1
|
Tienaho J, Poikulainen E, Sarjala T, Muilu-Mäkelä R, Santala V, Karp M. A Bioscreening Technique for Ultraviolet Irradiation Protective Natural Substances. Photochem Photobiol 2018; 94:1273-1280. [PMID: 29882378 DOI: 10.1111/php.12954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022]
Abstract
Ultraviolet radiation (UV-R) causes genotoxic and aging effects on skin, and sunscreens are used to alleviate the damage. However, sunscreens contain synthetic shielding agents that can cause harmful effects in the environment. Nature-derived substances may have potential as replacement materials for the harmful sunscreen chemicals. However, screening of a broad range of samples is tedious, and often requires a separate genotoxicity assessment. We describe a simple microplate technique for the screening of UV protective substances using a recombinant Escherichia coli biosensor. Both absorbance-based and bioactivity-based shields can be detected with simultaneous information about the sample genotoxicity. With this technique, a controversial sunscreen compound, oxybenzone offers physical or absorbance-based shield but appears genotoxic at higher concentrations (3.3 mg/mL). We also demonstrate that pine needle extract (PiNe ) shields the biosensor from UV-R in a dose-dependent manner without showing genotoxicity. The physical shield of 5 mg/mL PiNe was similar to that of one of the most common UV-shielding compound TiO2 concentration 0.80 mg/mL. The bioactivity-based shield of PiNe also reaches the extent of the physical shield with the highest concentration (3.3 mg/mL). We conclude that our technique is suitable in detecting the UV-shielding potential of natural substances, and gives simultaneous information on genotoxicity.
Collapse
Affiliation(s)
- Jenni Tienaho
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland.,Natural Resources Institute Finland (Luke), Production systems, Parkano, Finland
| | - Emmi Poikulainen
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Tytti Sarjala
- Natural Resources Institute Finland (Luke), Production systems, Parkano, Finland
| | - Riina Muilu-Mäkelä
- Natural Resources Institute Finland (Luke), Production systems, Parkano, Finland
| | - Ville Santala
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Matti Karp
- Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
2
|
RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 2013; 506:249-53. [PMID: 24362571 PMCID: PMC3925069 DOI: 10.1038/nature12868] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/05/2013] [Indexed: 11/08/2022]
Abstract
DNA double-strand break (DSB) repair by homologous recombination has evolved to maintain genetic integrity in all organisms. Although many reactions that occur during homologous recombination are known, it is unclear where, when and how they occur in cells. Here, by using conventional and super-resolution microscopy, we describe the progression of DSB repair in live Escherichia coli. Specifically, we investigate whether homologous recombination can occur efficiently between distant sister loci that have segregated to opposite halves of an E. coli cell. We show that a site-specific DSB in one sister can be repaired efficiently using distant sister homology. After RecBCD processing of the DSB, RecA is recruited to the cut locus, where it nucleates into a bundle that contains many more RecA molecules than can associate with the two single-stranded DNA regions that form at the DSB. Mature bundles extend along the long axis of the cell, in the space between the bulk nucleoid and the inner membrane. Bundle formation is followed by pairing, in which the two ends of the cut locus relocate at the periphery of the nucleoid and together move rapidly towards the homology of the uncut sister. After sister locus pairing, RecA bundles disassemble and proteins that act late in homologous recombination are recruited to give viable recombinants 1-2-generation-time equivalents after formation of the initial DSB. Mutated RecA proteins that do not form bundles are defective in sister pairing and in DSB-induced repair. This work reveals an unanticipated role of RecA bundles in channelling the movement of the DNA DSB ends, thereby facilitating the long-range homology search that occurs before the strand invasion and transfer reactions.
