum filaments (archaellation); the roles of the various archaellum proteins; key post-translational modifications of the archaellum structural subunits; evolutionary relationships; functions of archaella other than motility and the biotechnological potential of this fascinating structure. The progress made in understanding the structure and assembly of the archaellum is highlighted by comparing early models to what is known today.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sonja-Verena Albers
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
| | - J Nuno de Sousa Machado
- Institute for Biology II- Microbiology, Molecular Biology of Archaea, University of Freiburg, Schänzlestraße 1, Freiburg 79104, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| |
Collapse
|
4
|
Thirumalaisamy G, Malik PK, Kolte AP, Trivedi S, Dhali A, Bhatta R. Effect of silkworm ( Bombyx mori) pupae oil supplementation on enteric methane emission and methanogens diversity in sheep. Anim Biotechnol 2020; 33:128-140. [PMID: 32573336 DOI: 10.1080/10495398.2020.1781147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In vitro and in vivo studies were conducted to examine the effect of silkworm pupae oil on methane (CH4) emission and methanogens diversity. Five graded levels (2, 4, 6, 8 and 10%) of silkworm pupae oil were tested in vitro. Eighteen Mandya adult sheep were divided into three groups. All the animals were fed on similar basal diet except the oil supplementation in test groups. Oil level for supplementation was decided on the basis of in vitro study. In vitro study indicated a reduction of 22% in CH4 production with 2% oil supplementation. Animals in test groups were supplemented with oil (2%) either daily (CON) or intermittently (INT) on every alternate week for all the seven days. A significant reduction of 17-20% in enteric CH4 emission (g/d) was achieved due to oil supplementation in sheep. However, No variation was established between test groups CON and INT. In present study, Methanobrevibacter was major genus contributed ∼90% of the total rumen methanogens; whilst Methanobrevibacter gottschalkii was the most abundant methanogens species. Abundance of Methanobrevibacter ruminantium was affected with the oil supplementation. It can be concluded that the silkworm pupae oil at 2% can decrease CH4 emission by 15-20%.
Collapse
Affiliation(s)
- G Thirumalaisamy
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - P K Malik
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - A P Kolte
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - S Trivedi
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - A Dhali
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| | - R Bhatta
- Energy Metabolism Laboratory, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore, India
| |
Collapse
|
5
|
Khursigara CM, Koval SF, Moyles DM, Harris RJ. Inroads through the bacterial cell envelope: seeing is believing. Can J Microbiol 2018; 64:601-617. [DOI: 10.1139/cjm-2018-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A singular feature of all prokaryotic cells is the presence of a cell envelope composed of a cytoplasmic membrane and a cell wall. The introduction of bacterial cell fractionation techniques in the 1950s and 1960s along with developments in procedures for electron microscopy opened the window towards an understanding of the chemical composition and architecture of the cell envelope. This review traces the contribution of Terry Beveridge in these endeavours, beginning with his doctoral studies in the 1970s on the structure of paracrystalline surface arrays (S-layers), followed by an exploration of cryogenic methods for preserving bacteria for ultrastructural analyses. His insights are reflected in a current example of the contribution of cryo-electron microscopy to S-layer studies — the structure and assembly of the surface array of Caulobacter crescentus. The review then focuses on Terry’s contributions to imaging the ultrastructure of bacterial cell envelopes and to the development of cryo-electron microscopy techniques, including the use of CEMOVIS (Cryo-electron Microscopy of Vitreous Sections) to “see” the ultrastructure of the Gram-positive cell envelope — his last scientific endeavour.
