1
|
Khan SR, Kuzminov A. Defects in the central metabolism prevent thymineless death in Escherichia coli, while still allowing significant protein synthesis. Genetics 2024; 228:iyae142. [PMID: 39212478 DOI: 10.1093/genetics/iyae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Starvation of Escherichia coli thyA auxotrophs for the required thymine or thymidine leads to the cessation of DNA synthesis and, unexpectedly, to thymineless death (TLD). Previously, TLD-alleviating defects were identified by the candidate gene approach, for their contribution to replication initiation, fork repair, or SOS induction. However, no TLD-blocking mutations were ever found, suggesting a multifactorial nature of TLD. Since (until recently) no unbiased isolation of TLD suppressors was reported, we used enrichment after insertional mutagenesis to systematically isolate TLD suppressors. Our approach was validated by isolation of known TLD-alleviating mutants in recombinational repair. At the same time, and unexpectedly for the current TLD models, most of the isolated suppressors affected general metabolism, while the strongest suppressors impacted the central metabolism. Several temperature-sensitive (Ts) mutants in important/essential functions, like nadA, ribB, or coaA, almost completely suppressed TLD at 42°C. Since blocking protein synthesis completely by chloramphenicol prevents TLD, while reducing protein synthesis to 10% alleviates TLD only slightly, we measured the level of protein synthesis in these mutants at 42°C and found it to be 20-70% of the WT, not enough reduction to explain TLD prevention. We conclude that the isolated central metabolism mutants prevent TLD by affecting specific TLD-promoting functions.
Collapse
Affiliation(s)
- Sharik R Khan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Sun Y, Ye Q, Wu M, Wu Y, Zhang C, Yan W. High yields and soluble expression of superoxide dismutases in Escherichia coli due to the HIV-1 Tat peptide via increases in mRNA transcription. Exp Mol Med 2016; 48:e264. [PMID: 27741225 PMCID: PMC5099423 DOI: 10.1038/emm.2016.91] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 11/29/2022] Open
Abstract
This study aimed to validate the high yield and soluble expression of proteins carrying the transactivator of transcription (Tat) peptide tag, and further explored the potential mechanism by which the Tat tag increases expression. Escherichia coli superoxide dismutase (SOD) proteins, including SodA, SodB and SodC, were selected for analysis. As expected, the yields and the solubility of Tat-tagged proteins were higher than those of Tat-free proteins, and similar results were observed for the total SOD enzyme activity. Bacterial cells that overexpressed Tat-tagged proteins exhibited increased anti-paraquat activity compared with those expressing Tat-free proteins that manifested as SodA>SodC>SodB. When compared with an MG1655 wild-type strain, the growth of a ΔSodA mutant strain was found to be inhibited after paraquat treatment; the growth of ΔSodB and ΔSodC mutant strains was also slightly inhibited. The mRNA transcript level of genes encoding Tat-tagged proteins was higher than that of genes encoding Tat-free proteins. Furthermore, the α-helix and turn of Tat-tagged proteins were higher than those of Tat-free proteins, but the β-sheet and random coil content was lower. These results indicated that the incorporation of the Tat core peptide as a significant basic membrane transduction peptide in fusion proteins could increase mRNA transcripts and promote the high yield and soluble expression of heterologous proteins in E. coli.
Collapse
Affiliation(s)
- Yangdong Sun
- Department of Biological Engineering, College of Pharmacy, Jilin University, Changchun, China
| | - Qiao Ye
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China
| | - Min Wu
- Institute of Protein Research, Tongji University, Shanghai, China
| | - Yonghong Wu
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center, Beijing, China
| | - Weiqun Yan
- Department of Biological Engineering, College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
3
|
Makarov VI. Reduction of laser-induced retinal injury applying the combination of the 3D variable electric and magnetic fields in "vivo". Electromagn Biol Med 2013; 33:103-17. [PMID: 23781999 DOI: 10.3109/15368378.2013.784980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oscillating Low Frequency Electro-Magnetic Fields action on eye retina restoration in Rattus Norvegicus was studied in the present work. A beneficial effect of 3-Dimention Oscillating Low Frequency Electro-Magnetic Field was found for the specific values of Electro-Magnetic Field parameters. We found that eye retina damaged by radiation of the fundamental frequency harmonic of a YAG laser has recovered earlier and rehabilitated to the original 3D-state in the presence of OLFEMF, with the parameters listed below in the text. The results obtained were explained by the action of oscillating sub-macro-motions in the cells upon the metabolic processes in these cells.
