1
|
Abstract
Retrons are bacterial genetic elements involved in anti-phage defense. They have the unique ability to reverse transcribe RNA into multicopy single-stranded DNA (msDNA) that remains covalently linked to their template RNA. Retrons coupled with CRISPR-Cas9 in yeast have been shown to improve the efficiency of precise genome editing via homology-directed repair (HDR). In human cells, HDR editing efficiency has been limited by challenges associated with delivering extracellular donor DNA encoding the desired mutation. In this study, we tested the ability of retrons to produce msDNA as donor DNA and facilitate HDR by tethering msDNA to guide RNA in HEK293T and K562 cells. Through heterologous reconstitution of retrons from multiple bacterial species with the CRISPR-Cas9 system, we demonstrated HDR rates of up to 11.4%. Overall, our findings represent the first step in extending retron-based precise gene editing to human cells.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Biology, Stanford University, Stanford, California, USA
| | - Shi-An A. Chen
- Department of Biology, Stanford University, Stanford, California, USA
| | - Jiwoo Lee
- Department of Biology, Stanford University, Stanford, California, USA
| | - Hunter B. Fraser
- Department of Biology, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Hammerl JA, Volkmar S, Jacob D, Klein I, Jäckel C, Hertwig S. The Burkholderia thailandensis Phages ΦE058 and ΦE067 Represent Distinct Prototypes of a New Subgroup of Temperate Burkholderia Myoviruses. Front Microbiol 2020; 11:1120. [PMID: 32528458 PMCID: PMC7266877 DOI: 10.3389/fmicb.2020.01120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/05/2020] [Indexed: 12/03/2022] Open
Abstract
Burkholderia mallei and B. pseudomallei are highly pathogenic species which are closely related, but diverse regarding their prophage content. While temperate phages have not yet been isolated from B. mallei, several phages of B. pseudomallei, and its non-pathogenic relative B. thailandensis have been described. In this study we isolated two phages from B. pseudomallei and three phages from B. thailandensis and determined their morphology, host range, and relationship. All five phages belong to the family Myoviridae, but some of them revealed different host specificities. DNA-DNA hybridization experiments indicated that the phages belong to two groups. One group, composed of ΦE058 (44,121 bp) and ΦE067 (43,649 bp), represents a new subgroup of Burkholderia myoviruses that is not related to known phages. The genomes of ΦE058 and ΦE067 are similar but also show some striking differences. Repressor proteins differ clearly allowing the phages to form plaques on hosts containing the respective other phage. The tail fiber proteins exhibited some minor deviations in the C-terminal region, which may account for the ability of ΦE058, but not ΦE067, to lyse B. mallei, B. pseudomallei, and B. thailandensis. In addition, the integrases and attachment sites of the phages are not related. While ΦE058 integrates into the Burkholderia chromosome within an intergenic region, the ΦE067 prophage resides in the selC tRNA gene for selenocysteine. Experiments on the structure of phage DNA isolated from particles suggest that the ΦE058 and ΦE067 genomes have a circular conformation.
Collapse
Affiliation(s)
- Jens A Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Daniela Jacob
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Iris Klein
- Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, Berlin, Germany
| | - Claudia Jäckel
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Stefan Hertwig
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
3
|
Simon AJ, Ellington AD, Finkelstein IJ. Retrons and their applications in genome engineering. Nucleic Acids Res 2020; 47:11007-11019. [PMID: 31598685 PMCID: PMC6868368 DOI: 10.1093/nar/gkz865] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 11/14/2022] Open
Abstract
Precision genome editing technologies have transformed modern biology. These technologies have arisen from the redirection of natural biological machinery, such as bacteriophage lambda proteins for recombineering and CRISPR nucleases for eliciting site-specific double-strand breaks. Less well-known is a widely distributed class of bacterial retroelements, retrons, that employ specialized reverse transcriptases to produce noncoding intracellular DNAs. Retrons' natural function and mechanism of genetic transmission have remained enigmatic. However, recent studies have harnessed their ability to produce DNA in situ for genome editing and evolution. This review describes retron biology and function in both natural and synthetic contexts. We also highlight areas that require further study to advance retron-based precision genome editing platforms.
Collapse
Affiliation(s)
- Anna J Simon
- Center for Systems and Synthetic Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Andrew D Ellington
- Center for Systems and Synthetic Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Ilya J Finkelstein
- Center for Systems and Synthetic Biology and Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
4
|
Carr VR, Shkoporov A, Hill C, Mullany P, Moyes DL. Probing the Mobilome: Discoveries in the Dynamic Microbiome. Trends Microbiol 2020; 29:158-170. [PMID: 32448763 DOI: 10.1016/j.tim.2020.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
There has been an explosion of metagenomic data representing human, animal, and environmental microbiomes. This provides an unprecedented opportunity for comparative and longitudinal studies of many functional aspects of the microbiome that go beyond taxonomic classification, such as profiling genetic determinants of antimicrobial resistance, interactions with the host, potentially clinically relevant functions, and the role of mobile genetic elements (MGEs). One of the most important but least studied of these aspects are the MGEs, collectively referred to as the 'mobilome'. Here we elaborate on the benefits and limitations of using different metagenomic protocols, discuss the relative merits of various sequencing technologies, and highlight relevant bioinformatics tools and pipelines to predict the presence of MGEs and their microbial hosts.
Collapse
Affiliation(s)
- Victoria R Carr
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK; The Alan Turing Institute, British Library, London, UK.
| | - Andrey Shkoporov
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, School of Microbiology, University College Cork, Cork, Ireland
| | - Peter Mullany
- Eastman Dental Institute, University College London, London, UK
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
5
|
Saile N, Schuh E, Semmler T, Eichhorn I, Wieler LH, Bauwens A, Schmidt H. Determination of virulence and fitness genes associated with the pheU, pheV and selC integration sites of LEE-negative food-borne Shiga toxin-producing Escherichia coli strains. Gut Pathog 2018; 10:43. [PMID: 30337962 PMCID: PMC6174562 DOI: 10.1186/s13099-018-0271-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/01/2018] [Indexed: 01/22/2023] Open
Abstract
Background In the current study, nine foodborne “Locus of Enterocyte Effacement” (LEE)-negative Shiga toxin-producing Escherichia coli (STEC) strains were selected for whole genome sequencing and analysis for yet unknown genetic elements within the already known LEE integration sites selC, pheU and pheV. Foreign DNA ranging in size from 3.4 to 57 kbp was detected and further analyzed. Five STEC strains contained an insertion of foreign DNA adjacent to the selC tRNA gene and five and seven strains contained foreign DNA adjacent to the pheU and pheV tRNA genes, respectively. We characterized the foreign DNA insertion associated with selC (STEC O91:H21 strain 17584/1), pheU (STEC O8:H4 strain RF1a and O55:Hnt strain K30) and pheV (STEC O91:H21 strain 17584/1 and O113:H21 strain TS18/08) as examples. Results In total, 293 open reading frames partially encoding putative virulence factors such as TonB-dependent receptors, DNA helicases, a hemolysin activator protein precursor, antigen 43, anti-restriction protein KlcA, ShiA, and phosphoethanolamine transferases were detected. A virulence type IV toxin-antitoxin system was detected in three strains. Additionally, the ato system was found in one strain. In strain 17584/1 we were able to define a new genomic island which we designated GIselC17584/1. The island contained integrases and mobile elements in addition to genes for increased fitness and those playing a putative role in pathogenicity. Conclusion The data presented highlight the important role of the three tRNAs selC, pheU, and pheV for the genomic flexibility of E. coli. Electronic supplementary material The online version of this article (10.1186/s13099-018-0271-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadja Saile
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| | - Elisabeth Schuh
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany.,2Department Biological Safety, National Reference Laboratory for Escherichia coli, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277 Berlin, Germany
| | | | - Inga Eichhorn
- 4Institute of Microbiology and Epizootics, Freie Universität Berlin, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
| | | | - Andreas Bauwens
- 5Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Herbert Schmidt
- 1Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstr. 28, 70599 Stuttgart, Germany
| |
Collapse
|
6
|
Elfenbein JR, Knodler LA, Nakayasu ES, Ansong C, Brewer HM, Bogomolnaya L, Adams LG, McClelland M, Adkins JN, Andrews-Polymenis HL. Multicopy Single-Stranded DNA Directs Intestinal Colonization of Enteric Pathogens. PLoS Genet 2015; 11:e1005472. [PMID: 26367458 PMCID: PMC4569332 DOI: 10.1371/journal.pgen.1005472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 07/28/2015] [Indexed: 01/10/2023] Open
Abstract
Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate, but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.
Collapse
Affiliation(s)
- Johanna R. Elfenbein
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Leigh A. Knodler
- Paul G. Allen School of Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Ernesto S. Nakayasu
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Charles Ansong
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Heather M. Brewer
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Lydia Bogomolnaya
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Michael McClelland
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Irvine, Irvine, California, United States of America
| | - Joshua N. Adkins
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Helene L. Andrews-Polymenis
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
Hyman P, Abedon ST. Smaller fleas: viruses of microorganisms. SCIENTIFICA 2012; 2012:734023. [PMID: 24278736 PMCID: PMC3820453 DOI: 10.6064/2012/734023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/20/2012] [Indexed: 05/31/2023]
Abstract
Life forms can be roughly differentiated into those that are microscopic versus those that are not as well as those that are multicellular and those that, instead, are unicellular. Cellular organisms seem generally able to host viruses, and this propensity carries over to those that are both microscopic and less than truly multicellular. These viruses of microorganisms, or VoMs, in fact exist as the world's most abundant somewhat autonomous genetic entities and include the viruses of domain Bacteria (bacteriophages), the viruses of domain Archaea (archaeal viruses), the viruses of protists, the viruses of microscopic fungi such as yeasts (mycoviruses), and even the viruses of other viruses (satellite viruses). In this paper we provide an introduction to the concept of viruses of microorganisms, a.k.a., viruses of microbes. We provide broad discussion particularly of VoM diversity. VoM diversity currently spans, in total, at least three-dozen virus families. This is roughly ten families per category-bacterial, archaeal, fungal, and protist-with some virus families infecting more than one of these microorganism major taxa. Such estimations, however, will vary with further discovery and taxon assignment and also are dependent upon what forms of life one includes among microorganisms.