Collapse
|
3
|
Specificity in suppression of SOS expression by recA4162 and uvrD303. DNA Repair (Amst) 2013; 12:1072-80. [PMID: 24084169 DOI: 10.1016/j.dnarep.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 08/29/2013] [Accepted: 09/04/2013] [Indexed: 01/15/2023]
Abstract
Detection and repair of DNA damage is essential in all organisms and depends on the ability of proteins recognizing and processing specific DNA substrates. In E. coli, the RecA protein forms a filament on single-stranded DNA (ssDNA) produced by DNA damage and induces the SOS response. Previous work has shown that one type of recA mutation (e.g., recA4162 (I298V)) and one type of uvrD mutation (e.g., uvrD303 (D403A, D404A)) can differentially decrease SOS expression depending on the type of inducing treatments (UV damage versus RecA mutants that constitutively express SOS). Here it is tested using other SOS inducing conditions if there is a general feature of ssDNA generated during these treatments that allows recA4162 and uvrD303 to decrease SOS expression. The SOS inducing conditions tested include growing cells containing temperature-sensitive DNA replication mutations (dnaE486, dnaG2903, dnaN159, dnaZ2016 (at 37°C)), a del(polA)501 mutation and induction of Double-Strand Breaks (DSBs). uvrD303 could decrease SOS expression under all conditions, while recA4162 could decrease SOS expression under all conditions except in the polA strain or when DSBs occur. It is hypothesized that recA4162 suppresses SOS expression best when the ssDNA occurs at a gap and that uvrD303 is able to decrease SOS expression when the ssDNA is either at a gap or when it is generated at a DSB (but does so better at a gap).
Collapse
|
4
|
Abstract
Homologous recombination is an ubiquitous process that shapes genomes and repairs DNA damage. The reaction is classically divided into three phases: presynaptic, synaptic, and postsynaptic. In Escherichia coli, the presynaptic phase involves either RecBCD or RecFOR proteins, which act on DNA double-stranded ends and DNA single-stranded gaps, respectively; the central synaptic steps are catalyzed by the ubiquitous DNA-binding protein RecA; and the postsynaptic phase involves either RuvABC or RecG proteins, which catalyze branch-migration and, in the case of RuvABC, the cleavage of Holliday junctions. Here, we review the biochemical properties of these molecular machines and analyze how, in light of these properties, the phenotypes of null mutants allow us to define their biological function(s). The consequences of point mutations on the biochemical properties of recombination enzymes and on cell phenotypes help refine the molecular mechanisms of action and the biological roles of recombination proteins. Given the high level of conservation of key proteins like RecA and the conservation of the principles of action of all recombination proteins, the deep knowledge acquired during decades of studies of homologous recombination in bacteria is the foundation of our present understanding of the processes that govern genome stability and evolution in all living organisms.
Collapse
|
5
|
Satoh K, Kikuchi M, Ishaque AM, Ohba H, Yamada M, Tejima K, Onodera T, Narumi I. The role of Deinococcus radiodurans RecFOR proteins in homologous recombination. DNA Repair (Amst) 2012; 11:410-8. [PMID: 22321371 DOI: 10.1016/j.dnarep.2012.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/11/2012] [Accepted: 01/13/2012] [Indexed: 11/26/2022]
Abstract
Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed.
Collapse
Affiliation(s)
- Katsuya Satoh
- Ion Beam Mutagenesis Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency, Takasaki, Gunma, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Belov OV, Krasavin EA, Parkhomenko AY. Mathematical model of induced mutagenesis in bacteria Escherichia coli under ultraviolet irradiation. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910040287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Michel-Marks E, Courcelle CT, Korolev S, Courcelle J. ATP binding, ATP hydrolysis, and protein dimerization are required for RecF to catalyze an early step in the processing and recovery of replication forks disrupted by DNA damage. J Mol Biol 2010; 401:579-89. [PMID: 20558179 DOI: 10.1016/j.jmb.2010.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/06/2010] [Accepted: 06/08/2010] [Indexed: 12/30/2022]
Abstract
In Escherichia coli, the recovery of replication following disruption by UV-induced DNA damage requires the RecF protein and occurs through a process that involves stabilization of replication fork DNA, resection of nascent DNA to allow the offending lesion to be repaired, and reestablishment of a productive replisome on the DNA. RecF forms a homodimer and contains an ATP binding cassette ATPase domain that is conserved among eukaryotic SMC (structural maintenance of chromosome) proteins, including cohesin, condensin, and Rad50. Here, we investigated the functions of RecF dimerization, ATP binding, and ATP hydrolysis in the progressive steps involved in recovering DNA synthesis following disruption by DNA damage. RecF point mutations with altered biochemical properties were constructed in the chromosome. We observed that protein dimerization, ATP binding, and ATP hydrolysis were essential for maintaining and processing the arrested replication fork, as well as for restoring DNA synthesis. In contrast, stabilization of the RecF protein dimer partially protected the DNA at the arrested fork from degradation, although overall processing and recovery remained severely impaired.