Collapse
Affiliation(s)
- Cezar M. Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Molecular and Cellular Imaging Facility, Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Susan F. Koval
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 5C1, Canada
| | - Dianne M. Moyles
- Molecular and Cellular Imaging Facility, Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert J. Harris
- Molecular and Cellular Imaging Facility, Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
6
|
Kiernan JA. Fibers, bacteria and things that look like fungi under the microscope. J Histotechnol 2017. [DOI: 10.1080/01478885.2017.1323575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Poweleit N, Ge P, Nguyen HH, Ogorzalek Loo RR, Gunsalus RP, Zhou ZH. CryoEM structure of the Methanospirillum hungatei archaellum reveals structural features distinct from the bacterial flagellum and type IV pilus. Nat Microbiol 2016; 2:16222. [PMID: 27922015 PMCID: PMC5695567 DOI: 10.1038/nmicrobiol.2016.222] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 10/07/2016] [Indexed: 11/08/2022]
Abstract
Archaea use flagella known as archaella-distinct both in protein composition and structure from bacterial flagella-to drive cell motility, but the structural basis of this function is unknown. Here, we report an atomic model of the archaella, based on the cryo electron microscopy (cryoEM) structure of the Methanospirillum hungatei archaellum at 3.4 Å resolution. Each archaellum contains ∼61,500 archaellin subunits organized into a curved helix with a diameter of 10 nm and average length of 10,000 nm. The tadpole-shaped archaellin monomer has two domains, a β-barrel domain and a long, mildly kinked α-helix tail. Our structure reveals multiple post-translational modifications to the archaella, including six O-linked glycans and an unusual N-linked modification. The extensive interactions among neighbouring archaellins explain how the long but thin archaellum maintains the structural integrity required for motility-driving rotation. These extensive inter-subunit interactions and the absence of a central pore in the archaellum distinguish it from both the bacterial flagellum and type IV pili.
Collapse
Affiliation(s)
- Nicole Poweleit
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Peng Ge
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Hong H. Nguyen
- Department of Chemistry and Biochemistry, UCLA, Los Angeles 90095, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Rachel R. Ogorzalek Loo
- Department of Chemistry and Biochemistry, UCLA, Los Angeles 90095, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| | - Robert P. Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- The UCLA-DOE Institute, UCLA, Los Angeles, California 90095, USA
| | - Z. Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, California 90095, USA
- Electron Imaging Center for Nanomachines, California Nano Systems Institute, UCLA, Los Angeles (UCLA), Los Angeles, California 90095, USA
| |
Collapse
|
8
|
Meyer B, Kuehl JV, Deutschbauer AM, Arkin AP, Stahl DA. Flexibility of syntrophic enzyme systems in Desulfovibrio species ensures their adaptation capability to environmental changes. J Bacteriol 2013; 195:4900-14. [PMID: 23974031 PMCID: PMC3807489 DOI: 10.1128/jb.00504-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
Abstract
The mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers obligately linked by interspecies metabolite exchange in syntrophic consortia that may include sulfate reducing species such as Desulfovibrio. To evaluate the metabolic flexibility of syntrophic Desulfovibrio to adapt to naturally fluctuating methanogenic environments, we studied Desulfovibrio alaskensis strain G20 grown in chemostats under respiratory and syntrophic conditions with alternative methanogenic partners, Methanococcus maripaludis and Methanospirillum hungatei, at different growth rates. Comparative whole-genome transcriptional analyses, complemented by G20 mutant strain growth experiments and physiological data, revealed a significant influence of both energy source availability (as controlled by dilution rate) and methanogen on the electron transfer systems, ratios of interspecies electron carriers, energy generating systems, and interspecies physical associations. A total of 68 genes were commonly differentially expressed under syntrophic versus respiratory lifestyle. Under low-energy (low-growth-rate) conditions, strain G20 further had the capacity to adapt to the metabolism of its methanogenic partners, as shown by its differing gene expression of enzymes involved in the direct metabolic interactions (e.g., periplasmic hydrogenases) and the ratio shift in electron carriers used for interspecies metabolite exchange (hydrogen/formate). A putative monomeric [Fe-Fe] hydrogenase and Hmc (high-molecular-weight-cytochrome c3) complex-linked reverse menaquinone (MQ) redox loop become increasingly important for the reoxidation of the lactate-/pyruvate oxidation-derived redox pair, DsrC(red) and Fd(red), relative to the Qmo-MQ-Qrc (quinone-interacting membrane-bound oxidoreductase; quinone-reducing complex) loop. Together, these data underscore the high enzymatic and metabolic adaptive flexibility that likely sustains Desulfovibrio in naturally fluctuating methanogenic environments.