Collapse
Affiliation(s)
- Paul Hyman
- Department of Biology, Ashland University, 401 College Avenue, Ashland, OH 44805, USA
| | - Stephen T. Abedon
- Department of Microbiology, The Ohio State University, 1680 University Dr., Mansfield, OH 44906, USA
| |
Collapse
|
8
|
Das R, Shimamoto T, Hosen SMZ, Arifuzzaman M. Comparative Study of different msDNA (multicopy single-stranded DNA) structures and phylogenetic comparison of reverse transcriptases (RTs): evidence for vertical inheritance. Bioinformation 2011; 7:176-9. [PMID: 22102774 PMCID: PMC3218519 DOI: 10.6026/97320630007176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/02/2011] [Indexed: 11/23/2022] Open
Abstract
The multi-copy single-stranded DNA (msDNA) is yielded by the action of reverse transcriptase of retro-element in a wide range of pathogenic bacteria. Upon this phenomenon, it has been shown that msDNA is only produced by Eubacteria because many Eubacteria species contained reverse transcriptase in their special retro-element. We have screened around 111 Archaea at KEGG (Kyoto Encyclopedia of Genes and Genomes) database available at genome net server and observed three Methanosarcina species (M.acetivorans, M.barkeri and M.mazei), which also contained reverse transcriptase in their genome sequences. This observation of reverse transcriptase in Archaea raises questions regarding the origin of this enzyme. The evolutionary relationship between these two domains of life (Eubacteria and Archaea) hinges upon the phenomenon of retrons. Interestingly, the evolutionary trees based on the reverse transcriptases (RTs) and 16S ribosomal RNAs point out that all the Eubacteria RTs were descended from Archaea RTs during their evolutionary times. In addition, we also have shown some significant structural features among the newly identified msDNA-Yf79 in Yersinia frederiksenii with other of its related msDNAs (msDNA-St85, msDNA-Vc95, msDNA-Vp96, msDNA-Ec78 and msDNA-Ec83) from pathogenic bacteria. Together the degree of sequence conservation among these msDNAs, the evolutionary trees and the distribution of these ret (reverse transcriptase) genes suggest a possible evolutionary scenario. The single common ancestor of the organisms of Eubacteria and Archaea subgroups probably achieved this ret gene during their evolution through the vertical descent rather than the horizontal transformations followed by integration into this organism genome by a mechanism related to phage recognition and/or transposition.
Collapse
Affiliation(s)
- Rasel Das
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Foy’s Lake, Pahartali Chittagong – 4202, Bangladesh
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | - Mohammad Arifuzzaman
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Foy’s Lake, Pahartali Chittagong – 4202, Bangladesh
| |
Collapse
|
9
|
Inouye K, Tanimoto S, Kamimoto M, Shimamoto T, Shimamoto T. Two novel retron elements are replaced with retron-Vc95 in Vibrio cholerae. Microbiol Immunol 2011; 55:510-3. [PMID: 21707739 DOI: 10.1111/j.1348-0421.2011.00342.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial reverse transcriptase (RT) is responsible for the production of an RNA-DNA complex called multicopy single-stranded DNA (msDNA). The genetic element required for the sysnthesis of msDNA is named a retron. Here, we characterize two novel retrons named retron-Vc81 and retron-Vc137 in Vibrio cholerae. Interestingly, retron-Vc81 and retron-Vc137 are replaced by retron-Vc95 at the same location on the chromosome.
Collapse
Affiliation(s)
- Kumiko Inouye
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | | | | | | | |
Collapse
|
10
|
Askora A, Kawasaki T, Usami S, Fujie M, Yamada T. Host recognition and integration of filamentous phage phiRSM in the phytopathogen, Ralstonia solanacearum. Virology 2008; 384:69-76. [PMID: 19059619 DOI: 10.1016/j.virol.2008.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 09/28/2008] [Accepted: 11/02/2008] [Indexed: 10/21/2022]
Abstract
Two prophages, called varphiRSM3 and varphiRSM4, that are closely related to, but differ from, filamentous phage varphiRSM1, have been detected in strains of the Ralstonia solanacearum species complex. The prophage varphiRSM3, found in host strain MAFF730139, could be converted to infectious phage by means of PCR and transfection. The nucleotide sequence of varphiRSM3 is highly conserved relative to varphiRSM1 except for open reading frame 2 (ORF2), encoding an unknown protein, and ORF9 encoding the presumed adsorption protein that determines host range. The two host ranges differ dramatically and correlate closely with different gel electrophoresis banding patterns for cell surface fimbriae. Infections by varphiRSM1 and varphiRSM3 enhance bacterial cell aggregation and reduce the bacterial host virulence in tomato plants. Database searches in the R. solanacearum strains of known genomic sequence revealed two inovirus prophages, one designated varphiRSM4 that is homologous to varphiRSM1 and varphiRSM3, and one homologues to RSS1, in the genome of strain UW551.
Collapse
Affiliation(s)
- Ahmed Askora
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
11
|
Fujiwara A, Kawasaki T, Usami S, Fujie M, Yamada T. Genomic characterization of Ralstonia solanacearum phage phiRSA1 and its related prophage (phiRSX) in strain GMI1000. J Bacteriol 2008; 190:143-56. [PMID: 17965167 PMCID: PMC2223755 DOI: 10.1128/jb.01158-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 10/15/2007] [Indexed: 12/31/2022] Open
Abstract
PhiRSA1 is a wide-host-range bacteriophage isolated from Ralstonia solanacearum. In this study, the complete nucleotide sequence of the phiRSA1 genomic DNA was determined. The genome was 38,760 bp of double-stranded DNA (65.3% G+C) with 19-bp 5'-extruding cohesive ends (cos) and contained 51 open reading frames (ORFs). Two-thirds of the phiRSA1 genomic region encodes the phage structural modules, and they are very similar to those reported for coliphage P2 and P2-like phages. A phiRSA1 minireplicon with an 8.2-kbp early-expressing region was constructed. A late-expression promoter sequence motif was predicted for these phiRSA1 genes as 5' TGTTGT-(X)13-ACAACA. The genomic sequence similarity between phiRSA1 and related phages phi52237 and phiCTX was interrupted by three AT islands, one of which contained an insertion sequence element, suggesting that they were recombinational hot spots. phiRSA1 was found to be integrated into at least three different strains of R. solanacearum, and the chromosomal integration site (attB) was identified as the 3' portion of the arginine tRNA(CCG) gene. In the light of the phiRSA1 gene arrangement, one possible prophage sequence previously detected on the chromosome of R. solanacearum strain GMI1000 was characterized as a phiRSA1-related prophage (designated phiRSX). phiRSX was found to be integrated at the serine tRNA (GGA) gene as an att site, and its size was determined to be 40,713 bp. phiRSX ORFs shared very high amino acid identity with their phiRSA1 counterparts. The relationships and evolution of these P2-like phages are discussed.
Collapse
Affiliation(s)
- Akiko Fujiwara
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | |
Collapse
|
12
|
Kawasaki T, Nagata S, Fujiwara A, Satsuma H, Fujie M, Usami S, Yamada T. Genomic characterization of the filamentous integrative bacteriophages {phi}RSS1 and {phi}RSM1, which infect Ralstonia solanacearum. J Bacteriol 2007; 189:5792-802. [PMID: 17557818 PMCID: PMC1952028 DOI: 10.1128/jb.00540-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The genomic DNA sequences were determined for two filamentous integrative bacteriophages, phiRSS1 and phiRSM1, of the phytopathogen Ralstonia solanacearum. The 6,662-base sequence of phiRSS1 contained 11 open reading frames (ORFs). In the databases, this sequence showed high homology (95% identity) to the circular double-stranded DNA plasmid pJTPS1 (6,633 bp) isolated from a spontaneously occurring avirulent mutant of R. solanacearum. Two major differences between the two sequences were observed within phiRSS1 ORF7, corresponding to pIII, a minor coat protein required for host adsorption, and at the phiRSS1 intergenic (IG) region. The 9,004-base sequence of phiRSM1 showed 12 ORFs located on the same strand (plus strand) and 2 ORFs on the opposite strand. Compared with Ff-type phages, two insertions are obvious in the phiRSM1 replication module. Genomic DNA fragments containing the phiRSM integration junctions were cloned and sequenced from phiRSM lysogenic strain R. solanacearum MAFF211270. The att core sequence was identified as 5'-TGGCGGAGAGGGT-3', corresponding to the 3' end of the serine tRNA (UCG) gene. Interestingly, ORF14, located next to the attP site on the phiRSM1 genome, showed high amino acid sequence homology with bacterial DNA recombinases and resolvases, different from XerCD recombinases. attP of phiRSS1 is within a sequence element of the IG region.
Collapse
Affiliation(s)
- Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Fouts DE. Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic Acids Res 2006; 34:5839-51. [PMID: 17062630 PMCID: PMC1635311 DOI: 10.1093/nar/gkl732] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phage_Finder, a heuristic computer program, was created to identify prophage regions in completed bacterial genomes. Using a test dataset of 42 bacterial genomes whose prophages have been manually identified, Phage_Finder found 91% of the regions, resulting in 7% false positive and 9% false negative prophages. A search of 302 complete bacterial genomes predicted 403 putative prophage regions, accounting for 2.7% of the total bacterial DNA. Analysis of the 285 putative attachment sites revealed tRNAs are targets for integration slightly more frequently (33%) than intergenic (31%) or intragenic (28%) regions, while tmRNAs were targeted in 8% of the regions. The most popular tRNA targets were Arg, Leu, Ser and Thr. Mapping of the insertion point on a consensus tRNA molecule revealed novel insertion points on the 5′ side of the D loop, the 3′ side of the anticodon loop and the anticodon. A novel method of constructing phylogenetic trees of phages and prophages was developed based on the mean of the BLAST score ratio (BSR) of the phage/prophage proteomes. This method verified many known bacteriophage groups, making this a useful tool for predicting the relationships of prophages from bacterial genomes.