Collapse
|
8
|
Rokney A, Kobiler O, Amir A, Court DL, Stavans J, Adhya S, Oppenheim AB. Host responses influence on the induction of lambda prophage. Mol Microbiol 2008; 68:29-36. [PMID: 18298445 PMCID: PMC2327240 DOI: 10.1111/j.1365-2958.2008.06119.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inactivation of bacteriophage lambda CI repressor leads almost exclusively to lytic development. Prophage induction can be initiated either by DNA damage or by heat treatment of a temperature-sensitive repressor. These two treatments also cause a concurrent activation of either the host SOS or heat-shock stress responses respectively. We studied the effects of these two methods of induction on the lytic pathway by monitoring the activation of different lambda promoters, and found that the lambda genetic network co-ordinates information from the host stress response networks. Our results show that the function of the CII transcriptional activator, which facilitates the lysogenic developmental pathway, is not observed following either method of induction. Mutations in the cro gene restore the CII function irrespective of the induction method. Deletion of the heat-shock protease gene ftsH can also restore CII function following heat induction but not following SOS induction. Our findings highlight the importance of the elimination of CII function during induction as a way to ensure an efficient lytic outcome. We also show that, despite the common inhibitory effect on CII function, there are significant differences in the heat- and SOS-induced pathways leading to the lytic cascade.
Collapse
Affiliation(s)
- Assaf Rokney
- Department of Molecular Genetics and Biotechnology, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
RecA plays a central role in recombination, DNA repair and SOS induction through forming a RecA-DNA helical filament. Biochemical observations show that at low ratios to RecA, DinI and RecX stabilize and destabilize RecA-DNA filaments, respectively, and that the C-terminal 17 residues of RecA are important for RecX function. RecA-DNA filament formation was assayed in vivo using RecA-GFP foci formation in log-phase and UV-irradiated cells. In log-phase cells, dinI mutants have fewer foci than wild type and that recX mutants have more foci than wild type. A recADelta17::gfp mutant had more foci like a recX mutant. dinI recX double mutants have the same number of foci as dinI mutants alone, suggesting that dinI is epistatic to recX. After UV treatment, the dinI, recX and dinI recX mutants differed in their ability to form foci. All three mutants had fewer foci than wild type. The dinI mutant's foci persisted longer than wild-type foci. Roles of DinI and RecX after UV treatment differed from those during log-phase growth and may reflect the different DNA substrates, population of proteins or amounts during the SOS response. These experiments give new insight into the roles of these proteins.