Collapse
Affiliation(s)
- Birte Meyer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Jennifer V. Kuehl
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam M. Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P. Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
9
|
Sousa DZ, Salvador AF, Ramos J, Guedes AP, Barbosa S, Stams AJM, Alves MM, Pereira MA. Activity and viability of methanogens in anaerobic digestion of unsaturated and saturated long-chain fatty acids. Appl Environ Microbiol 2013; 79:4239-45. [PMID: 23645196 PMCID: PMC3697517 DOI: 10.1128/aem.00035-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 04/26/2013] [Indexed: 11/20/2022] Open
Abstract
Lipids can be anaerobically digested to methane, but methanogens are often considered to be highly sensitive to the long-chain fatty acids (LCFA) deriving from lipids hydrolysis. In this study, the effect of unsaturated (oleate [C18:1]) and saturated (stearate [C18:0] and palmitate [C16:0]) LCFA toward methanogenic archaea was studied in batch enrichments and in pure cultures. Overall, oleate had a more stringent effect on methanogens than saturated LCFA, and the degree of tolerance to LCFA was different among distinct species of methanogens. Methanobacterium formicicum was able to grow in both oleate- and palmitate-degrading enrichments (OM and PM cultures, respectively), whereas Methanospirillum hungatei only survived in a PM culture. The two acetoclastic methanogens tested, Methanosarcina mazei and Methanosaeta concilii, could be detected in both enrichment cultures, with better survival in PM cultures than in OM cultures. Viability tests using live/dead staining further confirmed that exponential growth-phase cultures of M. hungatei are more sensitive to oleate than are M. formicicum cultures; exposure to 0.5 mM oleate damaged 99% ± 1% of the cell membranes of M. hungatei and 53% ± 10% of the cell membranes of M. formicicum. In terms of methanogenic activity, M. hungatei was inhibited for 50% by 0.3, 0.4, and 1 mM oleate, stearate, and palmitate, respectively. M. formicicum was more resilient, since 1 mM oleate and >4 mM stearate or palmitate was needed to cause 50% inhibition on methanogenic activity.
Collapse
Affiliation(s)
- Diana Z. Sousa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Andreia F. Salvador
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Juliana Ramos
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Ana P. Guedes
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sónia Barbosa
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Alfons J. M. Stams
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - M. Madalena Alves
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| | - M. Alcina Pereira
- Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
10
|
Deposition of biogenic iron minerals in a methane oxidizing microbial mat. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2013; 2013:102972. [PMID: 23843725 PMCID: PMC3697272 DOI: 10.1155/2013/102972] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 04/13/2013] [Accepted: 04/20/2013] [Indexed: 11/17/2022]
Abstract
The syntrophic community between anaerobic methanotrophic archaea and sulfate reducing bacteria forms thick, black layers within multi-layered microbial mats in chimney-like carbonate concretions of methane seeps located in the Black Sea Crimean shelf. The microbial consortium conducts anaerobic oxidation of methane, which leads to the formation of mainly two biomineral by-products, calcium carbonates and iron sulfides, building up these chimneys. Iron sulfides are generated by the microbial reduction of oxidized sulfur compounds in the microbial mats. Here we show that sulfate reducing bacteria deposit biogenic iron sulfides extra- and intracellularly, the latter in magnetosome-like chains. These chains appear to be stable after cell lysis and tend to attach to cell debris within the microbial mat. The particles may be important nuclei for larger iron sulfide mineral aggregates.
Collapse
|
11
|
Smith AL, Skerlos SJ, Raskin L. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. WATER RESEARCH 2013; 47:1655-1665. [PMID: 23295067 DOI: 10.1016/j.watres.2012.12.028] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet microfiltration membranes was operated at psychrophilic temperature (15 °C) treating simulated and actual domestic wastewater (DWW). Chemical oxygen demand (COD) removal during simulated DWW operation averaged 92 ± 5% corresponding to an average permeate COD of 36 ± 21 mg/L. Dissolved methane in the permeate stream represented a substantial fraction (40-50%) of the total methane generated by the system due to methane solubility at psychrophilic temperatures and oversaturation relative to Henry's law. During actual DWW operation, COD removal averaged 69 ± 10%. The permeate COD and 5-day biochemical oxygen demand (BOD(5)) averaged 76 ± 10 mg/L and 24 ± 3 mg/L, respectively, indicating compliance with the U.S. EPA's standard for secondary effluent (30 mg/L BOD(5)). Membrane fouling was managed using biogas sparging and permeate backflushing and a flux greater than 7 LMH was maintained for 30 days. Comparative fouling experiments suggested that the combination of the two fouling control measures was more effective than either fouling prevention method alone. A UniFrac based comparison of bacterial and archaeal microbial communities in the AnMBR and three different inocula using pyrosequencing targeting 16S rRNA genes suggested that mesophilic inocula are suitable for seeding psychrophilic AnMBRs treating low strength wastewater. Overall, the research described relatively stable COD removal, acceptable flux, and the ability to seed a psychrophilic AnMBR with mesophilic inocula, indicating future potential for the technology in practice, particularly in cold and temperate climates where DWW temperatures are low during part of the year.