Collapse
Affiliation(s)
- Derrick E Fouts
- The Institute for Genomic research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
14
|
Chouikha I, Germon P, Brée A, Gilot P, Moulin-Schouleur M, Schouler C. A selC-associated genomic island of the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is involved in carbohydrate uptake and virulence. J Bacteriol 2006; 188:977-87. [PMID: 16428402 PMCID: PMC1347334 DOI: 10.1128/jb.188.3.977-987.2006] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete nucleotide sequence and genetic organization of a new genomic island (AGI-3) isolated from the extraintestinal avian pathogenic Escherichia coli strain BEN2908 is reported. This 49,600-bp island is inserted at the selC locus and contains putative mobile genetic elements such as a phage-related integrase gene, transposase genes, and direct repeats. AGI-3 shows a mosaic structure of five modules. Some of these modules are present in other E. coli strains and in other pathogenic bacterial species. The gene cluster aec-35 to aec-37 of module 1 encodes proteins associated with carbohydrates assimilation such as a major facilitator superfamily transporter (Aec-36), a glycosidase (Aec-37), and a putative transcriptional regulator of the LacI family (Aec-35). The aec-35 to aec-37 cluster was found in 11.6% of the tested pathogenic and nonpathogenic E. coli strains. When present, the aec-35 to aec-37 cluster is strongly associated with the selC locus (97%). Deletion of the aec-35-aec-37 region affects the assimilation of seven carbohydrates, decreases the growth rate of the strain in minimal medium containing galacturonate or trehalose, and attenuates the virulence of E. coli BEN2908 for chickens.
Collapse
Affiliation(s)
- Iman Chouikha
- Equipe de Pathologie Bactérienne, UR86, INRA, 37380 Nouzilly, France
| | | | | | | | | | | |
Collapse
|
15
|
Lampson BC, Inouye M, Inouye S. Retrons, msDNA, and the bacterial genome. Cytogenet Genome Res 2005; 110:491-9. [PMID: 16093702 DOI: 10.1159/000084982] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 10/16/2003] [Indexed: 12/23/2022] Open
Abstract
Retrons are distinct DNA sequences that code for a reverse transcriptase (RT) similar to the RTs produced by retroviruses and other types of retroelements. Retron DNAs are commonly associated with prophage DNA and are found in the genomes of a wide variety of different bacteria. The retron RT is used to synthesize a strange satellite DNA known as msDNA. msDNA is actually a complex of DNA, RNA, and probably protein. It is composed of a small, single-stranded DNA, linked to a small, single-stranded RNA molecule. The 5' end of the DNA molecule is joined to an internal guanosine residue of the RNA molecule by a unique 2'-5' phosphodiester bond. msDNA is produced in many hundreds of copies per cell, but its function remains unknown. Although retrons are absent from the genome of most members of a population of related bacteria, retrons may not be entirely benign DNAs. Evidence is beginning to suggest that retron elements may produce small but potentially significant effects on the host cell. This includes the generation of repeated copies of the msDNA sequence in the genome, and increasing the frequency of spontaneous mutations. Because these events involve the retron RT, this may represent a source of reverse transcription in the bacterial cell. Thus, the process of reverse transcription, a force that has profoundly affected the content and structure of most eukaryotic genomes, may likewise be responsible for changes in some prokaryotic genomes.
Collapse
Affiliation(s)
- B C Lampson
- Department of Health Sciences, East Tennessee State University, Johnson City, TN, USA
| | | | | |
Collapse
|
16
|
Inouye M, Ke H, Yashio A, Yamanaka K, Nariya H, Shimamoto T, Inouye S. Complex formation between a putative 66-residue thumb domain of bacterial reverse transcriptase RT-Ec86 and the primer recognition RNA. J Biol Chem 2004; 279:50735-42. [PMID: 15371452 DOI: 10.1074/jbc.m408462200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reverse transcriptases (RT) are found in a minor population of Escherichia coli and are responsible for the synthesis of multicopy single-stranded DNA. These RTs specifically recognize RNA structures in their individual primer-template RNAs to initiate cDNA synthesis from the 2'-OH group of a specific internal G residue (branching G residue). Here, we purified the 66-residue, C-terminal fragment of RT-Ec86, RT from E. coli, which is responsible for the synthesis of multicopy single-stranded DNA-Ec86. This fragment, RT-Ec86-(255-320), was found to consist mainly of alpha-helical structures on the basis of its CD spectrum, which is consistent with the prediction of this region as the thumb domain from the structural alignment of RT-Ec86 with human immunodeficiency virus-1 RT. RT-Ec86-(255-320) was able to bind to a 28-base synthetic RNA consisting of the 5'-end single-stranded RNA containing the branching G residue and the recognition stem-loop structure in the RT-Ec86 primer-template RNA with a Kd value of 5 x 10(-8) M. By stepwise shortening of the 5'-end single-stranded region of the RNA, RT-Ec86-(255-320) was found still to be able to form a stable complex with only the stem-loop structure consisting of an 8-bp stem and a 3-base loop. In this stem-loop structure, the UUU loop was essential for the complex formation. RT-Ec73-(251-316) from another E. coli RT could not bind to the 28-base RNA for RT-Ec86 but could bind to its own stem-loop structure having a 3-base AGU loop. These results support the notion that the highly diverse C-terminal regions of bacterial RTs play an important role in recognizing their own specific primer-template RNA structure for the cDNA priming reaction.
Collapse
Affiliation(s)
- Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Thomson N, Baker S, Pickard D, Fookes M, Anjum M, Hamlin N, Wain J, House D, Bhutta Z, Chan K, Falkow S, Parkhill J, Woodward M, Ivens A, Dougan G. The role of prophage-like elements in the diversity of Salmonella enterica serovars. J Mol Biol 2004; 339:279-300. [PMID: 15136033 DOI: 10.1016/j.jmb.2004.03.058] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 03/19/2004] [Accepted: 03/22/2004] [Indexed: 10/26/2022]
Abstract
The Salmonella enterica serovar Typhi CT18 (S.Typhi) chromosome harbours seven distinct prophage-like elements, some of which may encode functional bacteriophages. In silico analyses were used to investigate these regions in S.Typhi CT18, and ultimately compare these integrated bacteriophages against 40 other Salmonella isolates using DNA microarray technology. S.Typhi CT18 contains prophages that show similarity to the lambda, Mu, P2 and P4 bacteriophage families. When compared to other S.Typhi isolates, these elements were generally conserved, supporting a clonal origin of this serovar. However, distinct variation was detected within a broad range of Salmonella serovars; many of the prophage regions are predicted to be specific to S.Typhi. Some of the P2 family prophage analysed have the potential to carry non-essential "cargo" genes within the hyper-variable tail region, an observation that suggests that these bacteriophage may confer a level of specialisation on their host. Lysogenic bacteriophages therefore play a crucial role in the generation of genetic diversity within S.enterica.
Collapse
Affiliation(s)
- Nicholas Thomson
- The Pathogen Sequencing Unit, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Calì S, Spoldi E, Piazzolla D, Dodd IB, Forti F, Dehò G, Ghisotti D. Bacteriophage P4 Vis protein is needed for prophage excision. Virology 2004; 322:82-92. [PMID: 15063119 DOI: 10.1016/j.virol.2004.01.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Revised: 01/12/2004] [Accepted: 01/16/2004] [Indexed: 11/21/2022]
Abstract
Upon infection of its host Escherichia coli, satellite bacteriophage P4 can integrate its genome into the bacterial chromosome by Int-mediated site-specific recombination between the attP and the attB sites. The opposite event, excision, may either occur spontaneously or be induced by a superinfecting P2 helper phage. In this work, we demonstrate that the product of the P4 vis gene, a regulator of the P4 late promoters P(LL) and P(sid), is needed for prophage excision. This conclusion is supported by the following evidence: (i) P4 mutants carrying either a frameshift mutation or a deletion of the vis gene were unable to excise both spontaneously or upon P2 phage superinfection; (ii) expression of the Vis protein from a plasmid induced P4 prophage excision; (iii) excision depended on a functional integrase (Int) protein, thus suggesting that Vis is involved in the formation of the excision complex, rather than in the excision recombination event per se; (iv) Vis protein bound P4 DNA in the attP region at two distinct boxes (Box I and Box II), located between the int gene and the attP core region, and caused bending of the bound DNA. Furthermore, we mapped by primer extension the 5' end of the int transcript and found that ectopic expression of Vis reduced its signal intensity, suggesting that Vis is also involved in negative regulation of the int promoter.
Collapse
Affiliation(s)
- Simona Calì
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Mmolawa PT, Schmieger H, Heuzenroeder MW. Bacteriophage ST64B, a genetic mosaic of genes from diverse sources isolated from Salmonella enterica serovar typhimurium DT 64. J Bacteriol 2003; 185:6481-5. [PMID: 14563886 PMCID: PMC219385 DOI: 10.1128/jb.185.21.6481-6485.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete sequence of the double-stranded DNA (dsDNA) genome of the Salmonella enterica serovar Typhimurium ST64B bacteriophage was determined. The 40,149-bp genomic sequence of ST64B has an overall G+C content of 51.3% and is distinct from that of P22. The genome architecture is similar to that of the lambdoid phages, particularly that of coliphage lambda. Most of the putative tail genes showed sequence similarity to tail genes of Mu, a nonlambdoid phage. In addition, it is likely that these tail genes are not expressed due to insertions of fragments of genes related to virulence within some of the open reading frames. This, together with the inability of ST64B to produce plaques on a wide range of isolates, suggests that ST64B is a defective phage. In contrast to the tail genes, most of the head genes showed similarity to those of the lambdoid phages HK97 and HK022, but these head genes also have significant sequence similarities to those of several other dsDNA phages infecting diverse bacterial hosts, including Escherichia, Pseudomonas, Agrobacterium, Caulobacter, Mesorhizobium, and Streptomyces: This suggests that ST64B is a genetic mosaic that has acquired significant portions of its genome from sources outside the genus Salmonella.