Collapse
Affiliation(s)
- Nicholas Renzette
- Molecular and Cell Biology Graduate Program, Morrill Science Center, University of Massachusetts at Amherst, Amherst, MA 01003, USA
| | | | | |
Collapse
|
10
|
Rothstein R, Michel B, Gangloff S. Replication fork pausing and recombination or “gimme a break”. Genes Dev 2000. [DOI: 10.1101/gad.14.1.1] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Hegde SP, Qin MH, Li XH, Atkinson MA, Clark AJ, Rajagopalan M, Madiraju MV. Interactions of RecF protein with RecO, RecR, and single-stranded DNA binding proteins reveal roles for the RecF-RecO-RecR complex in DNA repair and recombination. Proc Natl Acad Sci U S A 1996; 93:14468-73. [PMID: 8962075 PMCID: PMC26156 DOI: 10.1073/pnas.93.25.14468] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The products of the recF, recO, and recR genes are thought to interact and assist RecA in the utilization of single-stranded DNA precomplexed with single-stranded DNA binding protein (Ssb) during synapsis. Using immunoprecipitation, size-exclusion chromatography, and Ssb protein affinity chromatography in the absence of any nucleotide cofactors, we have obtained the following results: (i) RecF interacts with RecO, (ii) RecF interacts with RecR in the presence of RecO to form a complex consisting of RecF, RecO, and RecR (RecF-RecO-RecR); (iii) RecF interacts with Ssb protein in the presence of RecO. These data suggested that RecO mediates the interactions of RecF protein with RecR and with Ssb proteins. Incubation of RecF, RecO, RecR, and Ssb proteins resulted in the formation of RecF-RecO-Ssb complexes; i.e., RecR was excluded. Preincubation of RecF, RecO, and RecR proteins prior to addition of Ssb protein resulted in the formation of complexes consisting of RecF, RecO, RecR, and Ssb proteins. These data suggest that one role of RecF is to stabilize the interaction of RecR with RecO in the presence of Ssb protein. Finally, we found that interactions of RecF with RecO are lost in the presence of ATP. We discuss these results to explain how the RecF-RecO-RecR complex functions as an anti-Ssb factor.
Collapse
Affiliation(s)
- S P Hegde
- Department of Microbiology, University of Texas Health Center at Tyler 75710, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Hegde SP, Rajagopalan M, Madiraju MV. Preferential binding of Escherichia coli RecF protein to gapped DNA in the presence of adenosine (gamma-thio) triphosphate. J Bacteriol 1996; 178:184-90. [PMID: 8550414 PMCID: PMC177637 DOI: 10.1128/jb.178.1.184-190.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli RecF protein binds, but does not hydrolyze, ATP. To determine the role that ATP binding to RecF plays in RecF protein-mediated DNA binding, we have determined the interaction between RecF protein and single-stranded (ss)DNA, double-stranded (ds)DNA, and dsDNA containing ssDNA regions (gapped [g]DNA) either alone or in various combinations both in the presence and in the absence of adenosine (gamma-thio) triphosphate, gamma-S-ATP, a nonhydrolyzable ATP analog. Protein-DNA complexes were analyzed by electrophoresis on agarose gels and visualized by autoradiography. The type of protein-DNA complexes formed in the presence of gamma-S-ATP was different with each of the DNA substrates and from those formed in the absence of gamma-S-ATP. Competition experiments with various combinations of DNA substrates indicated that RecF protein preferentially bound gDNA in the presence of gamma-S-ATP, and the order of preference of binding was gDNA > dsDNA > ssDNA. Since gDNA has both ds- and ssDNA components, we suggest that the role for ATP in RecF protein-DNA interactions in vivo is to confer specificity of binding to dsDNA-ssDNA junctions, which is necessary for catalyzing DNA repair and recombination.
Collapse
Affiliation(s)
- S P Hegde
- Department of Microbiology, University of Texas Health Center at Tyler 75710, USA
| | | | | |
Collapse
|
13
|
Hegde S, Sandler SJ, Clark AJ, Madiraju MV. recO and recR mutations delay induction of the SOS response in Escherichia coli. MOLECULAR & GENERAL GENETICS : MGG 1995; 246:254-8. [PMID: 7862097 DOI: 10.1007/bf00294689] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
RecF, RecO and RecR, three of the important proteins of the RecF pathway of recombination, are also needed for repair of DNA damage due to UV irradiation. recF mutants are not proficient in cleaving LexA repressor in vivo following DNA damage: therefore they show a delay of induction of the SOS response. In this communication, by measuring the in vivo levels of LexA repressor using anti-LexA antibodies, we show that recO and recR mutant strains are also not proficient in LexA cleavage reactions. In addition, we show that recO and recR mutations delay induction of beta-galactosidase activity expressed from a lexA-regulated promoter following exposure of cells to UV, thus further supporting the idea that recF, recO and recR gene products are needed for induction of the SOS response.