Collapse
Affiliation(s)
- Adam L Smith
- Department of Civil and Environmental Engineering, University of Michigan, 2350 Hayward Road, 107 EWRE Bldg., Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
12
|
Jarrell KF, Walters AD, Bochiwal C, Borgia JM, Dickinson T, Chong JPJ. Major players on the microbial stage: why archaea are important. MICROBIOLOGY-SGM 2011; 157:919-936. [PMID: 21330437 DOI: 10.1099/mic.0.047837-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As microbiology undergoes a renaissance, fuelled in part by developments in new sequencing technologies, the massive diversity and abundance of microbes becomes yet more obvious. The Archaea have traditionally been perceived as a minor group of organisms forced to evolve into environmental niches not occupied by their more 'successful' and 'vigorous' counterparts, the bacteria. Here we outline some of the evidence gathered by an increasingly large and productive group of scientists that demonstrates not only that the Archaea contribute significantly to global nutrient cycling, but also that they compete successfully in 'mainstream' environments. Recent data suggest that the Archaea provide the major routes for ammonia oxidation in the environment. Archaea also have huge economic potential that to date has only been fully realized in the production of thermostable polymerases. Archaea have furnished us with key paradigms for understanding fundamentally conserved processes across all domains of life. In addition, they have provided numerous exemplars of novel biological mechanisms that provide us with a much broader view of the forms that life can take and the way in which micro-organisms can interact with other species. That this information has been garnered in a relatively short period of time, and appears to represent only a small proportion of what the Archaea have to offer, should provide further incentives to microbiologists to investigate the underlying biology of this fascinating domain.
Collapse
Affiliation(s)
- Ken F Jarrell
- Department of Microbiology and Immunology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Alison D Walters
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Chitvan Bochiwal
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Juliet M Borgia
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| | - Thomas Dickinson
- Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK
| | - James P J Chong
- Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, UK
| |
Collapse
|
13
|
S-layer glycoproteins and flagellins: reporters of archaeal posttranslational modifications. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20721273 PMCID: PMC2913515 DOI: 10.1155/2010/612948] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/15/2010] [Indexed: 01/06/2023]
Abstract
Many archaeal proteins undergo posttranslational modifications. S-layer proteins and flagellins have been used successfully to study a variety of these modifications, including N-linked glycosylation, signal peptide removal and lipid modification. Use of these well-characterized reporter proteins in the genetically tractable model organisms, Haloferax volcanii, Methanococcus voltae and Methanococcus maripaludis, has allowed dissection of the pathways and characterization of many of the enzymes responsible for these modifications. Such studies have identified archaeal-specific variations in signal peptidase activity not found in the other domains of life, as well as the enzymes responsible for assembly and biosynthesis of novel N-linked glycans. In vitro assays for some of these enzymes have already been developed. N-linked glycosylation is not essential for either Hfx. volcanii or the Methanococcus species, an observation that allowed researchers to analyze the role played by glycosylation in the function of both S-layers and flagellins, by generating mutants possessing these reporters with only partial attached glycans or lacking glycan altogether. In future studies, it will be possible to consider questions related to the heterogeneity associated with given modifications, such as differential or modulated glycosylation.