Collapse
Affiliation(s)
- Princess T Mmolawa
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Adelaide, South Australia, 5000
| | | | | |
Collapse
|
20
|
Ahmed AM, Shimamoto T. msDNA-St85, a multicopy single-stranded DNA isolated from Salmonella enterica serovar Typhimurium LT2 with the genomic analysis of its retron. FEMS Microbiol Lett 2003; 224:291-7. [PMID: 12892895 DOI: 10.1016/s0378-1097(03)00450-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bacterial reverse transcriptase is responsible for the production of a small satellite DNA-RNA complex called multicopy single-stranded DNA (msDNA) that has been found in a wide variety of Gram-negative bacteria. Here we describe the isolation and characterization of a novel msDNA, msDNA-St85, from Salmonella enterica serovar Typhimurium LT2. We determined the nucleotide sequence of msDNA-St85 and the location of retron-St85 on the chromosome that is responsible for msDNA-St85 production by analyzing the complete genomic sequence of S. typhimurium LT2. It was found that the G+C content and the codon usage of retron-St85 were significantly different from those of the S. typhimurium genome, indicating that retron-St85 was probably acquired recently in this bacterium. This is the first report for identification of an msDNA in the genus Salmonella with the complete description and analysis of its retron.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- DNA, Single-Stranded/isolation & purification
- Genome, Bacterial
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/isolation & purification
- Ribosomes/genetics
- Salmonella enterica/genetics
Collapse
Affiliation(s)
- Ashraf M Ahmed
- Laboratory of Food Microbiology and Hygiene, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | | |
Collapse
|
21
|
Amavisit P, Lightfoot D, Browning GF, Markham PF. Variation between pathogenic serovars within Salmonella pathogenicity islands. J Bacteriol 2003; 185:3624-35. [PMID: 12775700 PMCID: PMC156220 DOI: 10.1128/jb.185.12.3624-3635.2003] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although four of the five Salmonella pathogenicity islands (SPIs) have been characterized in detail for Salmonella enterica serovar Typhimurium, and the fifth has been characterized for Salmonella enterica serovar Dublin, there have been limited studies to examine them in detail in a range of pathogenic serovars of S. enterica. The aim of this study was to examine these regions, shown to be crucial in virulence, in pathogenic serovars to identify any major deletions or insertions that may explain variation in virulence and provide further understanding of the elements involved in the evolution of these regions. Multiple strains of each of the 13 serovars were compared by Southern blot hybridization using a series of probes that together encompassed the full length of all five SPIs. With the exception of serovar Typhimurium, all strains of the same serovar were identical in all five SPIs. Those serovars that differed from serovar Typhimurium in SPI-1 to SPI-4 and from serovar Dublin in SPI-5 were examined in more detail in the variant regions by PCR, and restriction endonuclease digestion and/or DNA sequencing. While most variation in hybridization patterns was attributable to loss or gain of single restriction endonuclease cleavage sites, three regions, in SPI-1, SPI-3, and SPI-5, had differences due to major insertions or deletions. In SPI-1 the avrA gene was replaced by a 200-base fragment in three serovars, as reported previously. In SPI-5, two serovars had acquired an insertion with similarity to the pagJ and pagK genes between pipC and pipD. In SPI-3 the genes sugR and rhuM were deleted in most serovars and in some were replaced by sequences that were very similar to either the Escherichia coli fimbrial operon, flanked by two distinct insertion sequence elements, or to the E. coli retron phage PhiR73. The distribution of these differences suggests that there have been a number of relatively recent horizontal transfers of genes into S. enterica and that in some cases the same event has occurred in multiple lineages of S. enterica. Thus, it seems that insertion sequences and retron phages are likely to be involved in continuing evolution of the pathogenicity islands of pathogenic Salmonella serovars.
Collapse
Affiliation(s)
- P Amavisit
- Department of Veterinary Science, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | | | | |
Collapse
|
22
|
Seo JW, Jang KH, Kang SA, Song KB, Jang EK, Park BS, Kim CH, Rhee SK. Molecular characterization of the growth phase-dependent expression of the lsrA gene, encoding levansucrase of Rahnella aquatilis. J Bacteriol 2002; 184:5862-70. [PMID: 12374819 PMCID: PMC135375 DOI: 10.1128/jb.184.21.5862-5870.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Expression of the lsrA gene from Rahnella aquatilis, encoding levansucrase, is tightly regulated by the growth phase of the host cell; low-level expression was observed in the early phase of cell growth, but expression was significantly stimulated in the late phase. Northern blot analysis revealed that regulation occurred at the level of transcription. The promoter region was identified by primer extension analysis. Two opposite genetic elements that participate in the regulation of lsrA expression were identified upstream of the lsrA gene: the lsrS gene and the lsrR region. The lsrS gene encodes a protein consisting of 70 amino acid residues (M(r), 8,075), which positively activated lsrA expression approximately 20-fold in a growth phase-dependent fashion. The cis-acting lsrR region, which repressed lsrA expression about 10-fold, was further narrowed to two DNA regions by deletion analysis. The concerted action of two opposite regulatory functions resulted in the growth phase-dependent activation of gene expression in Escherichia coli independent of the stationary sigma factor sigma(S).
Collapse
Affiliation(s)
- Jeong-Woo Seo
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), 51 Oun-dong, Yusong, Daejon 305-333, Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lampson BC, Xu C, Rice SA, Inouye S. A partial copy of msDNA from a new retron element is likely a retrotransposed DNA found in the myxobacterium Nannocystis exedens. Gene 2002; 299:251-61. [PMID: 12459273 DOI: 10.1016/s0378-1119(02)00977-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Retrons are reverse transcriptase (RT) encoding genetic elements usually located on the chromosome of a wide variety of mostly Gram-negative bacteria. Here we describe a new retron, designated Ne144, found in the chromosome of the myxobacterium Nannocystis exedens. This element codes for a 515-amino-acid RT that is most closely related to those found in other myxobacterial retrons. The RT is responsible for the production of a small satellite DNA called msDNA. This msDNA is composed of a 144 base, single-stranded DNA that is linked to a 72 base single-stranded RNA. The RNA strand is joined to the 5' end of the DNA chain via a 2'-5' linkage that occurs from the 2' position of an internal guanosine residue in the RNA. In addition to the retron element, the chromosome of N. exedens also contains several partial copies of the msDNA sequence as revealed by DNA hybridization experiments using msDNA as a probe. One of these partial copies was characterized from a chromosome restriction fragment and found to contain a sequence that matches the last 82 bases of the DNA strand and five bases of the RNA strand in msDNA-Ne144. This partial copy of msDNA is very likely a retrotransposed sequence that was generated by reverse transcription using an RNA (the primer-template RNA for msDNA) as a template and the 3' end of a nick in the chromosome as a primer, followed by incorporation into an open reading frame. The presence of this truncated copy of msDNA is strong evidence of retrotransposition in N. exedens causing an alteration in the bacterial genome.
Collapse
Affiliation(s)
- Bert C Lampson
- Department of Health Sciences, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | |
Collapse
|
24
|
Briani F, Del Vecchio E, Migliorini D, Hajnsdorf E, Régnier P, Ghisotti D, Dehò G. RNase E and polyadenyl polymerase I are involved in maturation of CI RNA, the P4 phage immunity factor. J Mol Biol 2002; 318:321-31. [PMID: 12051840 DOI: 10.1016/s0022-2836(02)00085-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacteriophage P4 immunity is controlled by a small stable RNA (CI RNA) that derives from the processing of primary transcripts. In previous works, we observed that the endonuclease RNase P is required for the maturation of CI RNA 5'-end; moreover, we found that polynucleotide phosphorylase (PNPase), a 3' to 5' RNA-degrading enzyme, is required for efficient 5'-end processing of CI RNA, suggesting that 3'-end degradation of the primary transcript might be involved in the production of proper RNase P substrates. Here, we demonstrate that another Escherichia coli nuclease, RNase E, would appear to be involved in this process. We found that transcripts of the P4 immunity region are modified by the post-transcriptional addition of short poly(A) tails and heteropolymeric tails with prevalence of A residues. Most oligoadenylated transcripts encompass the whole cI locus and are thus compatible as intermediates in the CI RNA maturation pathway. On the contrary, in a polynucleotide phosphorylase (PNPase)-defective host, adenylation occurred most frequently within cI, implying that such transcripts are targeted for degradation. We did not find polyadenylation in a pcnB mutant, suggesting that the pcnB-encoded polyadenyl polymerase I (PAP I) is the only enzyme responsible for modification of P4 immunity transcripts. Maturation of CI RNA 5'-end in such a mutant was impaired, further supporting the idea that processing of the 3'-end of primary transcripts is an important step for efficient maturation of CI RNA by RNase P.
Collapse
Affiliation(s)
- Federica Briani
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
25
|
Williams KP. Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res 2002; 30:866-75. [PMID: 11842097 PMCID: PMC100330 DOI: 10.1093/nar/30.4.866] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Most classical integrases of prokaryotic genetic elements specify integration into tRNA or tmRNA genes. Sequences shared between element and host integration sites suggest that crossover can occur at any of three sublocations within a tRNA gene, two with flanking symmetry (anticodon-loop and T-loop tDNA) and the third at the asymmetric 3' end of the gene. Integrase phylogeny matches this classification: integrase subfamilies use exclusively either the symmetric sublocations or the asymmetric sublocation, although tRNA genes of several different aminoacylation identities may be used within any subfamily. These two familial sublocation preferences imply two modes by which new integration site usage evolves. The tmRNA gene has been adopted as an integration site in both modes, and its distinctive structure imposes some constraints on proposed evolutionary mechanisms.