Collapse
Affiliation(s)
- S Hegde
- Department of Microbiology, University of Texas Health Center, Tyler 75710
| | | | | | | |
Collapse
|
14
|
Sandler SJ. Studies on the mechanism of reduction of UV-inducible sulAp expression by recF overexpression in Escherichia coli K-12. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:741-9. [PMID: 7830722 DOI: 10.1007/bf00297281] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
UV-inducible sulAp expression, an indicator of the SOS response, is reduced by recF+ overexpression in vivo. Different DNA-damaging agents and amounts of RecO and RecR were tested for their effects on this phenotype. It was found that recF+ overexpression reduced sulAp expression after DNA damage by mitomycin C or nalidixic acid, recO+ and recR+ overexpression partially suppressed the reduction of UV-induced sulAp expression caused by recF+ overexpression. The requirement for ATP binding to RecF to produce the phenotype was tested by genetically altering the putative phosphate binding cleft of recF in a way that should prevent the mutant recF protein from binding ATP. It was found that a change of lysine to glutamine at codon 36 results in a mutant recF protein (RecF4115) that is unable to reduce UV-inducible sulAp expression when overproduced. It is inferred from these results that recF overexpression may reduce UV-inducible sulAp expression by a mechanism that is sensitive to the ability of RecF to bind ATP and to the levels of RecO and RecR (RecOR) in the cell, but not to the type of DNA damage per se. Models are explored that can explain how recF+ overexpression reduces UV induction of sulAp and how RecOR overproduction might suppress this phenotype.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley, 94720
| |
Collapse
|
15
|
Kowalczykowski SC, Dixon DA, Eggleston AK, Lauder SD, Rehrauer WM. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 1994; 58:401-65. [PMID: 7968921 PMCID: PMC372975 DOI: 10.1128/mr.58.3.401-465.1994] [Citation(s) in RCA: 785] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination.
Collapse
Affiliation(s)
- S C Kowalczykowski
- Division of Biological Sciences, University of California, Davis 95616-8665
| | | | | | | | | |
Collapse
|
16
|
Abstract
The recF, recO, and recR genes form the recFOR epistasis group for DNA repair. recF mutants are sensitive to UV irradiation and fail to properly induce the SOS response. Using plasmid derivatives that overexpress combinations of the recO+ and recR+ genes, we tested the hypothesis that high-level expression of recO+ and recR+ (recOR) in vivo will indirectly suppress the recF mutant phenotypes mentioned above. We found that overexpression of just recR+ from the plasmid will partially suppress both phenotypes. Expression of the chromosomal recO+ gene is essential for the recR+ suppression. Hence we call this RecOR suppression of recF mutant phenotypes. RecOR suppression of SOS induction is more efficient with recO+ expression from a plasmid than with recO+ expression from the chromosome. This is not true for RecOR suppression of UV sensitivity (the two are equal). Comparison of RecOR suppression with the suppression caused by recA801 and recA803 shows that RecOR suppression of UV sensitivity is more effective than recA803 suppression and that RecOR suppression of UV sensitivity, like recA801 suppression, requires recJ+. We present a model that explains the data and proposes a function for the recFOR epistasis group in the induction of the SOS response and recombinational DNA repair.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
17
|
Sandler SJ, Clark AJ. Use of high and low level overexpression plasmids to test mutant alleles of the recF gene of Escherichia coli K-12 for partial activity. Genetics 1993; 135:643-54. [PMID: 8293970 PMCID: PMC1205709 DOI: 10.1093/genetics/135.3.643] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We showed that sufficient overexpression of the wild-type recF gene interfered with three normal cell functions: (1) UV induction of transcription from the LexA-protein-repressed sulA promoter, (2) UV resistance and (3) cell viability at 42 degrees. To show this, we altered a low-level overexpressing recF+ plasmid with a set of structurally neutral mutations that increased the rate of expression of recF. The resulting high-level overexpressing plasmid interfered with UV induction of the sulA promoter, as did the low-level overexpressing plasmid. It also reduced UV resistance more than its low level progenitor and decreased viability at 42 degrees, an effect not seen with the low-level plasmid. We used the high-level plasmid to test four recF structural mutations for residual activity. The structural alleles consisted of an insertion mutation, two single amino acid substitution mutations and a double amino acid substitution mutation. On the Escherichia coli chromosome the three substitution mutations acted similarly to a recF deletion in reducing UV resistance in a recB21 recC22 sbcB15 sbcC201 genetic background. By this test, therefore, all three appeared to be null alleles. Measurements of conjugational recombination revealed, however, that the three substitution mutations may have residual activity. On the high-level overexpressing plasmid all three substitution mutations definitely showed partial activity. By contrast, the insertion mutation on the high-level overexpressing plasmid showed no partial activity and can be considered a true null mutation. One of the substitutions, recF143, showed a property attributable to a leaky mutation. Another substitution, recF4101, may block selectively two of the three interference phenotypes, thus allowing us to infer a mechanism for them.