Collapse
|
14
|
|
15
|
Fuerst JA, Webb RI, Garson MJ, Hardy L, Reiswig HM. Membrane-bounded nucleoids in microbial symbionts of marine sponges. FEMS Microbiol Lett 1998. [DOI: 10.1111/j.1574-6968.1998.tb13179.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
16
|
Beveridge TJ, Pouwels PH, Sára M, Kotiranta A, Lounatmaa K, Kari K, Kerosuo E, Haapasalo M, Egelseer EM, Schocher I, Sleytr UB, Morelli L, Callegari ML, Nomellini JF, Bingle WH, Smit J, Leibovitz E, Lemaire M, Miras I, Salamitou S, Béguin P, Ohayon H, Gounon P, Matuschek M, Koval SF. Functions of S-layers. FEMS Microbiol Rev 1997; 20:99-149. [PMID: 9276929 DOI: 10.1111/j.1574-6976.1997.tb00305.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Although S-layers are being increasingly identified on Bacteria and Archaea, it is enigmatic that in most cases S-layer function continues to elude us. In a few instances, S-layers have been shown to be virulence factors on pathogens (e.g. Campylobacter fetus ssp. fetus and Aeromonas salmonicida), protective against Bdellovibrio, a depository for surface-exposed enzymes (e.g. Bacillus stearothermophilus), shape-determining agents (e.g. Thermoproteus tenax) and nucleation factors for fine-grain mineral development (e.g. Synechococcus GL 24). Yet, for the vast majority of S-layered bacteria, the natural function of these crystalline arrays continues to be evasive. The following review up-dates the functional basis of S-layers and describes such diverse topics as the effect of S-layers on the Gram stain, bacteriophage adsorption in lactobacilli, phagocytosis by human polymorphonuclear leukocytes, the adhesion of a high-molecular-mass amylase, outer membrane porosity, and the secretion of extracellular enzymes of Thermoanaerobacterium. In addition, the functional aspect of calcium on the Caulobacter S-layer is explained.
Collapse
Affiliation(s)
- T J Beveridge
- Department of Microbiology, College of Biological Science, University of Guelph, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xu W, Mulhern PJ, Blackford BL, Jericho MH, Firtel M, Beveridge TJ. Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication of methane production. J Bacteriol 1996; 178:3106-12. [PMID: 8655487 PMCID: PMC178059 DOI: 10.1128/jb.178.11.3106-3112.1996] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We describe a technique for probing the elastic properties of biological membranes by using an atomic force microscope (AFM) tip to press the biological material into a groove in a solid surface. A simple model is developed to relate the applied force and observed depression distance to the elastic modulus of the material. A measurement on the proteinaceous sheath of the archaebacterium Methanospirillum hungatei GP1 gave a Young's modulus of 2 x 10(10) to 4 x 10(10) N/m2. The measurements suggested that the maximum sustainable tension in the sheath was 3.5 to 5 N/m. This finding implied a maximum possible internal pressure for the bacterium of between 300 and 400 atm. Since the cell membrane and S-layer (wall) which surround each cell should be freely permeable to methane and since we demonstrate that the sheath undergoes creep (expansion) with pressure increase, it is possible that the sheath acts as a pressure regulator by stretching, allowing the gas to escape only after a certain pressure is reached. This creep would increase the permeability of the sheath to diffusible substances.
Collapse
Affiliation(s)
- W Xu
- Physics Department, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The Gram stain, the most important stain in microbiology, was described more than a century ago. Only within the past decade, however, has an understanding of its mechanism emerged. It now seems clear that the cell wall of Gram-positive microorganisms is responsible for retention of a crystal violet:iodine complex. In Gram-negative cells, the staining procedures damage the cell surface resulting in loss of dye complexes. Gram-positive microorganisms require a relatively thick cell wall, irrespective of composition, to retain the dye. Therefore, Gram-stainability is a function of the cell wall and is not related to chemistry of cell constituents. This review provides a chronology of the Gram stain and discusses its recently discovered mechanism.