Collapse
Affiliation(s)
- Kelly P Williams
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA.
| |
Collapse
|
26
|
Schmidt H, Zhang WL, Hemmrich U, Jelacic S, Brunder W, Tarr PI, Dobrindt U, Hacker J, Karch H. Identification and characterization of a novel genomic island integrated at selC in locus of enterocyte effacement-negative, Shiga toxin-producing Escherichia coli. Infect Immun 2001; 69:6863-73. [PMID: 11598060 PMCID: PMC100065 DOI: 10.1128/iai.69.11.6863-6873.2001] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Accepted: 08/15/2001] [Indexed: 11/20/2022] Open
Abstract
The selC tRNA gene is a common site for the insertion of pathogenicity islands in a variety of bacterial enteric pathogens. We demonstrate here that Escherichia coli that produces Shiga toxin 2d and does not harbor the locus of enterocyte effacement (LEE) contains, instead, a novel genomic island. In one representative strain (E. coli O91:H(-) strain 4797/97), this island is 33,014 bp long and, like LEE in E. coli O157:H7, is integrated 15 bp downstream of selC. This E. coli O91:H(-) island contains genes encoding a novel serine protease, termed EspI; an adherence-associated locus, similar to iha of E. coli O157:H7; an E. coli vitamin B12 receptor (BtuB); an AraC-type regulatory module; and four homologues of E. coli phosphotransferase proteins. The remaining sequence consists largely of complete and incomplete insertion sequences, prophage sequences, and an intact phage integrase gene that is located directly downstream of the chromosomal selC. Recombinant EspI demonstrates serine protease activity using pepsin A and human apolipoprotein A-I as substrates. We also detected Iha-reactive protein in outer membranes of a recombinant clone and 10 LEE-negative, Shiga toxin-producing E. coli (STEC) strains by immunoblot analysis. Using PCR analysis of various STEC, enteropathogenic E. coli, enterotoxigenic E. coli, enteroaggregative E. coli, uropathogenic E. coli, and enteroinvasive E. coli strains, we detected the iha homologue in 59 (62%) of 95 strains tested. In contrast, espI and btuB were present in only two (2%) and none of these strains, respectively. We conclude that the newly described island occurs exclusively in a subgroup of STEC strains that are eae negative and contain the variant stx(2d )gene.
Collapse
Affiliation(s)
- H Schmidt
- Institut für Hygiene und Mikrobiologie der Universität Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lampson B, Inouye M, Inouye S. The msDNAs of bacteria. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:65-91. [PMID: 11525386 DOI: 10.1016/s0079-6603(01)67025-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
msDNAs are small, structurally unique satellite DNAs found in a number of Gram-negative bacteria. Composed of hundreds of copies of single-stranded DNA--hence the name multicopy single-stranded DNA--msDNA is actually a complex of DNA, RNA, and probably protein. These peculiar molecules are synthesized by a reverse transcription mechanism catalyzed by a reverse transcriptase (RT) that is evolutionarily related to the polymerase found in the HIV virus. The genes, including the RT gene, responsible for the synthesis of msDNA are encoded in a retron, a genetic element that is carried on the bacterial chromosome. The retron is, in fact, the first such retroelement to be discovered in prokaryotic cells. This report is a comprehensive review of the many interesting questions raised by this unique DNA and the fascinating answers it has revealed. We have learned a great deal about the structure of msDNA: how it is synthesized, the structure and functions of the RT protein required to make it, its effects on the host cell, the retron element that encodes it, its possible origins and evolution, and even its potential usefulness as a practical genetic tool. Despite the impressive gains in our understanding of the msDNAs, however, the simple, fundamental question of its natural function remains an enduring mystery. Thus, we have much more to learn about the msDNAs of bacteria.
Collapse
MESH Headings
- Bacteria/enzymology
- Bacteria/genetics
- Base Sequence
- DNA, Bacterial/biosynthesis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Single-Stranded/biosynthesis
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/genetics
- Evolution, Molecular
- Molecular Sequence Data
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA-Directed DNA Polymerase/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- B Lampson
- Department of Health Sciences, East Tennessee State University, Johnson City 37614, USA
| | | | | |
Collapse
|
28
|
Lewis JA, Hatfull GF. Control of directionality in integrase-mediated recombination: examination of recombination directionality factors (RDFs) including Xis and Cox proteins. Nucleic Acids Res 2001; 29:2205-16. [PMID: 11376138 PMCID: PMC55702 DOI: 10.1093/nar/29.11.2205] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Revised: 03/28/2001] [Accepted: 04/11/2001] [Indexed: 11/12/2022] Open
Abstract
Similarity between the DNA substrates and products of integrase-mediated site-specific recombination reactions results in a single recombinase enzyme being able to catalyze both the integration and excision reactions. The control of directionality in these reactions is achieved through a class of small accessory factors that favor one reaction while interfering with the other. These proteins, which we will refer to collectively as recombination directionality factors (RDFs), play architectural roles in reactions catalyzed by their cognate recombinases and have been identified in conjunction with both tyrosine and serine integrases. Previously identified RDFs are typically small, basic and have diverse amino acid sequences. A subset of RDFs, the cox genes, also function as transcriptional regulators. We present here a compilation of all the known RDF proteins as well as those identified through database mining that we predict to be involved in conferring recombination directionality. Analysis of this group of proteins shows that they can be grouped into distinct sub-groups based on their sequence similarities and that they are likely to have arisen from several independent evolutionary lineages. This compilation will prove useful in recognizing new proteins that confer directionality upon site-specific recombination reactions encoded by plasmids, transposons, phages and prophages.
Collapse
Affiliation(s)
- J A Lewis
- Pittsburgh Bacteriophage Institute and Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
29
|
Kim KJ, Sunshine MG, Lindqvist BH, Six EW. Capsid size determination in the P2-P4 bacteriophage system: suppression of sir mutations in P2's capsid gene N by supersid mutations in P4's external scaffold gene sid. Virology 2001; 283:49-58. [PMID: 11312661 DOI: 10.1006/viro.2001.0853] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sid gene of the P2-dependent phage P4 provides an external scaffold so P2 N gene encoded protomers assemble as T = 4 capsids rather than as P2's T = 7 capsids. Mutations (sir) in the middle of N interfere with Sid's function. We describe a new P4 mutant class, nms ("supersid") mutations, which direct also P2 sir to provide small capsids. Three different nms mutations were located near the sid end, commingled with sid(-) mutations. Suppression of sir by nms is not allele-specific. Our results favor this interpretation of capsid size control: (i) sir mutations reduce pN protomer flexibility and thereby interfere with the generation of T = 4 compatible hexons; (ii) the C-termini of Sid molecules link up when forming the scaffold; nms mutations strengthen these Sid-Sid contacts and thus allow the scaffold to force even sir-type protomers to form T = 4 compatible hexons. Some related findings concern suppression of N ts mutations by P4.
Collapse
Affiliation(s)
- K J Kim
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
30
|
Masignani V, Giuliani MM, Tettelin H, Comanducci M, Rappuoli R, Scarlato V. Mu-like Prophage in serogroup B Neisseria meningitidis coding for surface-exposed antigens. Infect Immun 2001; 69:2580-8. [PMID: 11254622 PMCID: PMC98194 DOI: 10.1128/iai.69.4.2580-2588.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence analysis of the genome of Neisseria meningititdis serogroup B revealed the presence of an approximately 35-kb region inserted within a putative gene coding for an ABC-type transporter. The region contains 46 open reading frames, 29 of which are colinear and homologous to the genes of Escherichia coli Mu phage. Two prophages with similar organizations were also found in serogroup A meningococcus, and one was found in Haemophilus influenzae. Early and late phage functions are well preserved in this family of Mu-like prophages. Several regions of atypical nucleotide content were identified. These likely represent genes acquired by horizontal transfer. Three of the acquired genes are shown to code for surface-associated antigens, and the encoded proteins are able to induce bactericidal antibodies.
Collapse
Affiliation(s)
- V Masignani
- Department of Molecular Biology, IRIS, Chiron S.p.A., 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
P4 is a natural phasmid (phage-plasmid) that exploits different modes of propagation in its host Escherichia coli. Extracellularly, P4 is a virion, with a tailed icosahedral head, which encapsidates the 11.6-kb-long double-stranded DNA genome. After infection of the E. coli host, P4 DNA can integrate into the bacterial chromosome and be maintained in a repressed state (lysogeny). Alternatively, P4 can replicate as a free DNA molecule; this leads to either the lytic cycle or the plasmid state, depending on the presence or absence of the genome of a helper phage P2 in the E. coli host. As a phage, P4 is thus a satellite of P2 phage, depending on the helper genes for all the morphogenetic functions, whereas for all its episomal functions (integration and immunity, multicopy plasmid replication) P4 is completely autonomous from the helper. Replication of P4 DNA depends on its alpha protein, a multifunctional polypeptide that exhibits primase and helicase activity and binds specifically the P4 origin. Replication starts from a unique point, ori1, and proceeds bidirectionally in a straight theta-type mode. P4 negatively regulates the plasmid copy number at several levels. An unusual mechanism of copy number control is based on protein-protein interaction: the P4-encoded Cnr protein interacts with the alpha gene product, inhibiting its replication potential. Furthermore, expression of the replication genes cnr and alpha is regulated in a complex way that involves modulation of promoter activity by positive and negative factors and multiple mechanisms of transcription elongation-termination control. Thus, the relatively small P4 genome encodes mostly regulatory functions, required for its propagation both as an episomal element and as a temperate satellite phage. Plasmids that, like P4, propagate horizontally via a specific transduction mechanism have also been found in the Archaea. The presence of P4-like prophages or cryptic prophages often associated with accessory bacterial functions attests to the contribution of satellite phages to bacterial evolution.