Collapse
Affiliation(s)
- Vladimir I Makarov
- Department of Physics, University of Puerto Rico , Rio Piedras, San Juan , Puerto Rico
| |
Collapse
|
4
|
Klein G, Müller-Loennies S, Lindner B, Kobylak N, Brade H, Raina S. Molecular and structural basis of inner core lipopolysaccharide alterations in Escherichia coli: incorporation of glucuronic acid and phosphoethanolamine in the heptose region. J Biol Chem 2013; 288:8111-8127. [PMID: 23372159 DOI: 10.1074/jbc.m112.445981] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well established that lipopolysaccharide (LPS) often carries nonstoichiometric substitutions in lipid A and in the inner core. In this work, the molecular basis of inner core alterations and their physiological significance are addressed. A new inner core modification of LPS is described, which arises due to the addition of glucuronic acid on the third heptose with a concomitant loss of phosphate on the second heptose. This was shown by chemical and structural analyses. Furthermore, the gene whose product is responsible for the addition of this sugar was identified in all Escherichia coli core types and in Salmonella and was designated waaH. Its deduced amino acid sequence exhibits homology to glycosyltransferase family 2. The transcription of the waaH gene is positively regulated by the PhoB/R two-component system in a growth phase-dependent manner, which is coordinated with the transcription of the ugd gene explaining the genetic basis of this modification. Glucuronic acid modification was observed in E. coli B, K12, R2, and R4 core types and in Salmonella. We also show that the phosphoethanolamine (P-EtN) addition on heptose I in E. coli K12 requires the product of the ORF yijP, a new gene designated as eptC. Incorporation of P-EtN is also positively regulated by PhoB/R, although it can occur at a basal level without a requirement for any regulatory inducible systems. This P-EtN modification is essential for resistance to a variety of factors, which destabilize the outer membrane like the addition of SDS or challenge to sublethal concentrations of Zn(2+).
Collapse
Affiliation(s)
- Gracjana Klein
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany; Department of Microbiology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Sven Müller-Loennies
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany
| | - Buko Lindner
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany
| | - Natalia Kobylak
- Department of Microbiology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Helmut Brade
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany
| | - Satish Raina
- Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 22, 23845 Borstel, Germany; Department of Microbiology, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
5
|
Ghosh C, Gupta R, Mukherjee KJ. An inverse metabolic engineering approach for the design of an improved host platform for over-expression of recombinant proteins in Escherichia coli. Microb Cell Fact 2012; 11:93. [PMID: 22759404 PMCID: PMC3537655 DOI: 10.1186/1475-2859-11-93] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/11/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A useful goal for metabolic engineering would be to generate non-growing but metabolically active quiescent cells which would divert the metabolic fluxes towards product formation rather than growth. However, for products like recombinant proteins, which are intricately coupled to the growth process it is difficult to identify the genes that need to be knocked-out/knocked-in to get this desired phenotype. To circumvent this we adopted an inverse metabolic engineering strategy which would screen for the desired phenotype and thus help in the identification of genetic targets which need to be modified to get overproducers of recombinant protein. Such quiescent cells would obviate the need for high cell density cultures and increase the operational life span of bioprocesses. RESULTS A novel strategy for generating a library, consisting of randomly down regulated metabolic pathways in E. coli was designed by cloning small genomic DNA fragments in expression vectors. Some of these DNA fragments got inserted in the reverse orientation thereby generating anti-sense RNA upon induction. These anti-sense fragments would hybridize to the sense mRNA of specific genes leading to gene 'silencing'. This library was first screened for slow growth phenotype and subsequently for enhanced over-expression ability. Using Green Fluorescent Protein (GFP) as a reporter protein on second plasmid, we were able to identify metabolic blocks which led to significant increase in expression levels. Thus down-regulating the ribB gene (3, 4 dihydroxy-2-butanone-4-phosphate synthase) led to a 7 fold increase in specific product yields while down regulating the gene kdpD (histidine kinase) led to 3.2 fold increase in specific yields. CONCLUSION We have designed a high throughput screening approach which is a useful tool in the repertoire of reverse metabolic engineering strategies for the generation of improved hosts for recombinant protein expression.