Collapse
Affiliation(s)
- A Popescu
- Department of Microbiology and Immunology, University of Louisville, Kentucky 40292, USA
| | | |
Collapse
|
19
|
XU W, BLACKFORD BL, MULHERN PJ, JERICHO MH, FIRTEL M, BEVERIDGE TJ. STM imaging of metal-coated cell plugs of the archaeobacterium Methanospirillum hungatei GP1. J Microsc 1995. [DOI: 10.1111/j.1365-2818.1995.tb03579.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Abstract
Scanning probe microscopy (SPM) is emerging as an important alternative to electron microscopy as a technique for analyzing submicron details on biological surfaces. Microbiological specimens such as viruses, bacteriophages, and ordered bacterial surface layers and membranes have played an important role in the development of scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) in cellular and molecular biology. Early STM studies involving metal-coated bacteriophage T4 polyheads, Methanospirillum hungatei, and Deinococcus radiodurans HPI layer clearly demonstrated that resolution was comparable to TEM on similarly prepared specimens and only limited by metal graininess. However, except for thin films or layers, novel biological information has been difficult to obtain since imaging native surfaces of such biomaterials as proteins or nucleic acids by STM proved to be unreliable. With the development of atomic force microscopes, which allow imaging of similar native structures, SPM applications have widened to include straightforward surface structure analysis, analysis of surface elastic and inelastic properties, bonding force measurements between molecules, and micro-manipulations of such individual molecules as DNA. AFM images have progressed from relatively crude representations of specimen topography to nanometer scale representations of native hydrated surfaces. It appears from the study of microbiological specimens that direct visualization of dynamic molecular events or processes may soon become a reality.
Collapse
Affiliation(s)
- M Firtel
- Department of Microbiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | | |
Collapse
|
21
|
Firtel M, Xu W, Southam G, Mulhern PJ, Blackford B, Jericho MH, Beveridge TJ. Tip-induced displacement and imaging of a multilayered bacterial structure by scanning tunneling microscopy. Ultramicroscopy 1994. [DOI: 10.1016/0304-3991(94)90085-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Morris VJ. Biological applications of scanning probe microscopies. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1994; 61:131-85. [PMID: 8029471 DOI: 10.1016/0079-6107(94)90008-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- V J Morris
- AFRC Institute of Food Research, Norwich Laboratory, Norwich Research Park, Colney, U.K
| |
Collapse
|
23
|
Firtel M, Southam G, Harauz G, Beveridge TJ. Characterization of the cell wall of the sheathed methanogen Methanospirillum hungatei GP1 as an S layer. J Bacteriol 1993; 175:7550-60. [PMID: 8244924 PMCID: PMC206911 DOI: 10.1128/jb.175.23.7550-7560.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cell wall of Methanospirillum hungatei GP1 is a labile structure that has been difficult to isolate and characterize because the cells which it encases are contained within a sheath. Cell-sized fragments, 560 nm wide by several micrometers long, of cell wall were extracted by a novel method involving the gradual drying of the filaments in 2% (wt/vol) sodium dodecyl sulfate and 10% (wt/vol) sucrose in 50 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer containing 10 mM EDTA. The surface was a hexagonal array (a = b = 15.1 nm) possessing a helical superstructure with a ca. 2.5 degrees pitch angle. In shadowed relief, the smooth outer face was punctuated with deep pits, whereas the inner face was relatively featureless. Computer-based two-dimensional reconstructed views of the negatively stained layer demonstrated 4.0- and 2.0-nm-wide electron-dense regions on opposite sides of the layer likely corresponding to the openings of funnel-shaped channels. The face featuring the larger openings best corresponds to the outer face of the layer. The smaller opening was encircled by a stalk-like mass from which 2.2-nm-wide protrusions were resolved. The cell wall in situ was degraded at pH 9.6 at 56 degrees C but was unaffected at pH 7.4 at the same temperature. The cell wall was composed of two nonglycosylated polypeptides (114 and 110 kDa). The cell wall resembled an archaeal S layer and may function in regulating the passage of small (< 10-kDa) sheath precursor proteins.