Collapse
Affiliation(s)
- F Briani
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Milan, 20133, Italy
| | | | | | | |
Collapse
|
32
|
Boyd DA, Peters GA, Ng L, Mulvey MR. Partial characterization of a genomic island associated with the multidrug resistance region of Salmonella enterica Typhymurium DT104. FEMS Microbiol Lett 2000; 189:285-91. [PMID: 10930753 DOI: 10.1111/j.1574-6968.2000.tb09245.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study describes the identification of the insertion site and partial characterization of a 43-kb region harboring the genes associated with the penta-resistant phenotype of a Canadian isolate of Salmonella enterica Typhymurium DT104 labelled 96-5227. The 43-kb fragment, here referred to as Salmonella genomic island I (SgiI), was found in the genome of S. enterica Typhymurium between the thdf and a prophage CP-4-like integrase (int2) gene and is flanked by an imperfect 18-bp direct repeat. A region downstream of sulI in the right end of SgiI contained four open reading frames which includes an IS6100 element, and a 2-kb region from the left end contained two open reading frames which showed homology to an integrase and an excisionase. Furthermore, a 1.9-kb retron sequence located between int2 and yidY was identified which may be unique to the S. enterica Typhymurium genome. The int-retron sequence is flanked by a 27-bp imperfect direct repeat.
Collapse
Affiliation(s)
- D A Boyd
- Bureau of Microbiology, Laboratory Centre for Disease Control, Health Canada, 1015 Arlington St., Winnipeg, Manitoba, Canada R3E 3R2
| | | | | | | |
Collapse
|
33
|
Briani F, Ghisotti D, Dehò G. Antisense RNA-dependent transcription termination sites that modulate lysogenic development of satellite phage P4. Mol Microbiol 2000; 36:1124-34. [PMID: 10844696 DOI: 10.1046/j.1365-2958.2000.01927.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the lysogenic state, bacteriophage P4 prevents the expression of its own replication genes, which are encoded in the left operon, through premature transcription termination. The phage factor responsible for efficient termination is a small, untranslated RNA (CI RNA), which acts as an antisense RNA and controls transcription termination by pairing with two complementary sequences (seqA and seqC) located within the leader region of the left operon. A Rho-dependent termination site, timm, was previously shown to be involved in the control of P4 replication gene expression. In the present study, by making use of phage PhiR73 as a cloning vector and of suppressor tRNAGly as a reporter gene, we characterized two additional terminators, t1 and t4. Although transcription termination at neither site requires the Rho factor, only t1 has the typical structure of a Rho-independent terminator. t1 is located between the PLE promoter and the cI gene, whereas t4 is located between cI and timm. Efficient termination at t1 requires the CI RNA and the seqA target sequence; in vitro, the CI RNA enhanced termination at t1 in the absence of any bacterial factor. A P4 mutant, in which the t1 terminator has been deleted, can still lysogenize both Rho+ and Rho- strains and exhibits increased expression of CI RNA. These data indicate that t1 and the Rho-dependent timm terminators are not essential for lysogeny. t1 is involved in CI RNA autoregulation, whereas t4 appears to be the main terminator necessary to prevent expression of the lytic genes in the lysogenic state.
Collapse
Affiliation(s)
- F Briani
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università degli Studi di Milano, Milan, Italy
| | | | | |
Collapse
|
34
|
Affiliation(s)
- O Mirochnitchenko
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
35
|
Auvray F, Coddeville M, Ordonez RC, Ritzenthaler P. Unusual structure of the attB site of the site-specific recombination system of Lactobacillus delbrueckii bacteriophage mv4. J Bacteriol 1999; 181:7385-9. [PMID: 10572145 PMCID: PMC103704 DOI: 10.1128/jb.181.23.7385-7389.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The temperate phage mv4 integrates its genome into the chromosome of Lactobacillus delbrueckii subsp. bulgaricus by site-specific recombination within the 3' end of a tRNA(Ser) gene. Recombination is catalyzed by the phage-encoded integrase and occurs between the phage attP site and the bacterial attB site. In this study, we show that the mv4 integrase functions in vivo in Escherichia coli and we characterize the bacterial attB site with a site-specific recombination test involving compatible plasmids carrying the recombination sites. The importance of particular nucleotides within the attB sequence was determined by site-directed mutagenesis. The structure of the attB site was found to be simple but rather unusual. A 16-bp DNA fragment was sufficient for function. Unlike most genetic elements that integrate their DNA into tRNA genes, none of the dyad symmetry elements of the tRNA(Ser) gene were present within the minimal attB site. No inverted repeats were detected within this site either, in contrast to the lambda site-specific recombination model.
Collapse
Affiliation(s)
- F Auvray
- Laboratoire de Microbiologie et de Génétique Moléculaire du Centre National de la Recherche Scientifique, Toulouse, France
| | | | | | | |
Collapse
|
36
|
Inouye S, Hsu MY, Xu A, Inouye M. Highly specific recognition of primer RNA structures for 2'-OH priming reaction by bacterial reverse transcriptases. J Biol Chem 1999; 274:31236-44. [PMID: 10531319 DOI: 10.1074/jbc.274.44.31236] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A minor population of Escherichia coli contains retro-elements called retrons, which encode reverse transcriptases (RT) to synthesize peculiar satellite DNAs called multicopy single-stranded DNA (msDNA). These RTs recognize specific RNA structures in their individual primer-template RNAs to initiate cDNA synthesis from the 2'-OH group of a specific internal G residue (branching G residue). The resulting products (msDNA) consist of RNA and single-stranded DNA, sharing hardly any sequence homology. Here, we investigated how RT-Ec86 recognizes the specific RNA structure in its primer-template RNA. On the basis of structural comparison with HIV-1 RT, domain exchanges were carried out between two E. coli RTs, RT-Ec86 and RT-Ec73. RT-Ec86 (320 residues) and RT-Ec73 (316 residues) share only 71 identical residues (22%). From the analysis of 10 such constructs, the C-terminal 91-residue sequence of RT-Ec86 was found to be essential for the recognition of the unique stem-loop structure and the branching G residue in the primer-template RNA for retron-Ec86. Using the SELEX (systematic evolution of ligands by exponential enrichment) method with RT-Ec86 and primer RNAs containing random sequences, the identical stem-loop structure (including the 3-U loop) to that found in the retron-Ec86 primer-template RNA was enriched. In addition, the highly conserved 4-base sequence (UAGC), including the branching G residue, was also enriched. These results indicate that the highly diverse C-terminal region recognizes specific stem-loop structures and the branching G residue located upstream of the stem-loop structure. The present results with seemingly primitive RNA-dependent DNA polymerases provide insight into the mechanisms for specific protein RNA recognition.
Collapse
Affiliation(s)
- S Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
37
|
Whittle G, Bloomfield GA, Katz ME, Cheetham BF. The site-specific integration of genetic elements may modulate thermostable protease production, a virulence factor in Dichelobacter nodosus, the causative agent of ovine footrot. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 10):2845-55. [PMID: 10537206 DOI: 10.1099/00221287-145-10-2845] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gram-negative anaerobe Dichelobacter nodosus is the causative agent of footrot in sheep. The authors have previously characterized two genetic elements, the intA (vap) and intB elements, which integrate into the genome of D. nodosus. In the virulent strain A198 there are two copies of the intA element. One copy is integrated into the 3' end of the tRNA-serGCU gene, close to the aspartokinase (askA) gene, and the second copy is integrated into the 3' end of the tRNA-serGGA gene, next to the polynucleotide phosphorylase (pnpA) gene. In this study, a new genetic element was identified in the benign strain C305, the intC element, integrated into the 3' end of the tRNA-serGCU gene, next to askA. The intC element was found in most D. nodosus strains, both benign and virulent, which were examined, and was integrated into tRNA-serGCU in most strains. Between the askA and tRNA-serGCU genes, a gene (designated glpA), was identified whose predicted protein product has very high amino acid identity with RsmA from the plant pathogen Erwinia carotovora. RsmA acts as a global repressor of pathogenicity in E. carotovora, by repressing the production of extracellular enzymes. In virulent strains of D. nodosus the intA element was found to be integrated next to pnpA, and either the intA or intC element was integrated next to glpA. By contrast, all but one of the benign strains had intB at one or both of these two positions, and the one exception had neither intA, intB nor intC at one position. The loss of the intC element from the virulent strain 1311 resulted in loss of thermostable protease activity, a virulence factor in D. nodosus. A model for virulence is proposed whereby integration of the intA and intC genetic elements modulates virulence by altering the expression of glpA, pnpA, tRNA-serGCU and tRNA-serGGA.
Collapse
Affiliation(s)
- G Whittle
- Molecular and Cellular Biology, School of Biological Sciences, University of New England, Armidale, NSW, Australia
| | | | | | | |
Collapse
|
38
|
Forti F, Polo S, Lane KB, Six EW, Sironi G, Dehò G, Ghisotti D. Translation of two nested genes in bacteriophage P4 controls immunity-specific transcription termination. J Bacteriol 1999; 181:5225-33. [PMID: 10464191 PMCID: PMC94026 DOI: 10.1128/jb.181.17.5225-5233.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In phage P4, transcription of the left operon may occur from both the constitutive PLE promoter and the regulated PLL promoter, about 400 nucleotides upstream of PLE. A strong Rho-dependent termination site, timm, is located downstream of both promoters. When P4 immunity is expressed, transcription starting at PLE is efficiently terminated at timm, whereas transcription from PLL is immunity insensitive and reads through timm. We report the identification of two nested genes, kil and eta, located in the P4 left operon. The P4 kil gene, which encodes a 65-amino-acid polypeptide, is the first translated gene downstream of the PLE promoter, and its expression is controlled by P4 immunity. Overexpression of kil causes cell killing. This gene is the terminal part of a longer open reading frame, eta, which begins upstream of PLE. The eta gene is expressed when transcription starts from the PLL promoter. Three likely start codons predict a size between 197 and 199 amino acids for the Eta gene product. Both kil and eta overlap the timm site. By cloning kil upstream of a tRNA reporter gene, we demonstrated that translation of the kil region prevents premature transcription termination at timm. This suggests that P4 immunity might negatively control kil translation, thus enabling transcription termination at timm. Transcription starting from PL proceeds through timm. Mutations that create nonsense codons in eta caused premature termination of transcription starting from PLL. Suppression of the nonsense mutation restored transcription readthrough at timm. Thus, termination of transcription from PLL is prevented by translation of eta.