Collapse
Affiliation(s)
- S J Sandler
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
18
|
Madiraju MV, Clark AJ. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J Bacteriol 1992; 174:7705-10. [PMID: 1447139 PMCID: PMC207484 DOI: 10.1128/jb.174.23.7705-7710.1992] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RecF protein is one of the important proteins involved in DNA recombination and repair. RecF protein has been shown to bind single-stranded DNA (ssDNA) in the absence of ATP (T. J. Griffin IV and R. D. Kolodner, J. Bacteriol. 172:6291-6299, 1990; M. V. V. S. Madiraju and A. J. Clark, Nucleic Acids Res. 19:6295-6300, 1991). In the present study, using 8-azido-ATP, a photo-affinity analog of ATP, we show that RecF protein binds ATP and that the binding is specific in the presence of DNA. 8-Azido-ATP photo-cross-linking is stimulated in the presence of DNA (both ssDNA and double-stranded DNA [dsDNA]), suggesting that DNA enhances the affinity of RecF protein for ATP. These data suggest that RecF protein possesses independent ATP- and DNA-binding sites. Further, we find that stable RecF protein-dsDNA complexes are obtained in the presence of ATP or ATP-gamma-S [adenosine-5'-O-(3-thio-triphosphate)]. No other nucleoside triphosphates served as necessary cofactors for dsDNA binding, indicating that RecF is an ATP-dependent dsDNA-binding protein. Since a mutation in a putative phosphate-binding motif of RecF protein results in a recF mutant phenotype (S. J. Sandler, B. Chackerian, J. T. Li, and A. J. Clark, Nucleic Acids Res. 20:839-845, 1992), we suggest on the basis of our data that the interactions of RecF protein with ATP, with dsDNA, or with both are physiologically important for understanding RecF protein function in vivo.
Collapse
Affiliation(s)
- M V Madiraju
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | |
Collapse
|
19
|
Pueyo M, Gibert I, Barbé J. Relationship between the functional regions of the RecA protein and ATP hydrolysis in UV-irradiated Escherichia coli cells. Mutat Res 1992; 293:21-30. [PMID: 1383807 DOI: 10.1016/0921-8777(92)90004-m] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The time course of the intracellular ATP concentration in several UV-irradiated RecA protease constitutive (Cptc) mutants of E. coli has been studied. All Cptc mutants harboring a mutation in region 3 of the RecA protein (including amino acid residues 298-301) increased ATP after UV damage but without any subsequent decrease. Nevertheless, these mutants induced the SOS response after UV irradiation. Likewise, truncated RecA proteins lacking region 3 are also unable to carry out massive ATP hydrolysis in UV-irradiated cells. On the other hand, mutants in region 1 (including amino acids 25-39) or 2 (amino acids 157-184) of the RecA protein showed an increase in ATP concentration during the first 20 min following UV irradiation, which dropped afterwards to the basal level. All these data indicate that region 3 of the RecA protein must be involved in the ATP hydrolysis process. Furthermore, a relationship between the quantity of the UV-mediated ATP produced and the strength of the different RecA Cptc mutants has also been found. Accordingly, both lexA71::Tn5 and null lexA mutants of E. coli only show a cellular ATP increase after UV irradiation when containing a multicopy plasmid carrying either a wild-type lexA or a lexA (Ind-) gene.
Collapse
Affiliation(s)
- M Pueyo
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | |
Collapse
|