Collapse
Affiliation(s)
- M Firtel
- Department of Microbiology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Effect of changes in mineral composition and growth temperature on filament length and flagellation in the Archaeon Methanospirillum hungatei. Arch Microbiol 1993. [DOI: 10.1007/bf00249028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Beveridge TJ. Current trends and future prospects in prokaryotic envelope research: a microscopist's view. THE JOURNAL OF APPLIED BACTERIOLOGY 1993; 74 Suppl:143S-153S. [PMID: 8349533 DOI: 10.1111/j.1365-2672.1993.tb04351.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- T J Beveridge
- Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada
| |
Collapse
|
26
|
Southam G, Firtel M, Blackford BL, Jericho MH, Xu W, Mulhern PJ, Beveridge TJ. Transmission electron microscopy, scanning tunneling microscopy, and atomic force microscopy of the cell envelope layers of the archaeobacterium Methanospirillum hungatei GP1. J Bacteriol 1993; 175:1946-55. [PMID: 8458836 PMCID: PMC204270 DOI: 10.1128/jb.175.7.1946-1955.1993] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Methanospirillum hungatei GP1 possesses paracrystalline cell envelope components including end plugs and a sheath formed from stacked hoops. Both negative-stain transmission electron microscopy (TEM) and scanning tunneling microscopy (STM) distinguished the 2.8-nm repeat on the outer surface of the sheath, while negative-stain TEM alone demonstrated this repeat around the outer circumference of individual hoops. Thin sections revealed a wave-like outer sheath surface, while STM showed the presence of deep grooves that precisely defined the hoop-to-hoop boundaries at the waveform nodes. Atomic force microscopy of sheath tubes containing entrapped end plugs emphasized the end plug structure, suggesting that the sheath was malleable enough to collapse over the end plugs and deform to mimic the shape of the underlying structure. High-resolution atomic force microscopy has revised the former idea of end plug structure so that we believe each plug consists of at least four discs, each of which is approximately 3.5 nm thick. PT shadow TEM and STM both demonstrated the 14-nm hexagonal, particulate surface of an end plug, and STM showed the constituent particles to be lobed structures with numerous smaller projections, presumably corresponding to the molecular folding of the particle.
Collapse
Affiliation(s)
- G Southam
- Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Southam G, Beveridge TJ. Detection of growth sites in and protomer pools for the sheath of Methanospirillum hungatei GP1 by use of constituent organosulfur and immunogold labeling. J Bacteriol 1992; 174:6460-70. [PMID: 1400199 PMCID: PMC207604 DOI: 10.1128/jb.174.20.6460-6470.1992] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Methanospirillum hungatei GP1 integrated approximately 9% of cellular [35S]cysteine into its sheath. Autoradiography of sodium dodecyl sulfate-polyacrylamide gels revealed that [35S]cysteine was confined to the proteins released by the sodium dodecyl sulfate-beta-mercaptoethanol-EDTA solubilization method (G. Southam and T. J. Beveridge, J. Bacteriol. 173:6213-6222, 1991) and was not present in the proteins released by treatment with phenol (G. Southam and T. J. Beveridge, J. Bacteriol. 174:935-946, 1992). Limited labeling of exposed sulfhydryl groups on hoops produced from sheath material suggested that most organosulfur groups occur within hoops and therefore help contribute to resilience. Electron microscopic autoradiography demonstrated that sheath growth, which is most active at the sites of cell division (spacer region), occurs through the de novo development of hoops. For growth to occur in the spacer region, sheath precursors must transverse several periodic envelope layers, including the cell wall (a single layer) and the various lamellae of the spacer plug (T. J. Beveridge, G. D. Sprott, and P. Whippey, J. Bacteriol. 173:130-140, 1991).