Collapse
Affiliation(s)
- F Forti
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Moss JE, Cardozo TJ, Zychlinsky A, Groisman EA. The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol Microbiol 1999; 33:74-83. [PMID: 10411725 DOI: 10.1046/j.1365-2958.1999.01449.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pathogenicity islands are chromosomal gene clusters, often located adjacent to tRNA genes, that encode virulence factors present in pathogenic organisms but absent or sporadically found in related non-pathogenic species. The selC tRNA locus is the site of integration of different pathogenicity islands in uropathogenic Escherichia coli, enterohaemorrhagic E. coli and Salmonella enterica. We show here that the selC locus of Shigella flexneri, the aetiological agent of bacterial dysentery, also contains a pathogenicity island. This pathogenicity island, designated SHI-2 (Shigella island 2), occupies 23.8 kb downstream of selC and contains genes encoding the aerobactin iron acquisition siderophore system, colicin V immunity and several novel proteins. Remnants of multiple mobile genetic elements are present in SHI-2. SHI-2-hybridizing sequences were detected in all S. flexneri strains tested and parts of the island were also found in other Shigella species. SHI-2 may allow Shigella survival in stressful environments, such as those encountered during infection.
Collapse
Affiliation(s)
- J E Moss
- Skirball Institute, New York University Medical Center, 540 First Avenue, New York, NY 10016, USA
| | | | | | | |
Collapse
|
40
|
Clarke BR, Pearce R, Roberts IS. Genetic organization of the Escherichia coli K10 capsule gene cluster: identification and characterization of two conserved regions in group III capsule gene clusters encoding polysaccharide transport functions. J Bacteriol 1999; 181:2279-85. [PMID: 10094710 PMCID: PMC93645 DOI: 10.1128/jb.181.7.2279-2285.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Analysis of the Escherichia coli K10 capsule gene cluster identified two regions, regions 1 and 3, conserved between different group III capsule gene clusters. Region 1 encodes homologues of KpsD, KpsM, KpsT, and KpsE proteins, and region 3 encodes homologues of the KpsC and KpsS proteins. An rfaH mutation abolished K10 capsule production, suggesting that expression of the K10 capsule was regulated by RfaH in a manner analogous to group II capsule gene clusters. An IS3 element and a phiR73-like prophage, both of which may have played a role in the acquisition of group III capsule gene clusters, were detected flanking the K10 capsule genes.
Collapse
Affiliation(s)
- B R Clarke
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
41
|
Nakayama K, Kanaya S, Ohnishi M, Terawaki Y, Hayashi T. The complete nucleotide sequence of phi CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: implications for phage evolution and horizontal gene transfer via bacteriophages. Mol Microbiol 1999; 31:399-419. [PMID: 10027959 DOI: 10.1046/j.1365-2958.1999.01158.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
phi CTX is a cytotoxin-converting phage isolated from Pseudomonas aeruginosa. In this study, we determined the complete nucleotide sequence of the phi CTX phage genome. The precise genome size was 35,538 bp with 21 base 5'-extruding cohesive ends. Forty-seven open reading frames (ORFs) were identified on the phi CTX genome, including two previously identified genes, ctx and int. Among them, 15 gene products were identified in the phage particle by protein microsequencing. The most striking feature of the phi CTX genome was an extensive homology with the coliphage P2 and P2-related phages; more than half of the ORFs (25 ORFs) had marked homology to P2 genes with 28.9-65.8% identity. The gene arrangement on the genome was also highly conserved for the two phages, although the G + C content and codon usage of most phi CTX genes were similar to those of the host P. aeruginosa chromosome. In addition, phi CTX was found to share several common features with P2, including the morphology, non-inducibility, use of lipopolysaccharide core oligosaccharide as receptor and Ca(2+)-dependent receptor binding. These findings indicate that phi CTX is a P2-like phage well adapted to P. aeruginosa, and provide clear evidence of the intergeneric spread and evolution of bacteriophages. Furthermore, comparative analysis of genome structures of phi CTX, P2 and other P2 relatives revealed the presence of several hot-spots where foreign DNAs, including the cytotoxin gene, were inserted. They appear to be deeply concerned in the acquisition of various genes that are horizontally transferred by bacteriophage infection.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Biological Evolution
- Capsid/biosynthesis
- Cytotoxins
- DNA, Viral
- Gene Expression Regulation, Viral
- Gene Transfer, Horizontal
- Genes, Viral
- Genome, Bacterial
- Genome, Viral
- Lysogeny
- Molecular Sequence Data
- Open Reading Frames
- Promoter Regions, Genetic
- Protein Processing, Post-Translational
- Pseudomonas Phages/genetics
- Pseudomonas aeruginosa/genetics
- Pseudomonas aeruginosa/virology
- Pyocins
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Viral Proteins/metabolism
- Virion
Collapse
Affiliation(s)
- K Nakayama
- Department of Bacteriology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | |
Collapse
|
42
|
Freitas-Vieira A, Anes E, Moniz-Pereira J. The site-specific recombination locus of mycobacteriophage Ms6 determines DNA integration at the tRNA(Ala) gene of Mycobacterium spp. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 12):3397-3406. [PMID: 9884232 DOI: 10.1099/00221287-144-12-3397] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Genetic determinants of the temperate mycobacteriophage Ms6 required for chromosomal integration were identified. DNA sequence analysis of an attP-containing fragment revealed an ORF encoding a protein of 372 amino acid residues with a C-terminus similar to other conserved C-terminal regions typical of the phage integrase family. Comparison of the sequences of attP, attB and bacteria-prophage junctions attL and attR showed a 26 bp common core sequence, where recombination takes place, near the 5' end of the integrase gene. Nucleotide sequence analysis of the attB chromosomal region showed that the core site overlaps the 3' end of the tRNA(Ala) gene. An integration-proficient plasmid vector was constructed and efficiently inserted at the tRNA(Ala) gene of Mycobacterium smegmatis, Mycobacterium vaccae, Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Ra. It was demonstrated that Ms6 and D29 integrative systems can be used in conjunction for inserting genes at multiple loci. The site-specific integration system of mycobacteriophage Ms6 is a new tool for mycobacterial genetic analysis and is poorly related to those of the L5 bacteriophage family.
Collapse
|
43
|
Abstract
The late gene activator, Delta, of satellite phage P4 is more efficient than the Delta of satellite phage phiR73 in utilizing a P2 helper prophage that lacks an activator (ogr) gene. Analysis of P4 Delta is complicated by the fact that this protein contains two tandem phiR73 Delta-like domains. We performed a mutational analysis of phiR73 Delta, in order to select mutations that might not be found using P4 Delta. The host RNA polymerase alpha subunit mutation rpoA155 (L289F) blocks the growth of P2, P4, and P4 carrying the delta gene of phiR73. A mutant of this latter phage that can grow in the presence of rpoA155 carries a V19M mutation in phiR73 Delta. This suggests that aa 19 contacts RNA polymerase, in addition to the aa residues 13, 42 and 44, that have been implicated in interactions with RNA polymerase by previous mutational analyses of P2 ogr and P4 delta. In corroboration of the proposed role of the regions at aa residues 19, 42, and 44, we found phiR73 Delta mutations in these regions that showed a reduced activation of late gene expression, but a normal ability to bind to late gene promoters. All activators in the Delta class contain four Cys residues that bind Zn2+. Mutation of these aa residues in phiR73 Delta eliminated late gene activation. Spectroscopic analysis of these mutant proteins revealed that they were unable to bind Zn2+. Histidine residues were substituted for two of the Cys residues (C30 and C35), changing a C2C2 type Zn-binding motif to a C2H2 motif. Although His residues are used in coordinating Zn2+ in other proteins, these His substitutions resulted in complete loss of activity and the inability to bind Zn2+.
Collapse
Affiliation(s)
- B Julien
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | | | |
Collapse
|
44
|
Ravatn R, Studer S, Zehnder AJ, van der Meer JR. Int-B13, an unusual site-specific recombinase of the bacteriophage P4 integrase family, is responsible for chromosomal insertion of the 105-kilobase clc element of Pseudomonas sp. Strain B13. J Bacteriol 1998; 180:5505-14. [PMID: 9791097 PMCID: PMC107606 DOI: 10.1128/jb.180.21.5505-5514.1998] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas sp. strain B13 carries the clcRABDE genes encoding chlorocatechol-degradative enzymes on the self-transmissible 105-kb clc element. The element integrates site and orientation specifically into the chromosomes of various bacterial recipients, with a glycine tRNA structural gene (glyV) as the integration site. We report here the localization and nucleotide sequence of the integrase gene and the activity of the integrase gene product in mediating site-specific integration. The integrase gene (int-B13) was located near the right end of the clc element. It consisted of an open reading frame (ORF) of maximally 1,971 bp with a coding capacity for 657 amino acids (aa). The full-length protein (74 kDa) was observed upon overexpression and sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation. The N-terminal 430 aa of the predicted Int-B13 protein had substantial similarity to integrases from bacteriophages of the P4 family, but Int-B13 was much larger than P4-type integrases. The C-terminal 220 aa of Int-B13 were homologous to an ORF flanking a gene cluster for naphthalene degradation in Pseudomonas aeruginosa PaK1. Similar to the bacteriophages phiR73 and P4, the clc element integrates into the 3' end of the target tRNA gene. This target site was characterized from four different recipient strains into which the clc element integrated, showing sequence specificity of the integration. In Pseudomonas sp. strain B13, a circular form of the clc element, which carries an 18-bp DNA sequence identical to the 3'-end portion of glyV as part of its attachment site (attP), could be detected. Upon chromosomal integration of the clc element into a bacterial attachment site (attB), a functional glyV was reconstructed at the right end of the element. The integration process could be demonstrated in RecA-deficient Escherichia coli with two recombinant plasmids, one carrying the int-B13 gene and the attP site and the other carrying the attB site of Pseudomonas putida F1.