Collapse
Affiliation(s)
- G Southam
- Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
28
|
Gupta RS, Singh B. Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene. J Bacteriol 1992; 174:4594-605. [PMID: 1624448 PMCID: PMC206254 DOI: 10.1128/jb.174.14.4594-4605.1992] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Heat shock induces the synthesis of a set of proteins in Halobacterium marismortui whose molecular sizes correspond to the known major heat shock proteins. By using the polymerase chain reaction and degenerate oligonucleotide primers for conserved regions of the 70-kDa heat shock protein (HSP70) family, we have successfully cloned and sequenced a gene fragment containing the entire coding sequence for HSP70 from H. marismortui. HSP70 from H. marismortui shows between 44 and 47% amino acid identity with various eukaryotic HSP70s and between 51 and 58% identity with its eubacterial and archaebacterial homologs. On the basis of a comparison of all available HSP70 sequences, we have identified a number of unique sequence signatures in this protein family that provide a clear distinction between eukaryotic organisms and prokaryotic organisms (archaebacteria and eubacteria). The archaebacterial (viz., H. marismortui and Methanosarcina mazei) HSP70s have been found to contain all of the signature sequences characteristic of eubacteria (particularly the gram-positive bacteria), which suggests a close evolutionary relationship between these groups. In addition, detailed analyses of HSP70 sequences that we have carried out have revealed a number of additional novel features of the HSP70 protein family. These include (i) the presence of an insertion of about 25 to 27 amino acids in the N-terminal quadrants of all known eukaryotic and prokaryotic HSP70s except those from archaebacteria and the gram-positive group of bacteria, (ii) significant sequence similarity in HSP70 regions comprising its first and second quadrants from organisms lacking the above insertion, (iii) highly significant similarity between a protein, MreB, of Escherichia coli and the N-terminal half of HSP70s, (iv) significant sequence similarity between the N-terminal quadrant of HSP70 (from gram-positive bacteria and archaebacteria) and the m-type thioredoxin of plant chloroplasts. To account for these and other observations, a model for the evolution of HSP70 proteins involving gene duplication is proposed. The model proposes that HSP70 from archaebacteria (H. marismortui and M. mazei) and the gram-positive group of bacteria constitutes the ancestral form of the protein and that all other HSP70s (viz., other eubacteria as well as eukaryotes) containing the insert have evolved from this ancient protein.
Collapse
Affiliation(s)
- R S Gupta
- Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
29
|
Southam G, Beveridge TJ. Characterization of novel, phenol-soluble polypeptides which confer rigidity to the sheath of Methanospirillum hungatei GP1. J Bacteriol 1992; 174:935-46. [PMID: 1732226 PMCID: PMC206173 DOI: 10.1128/jb.174.3.935-946.1992] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Treatment of the Methanospirillum hungatei GP1 sheath with 90% (wt/vol) phenol resulted in the solubilization of a novel phenol-soluble group of polypeptides. These polypeptides were purified by the removal of insoluble material by ultracentrifugation and represented approximately 19% of the mass of the sheath. The phenol-insoluble material resembled untreated sheath but had lost its rigidity and cylindrical form. Recombination of phenol-soluble and phenol-insoluble fractions by dialysis to remove phenol resulted in cylindrical reassembly products. Although bona fide sheath (complete with the 2.8-nm lattice) was not produced, a role for the phenol-soluble polypeptides in the maintenance of sheath rigidity is implied. The phenol-soluble polypeptides have limited surface exposure as detected by antibodies on intact sheath; therefore, they are not responsible for the 2.8-nm repeat occurring on the outer face of the sheath. However, longitudinal and transverse linear labeling by protein A-colloidal gold on the outer and inner faces, respectively, occurred with monoclonal antibodies specific to the phenol-soluble polypeptides. Restricted surface exposure of phenol-soluble polypeptides on the sheath highlighted molecular defects in sheath architecture. These lattice faults may indicate sites of sheath growth to accommodate cell growth or division (longitudinal immunogold label) and filament division (transverse immunogold label). The identification of a second group of polypeptides within the infrastructure of the sheath suggests that the sheath is a trilaminar structure in which phenol-soluble polypeptides are sandwiched between sodium dodecyl sulfate-beta-mercaptoethanol-EDTA-soluble polypeptides (G. Southam and T. J. Beveridge, J. Bacteriol. 173:6213-6222, 1991) (phenol-insoluble material).
Collapse
Affiliation(s)
- G Southam
- Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|
30
|
Abstract
Since bacteria are so small, microscopy has traditionally been used to study them as individual cells. To this end, electron microscopy has been a most powerful tool for studying bacterial surfaces; the viewing of macromolecular arrangements of some surfaces is now possible. This review compares older conventional electron-microscopic methods with new cryotechniques currently available and the results each has produced. Emphasis is not placed on the methodology but, rather, on the importance of the results in terms of our perception of the makeup and function of bacterial surfaces and their interaction with the surrounding environment.
Collapse
Affiliation(s)
- T J Beveridge
- Department of Microbiology, College of Biological Science, University of Guelph, Ontario, Canada
| | | |
Collapse
|