Collapse
Affiliation(s)
- R Ravatn
- Swiss Federal Institute for Environmental Science and Technology (EAWAG) and Swiss Federal Institute for Technology (ETH), CH-8600 Dübendorf, Switzerland
| | | | | | | |
Collapse
|
45
|
Reiter K, Lam H, Young E, Julien B, Calendar R. A complex control system for transcriptional activation from the sid promoter of bacteriophage P4. J Bacteriol 1998; 180:5151-8. [PMID: 9748449 PMCID: PMC107552 DOI: 10.1128/jb.180.19.5151-5158.1998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The sid gene promoter (Psid), which controls expression of the late genes from satellite phage P4, is activated by a unique class of small DNA-binding proteins. The activators from both satellite and helper phages stimulate transcription from Psid. These activators bind to sites centered at position -55 in all the helper and satellite phage late promoters. P4 Psid is unique in that it has an additional activator binding site centered at position -18 (site II). We have constructed a mutant of site II that no longer binds activators. Transcription under the control of satellite phage activators is increased by the site II mutation. In contrast, helper phage activators do not show this increase in transcription from Psid mutated at site II. Competition gel shift analysis reveals that the P4 satellite phage activator, Delta, binds eightfold better to site II than to site I. The products of the sid transcription unit are needed only when a helper phage is present; thus, the satellite phage activators repress transcription until the helper is present to supply a nonrepressing activator.
Collapse
Affiliation(s)
- K Reiter
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | | | |
Collapse
|
46
|
Perna NT, Mayhew GF, Pósfai G, Elliott S, Donnenberg MS, Kaper JB, Blattner FR. Molecular evolution of a pathogenicity island from enterohemorrhagic Escherichia coli O157:H7. Infect Immun 1998; 66:3810-7. [PMID: 9673266 PMCID: PMC108423 DOI: 10.1128/iai.66.8.3810-3817.1998] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/1997] [Accepted: 05/27/1998] [Indexed: 02/08/2023] Open
Abstract
We report the complete 43,359-bp sequence of the locus of enterocyte effacement (LEE) from EDL933, an enterohemorrhagic Escherichia coli O157:H7 serovar originally isolated from contaminated hamburger implicated in an outbreak of hemorrhagic colitis. The locus was isolated from the EDL933 chromosome with a homologous-recombination-driven targeting vector. Recent completion of the LEE sequence from enteropathogenic E. coli (EPEC) E2348/69 afforded the opportunity for a comparative analysis of the entire pathogenicity island. We have identified a total of 54 open reading frames in the EDL933 LEE. Of these, 13 fall within a putative P4 family prophage designated 933L. The prophage is not present in E2348/69 but is found in a closely related EPEC O55:H7 serovar and other O157:H7 isolates. The remaining 41 genes are shared by the two complete LEEs, and we describe the nature and extent of variation among the two strains for each gene. The rate of divergence is heterogeneous along the locus. Most genes show greater than 95% identity between the two strains, but other genes vary more than expected for clonal divergence among E. coli strains. Several of these highly divergent genes encode proteins that are known to be involved in interactions with the host cell. This pattern suggests recombinational divergence coupled with natural selection and has implications for our understanding of the interaction of both pathogens with their host, for the emergence of O157:H7, and for the evolutionary history of pathogens in general.
Collapse
Affiliation(s)
- N T Perna
- Laboratory of Genetics, University of Wisconsin-Madison, Madison Wisconsin 53706, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Shimamoto T, Kawanishi H, Tsuchiya T, Inouye S, Inouye M. In vitro synthesis of multicopy single-stranded DNA, using separate primer and template RNAs, by Escherichia coli reverse transcriptase. J Bacteriol 1998; 180:2999-3002. [PMID: 9603895 PMCID: PMC107272 DOI: 10.1128/jb.180.11.2999-3002.1998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A minor population of wild strains of Escherichia coli contains a retron, a retroelement responsible for the synthesis of multicopy single-stranded DNA (msDNA). The retron is a genetic element consisting of the gene for reverse transcriptase (RT) and the msr-msd region under a single promoter. A single RNA transcript from the msr-msd region serves not only as a template but also as a primer for msDNA synthesis. Here, using a cell-free system with purified RT from retron Ec73, we examined whether the reaction can occur in a bimolecular reaction with use of separately expressed msr and msd transcripts. DNA sequencing of the cell-free product revealed that the sequence of the 5'-end region was identical to that of msDNA-Ec73, indicating that the cDNA synthesis was primed from the 2'-OH group of the specific internal G residue of the primer RNA, identical to the branching G residue in the RNA molecule of msDNA-Ec73. The present results raise an intriguing possibility for a role of bacterial retrons in vivo, the possibility that cellular mRNAs can be converted into cDNAs in retron-harboring cells if the mRNAs contain a sequence complementary to the sequence directly upstream of the branching G residue of the msr RNA transcript.
Collapse
Affiliation(s)
- T Shimamoto
- Gene Research Center, Faculty of Pharmaceutical Sciences, Okayama University, Tsushima-naka, Okayama 700, Japan
| | | | | | | | | |
Collapse
|
48
|
Sullivan JT, Ronson CW. Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 1998; 95:5145-9. [PMID: 9560243 PMCID: PMC20228 DOI: 10.1073/pnas.95.9.5145] [Citation(s) in RCA: 359] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/1997] [Indexed: 02/07/2023] Open
Abstract
Nodulation and nitrogen fixation genes of Mesorhizobium loti are encoded on the chromosome of the bacterium. Nevertheless, there is strong evidence that these genes can be transferred from an inoculant strain to nonsymbiotic mesorhizobia in the field environment. Here we report that the chromosomal symbiotic element of M. loti strain ICMP3153 is transmissible in laboratory matings to at least three genomic species of nonsymbiotic mesorhizobia. The element is 500 kb in size, integrates into a phe-tRNA gene, and encodes an integrase of the phage P4 family just within its left end. The entire phe-tRNA gene is reconstructed at the left end of the element upon integration, whereas the 3' 17 nucleotides of the tRNA gene are present as a direct repeat at the right end. We termed the element a symbiosis island on the basis of its many similarities to pathogenicity islands. It may represent a class of genetic element that contributes to microbial evolution by acquisition.
Collapse
Affiliation(s)
- J T Sullivan
- Department of Microbiology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|
49
|
Uchiumi T, Abe M, Higashi S. Integration of the temperate phage phiU into the putative tRNA gene on the chromosome of its host Rhizobium leguminosarum biovar trifolii. J GEN APPL MICROBIOL 1998; 44:93-99. [PMID: 12501298 DOI: 10.2323/jgam.44.93] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The plasmid pCI6, carrying the attP site of the temperate phage phiU, integrates into the attB site on the chromosome of Rhizobium leguminosarum biovar trifolii strain 4S. The 4 kb EcoRI-HindIII region of pCI6 involved in site-specific integration was subcloned as the attP fragment of phage phiU and sequenced. The attL fragment, one of the new DNA junctions generated from the insertion of pCI6 into the chromosome of the host Rhizobium, was used as a hybridization probe for isolation of the attB fragment of strain 4S. The nucleotide sequence of the 2 kb PstI fragment of strain 4S, which hybridized with the attL fragment, was decided and compared with that of the attP fragment. A 53 bp common sequence was expected to be the core sequence of site-specific integration between phage phiU and strain 4S. One of the ORFs on the attP fragment, which was located adjacent to the core sequence, had structural homology to the integrase family. However, the attB fragment showed high homology with the tRNA genes of Agrobacterium tumefaciens and E. coli. A 47 bp sequence of the 53 bp core sequence overlapped with this tRNA-like sequence. This indicates that the target site of phage phiU integration is the putative tRNA gene on the chromosome of the Rhizobium host.
Collapse
Affiliation(s)
- Toshiki Uchiumi
- Department of Chemistry and BioScience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | | | | |
Collapse
|
50
|
Inouye M, Mao JR, Shimamoto T, Inouye S. In vivo production of oligodeoxyribonucleotides of specific sequences: application to antisense DNA. CIBA FOUNDATION SYMPOSIUM 1998; 209:224-33; discussion 233-4. [PMID: 9383580 DOI: 10.1002/9780470515396.ch17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Retrons, bacterial retroelements found in Gram-negative bacteria, are integrated into the bacterial genome expressing a reverse transcriptase related to eukaryotic reverse transcriptase. The bacterial reverse transcriptases are responsible for the production of multicopy, single-stranded (ms) DNA consisting of a short single-stranded DNA that is attached to an internal guanosine residue of an RNA molecule by a 2',5'-phosphodiester linkage. Reverse transcriptases use an RNA transcript from the retrons, not only as primer, but also as template for msDNA synthesis. By studying the structural requirement, it was found that for msDNA synthesis an internal region of msDNA can be replaced with other sequences. msDNA can thus be used as a vector for in vivo production of an oligodeoxyribonucleotide of a specific sequence. Artificial msDNAs containing a sequence complementary to part of the mRNA for the major outer membrane lipoprotein of Escherichia coli effectively inhibited lipoprotein biosynthesis upon induction of msDNA synthesis. This is the first demonstration of in vivo synthesis of oligodeoxyribonucleotides having antisense function. Since we have previously demonstrated that bacterial retrons are functional in eukaryotes producing msDNA in yeast and in mouse NIH/3T3 fibroblasts, the present system may also be used to produce a specific oligodeoxyribonucleotide inside the cells to regulate eukaryotic gene expression artificially. We also describe a method to produce cDNA to a specific cellular mRNA using the retron system.
Collapse
Affiliation(s)
- M Inouye
- Robert Wood Johnson Medical School, Department of Biochemistry, Piscataway, NJ 08854-5635, USA
| | | | | | | |
Collapse
|