Collapse
Affiliation(s)
- Chaitali Ghosh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
6
|
Balamurugan S, Dugan MER. Growth temperature associated protein expression and membrane fatty acid composition profiles of Salmonella enterica serovar Typhimurium. J Basic Microbiol 2011; 50:507-18. [PMID: 20806250 DOI: 10.1002/jobm.201000037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Total cellular proteins and fatty acid composition profiles of mid-log phase cells of Salmonella enterica serovar Typhimurium grown at 8, 25, 37 or 42 °C were separated by 2D-PAGE and FAME analysis. Growth temperature associated protein expression can be grouped into 3 thermal classes which include proteins whose expression is: I) optimal at 37 °C, meaning their expression peaked at 37 °C; II) up-regulated with an increase in growth temperature; III) down-regulated with increase in growth temperature; meaning their expression peaked at 8 °C. At higher growth temperatures, proteins belonging to the functional groups of amino acid transport and metabolism, nucleotide metabolism, energy metabolism and post-translation modifications (chaperones) are present in substantially higher amounts. This increase in abundance is regulated in a temperature dependent manner. It is important to point out that proteins involved in energy metabolism observed in higher amounts at higher growth temperatures all belong to the glycolysis pathway, while at 8 °C they belonged to the TCA cycle. Increase in growth temperatures results in a decrease in membrane fatty acid unsaturation and an increase in saturated and cyclic fatty acids. These results provide an insight into the dynamic molecular and physiological responses of Salmonella Typhimurium during growth at different temperatures.
Collapse
|
7
|
Dartigalongue C, Loferer H, Raina S. EcfE, a new essential inner membrane protease: its role in the regulation of heat shock response in Escherichia coli. EMBO J 2001; 20:5908-18. [PMID: 11689431 PMCID: PMC125713 DOI: 10.1093/emboj/20.21.5908] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have identified a new protease in Escherichia coli, which is required for its viability under normal growth conditions. This protease is anchored in the inner membrane and the gene encoding it has been named ecfE, since it is transcribed by Esigma(E) polymerase. Multicopy expression of the ecfE gene was found to turn down expression of both Esigma(E)- and Esigma(32)-transcribed promoters. Purified EcfE degrades both heat shock sigma factors RpoE and RpoH in vitro. EcfE has a zinc binding domain at the N-terminus, a PDZ-like domain in the middle and a highly conserved tripeptide, LDG, at the C-terminus. These features are characteristic of members of a new class of proteases whose activity occurs close to the inner membrane or within the inner membrane. Temperature-sensitive mutants of this gene were isolated mapping to the catalytic site and other domains that exhibited constitutively elevated levels of both heat shock regulons.
Collapse
Affiliation(s)
| | - Hannes Loferer
- Département de Biochimie Médicale, Centre Médical Universitaire, 1 rue Michel-Servet 1211 Genève 4, Switzerland and
GPC Biotech AG, Fraunhoferstrasse 20, D-82152 Munchen, Germany Corresponding author e-mail:
| | - Satish Raina
- Département de Biochimie Médicale, Centre Médical Universitaire, 1 rue Michel-Servet 1211 Genève 4, Switzerland and
GPC Biotech AG, Fraunhoferstrasse 20, D-82152 Munchen, Germany Corresponding author e-mail:
| |
Collapse
|
8
|
Dartigalongue C, Nikaido H, Raina S. Protein folding in the periplasm in the absence of primary oxidant DsbA: modulation of redox potential in periplasmic space via OmpL porin. EMBO J 2000; 19:5980-8. [PMID: 11080145 PMCID: PMC305838 DOI: 10.1093/emboj/19.22.5980] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Disulfide bond formation in Escherichia coli is a catalyzed reaction accomplished by DsbA. We found that null mutations in a new porin gene, ompL, allowed a total bypass of the DsbA requirement for protein oxidation. These mutations acted as extragenic null suppressors for dsbA, and restored normal folding of alkaline phosphatase and relieved sensitivity to dithiothreitol. ompL dsbA double mutants were completely like wild-type mutants in terms of motility and lack of mucoidy. This suppression was not dependent on DsbC and DsbG, since the oxidation status of these proteins was unaltered in ompL dsbA strains. Purified OmpL allowed diffusion of small solutes, including sugars, but the suppression was not dependent on the carbon sources used. Suppression by ompL null mutations required DsbB, leading us to propose a hypothesis that DsbB oxidizes yet unidentified, low-molecular-weight redox agents in the periplasm. These oxidized agents accumulate and substitute for DsbA if their leakage into the medium is prevented by the absence of OmpL, presumed to form a specific channel for their diffusion.
Collapse
Affiliation(s)
- C Dartigalongue
- Centre Médical Universitaire, Département de Biochimie Médicale, 1 Rue Michel-Servet, 1211 Genève 4, Switzerland
| | | | | |
Collapse
|
9
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
10
|
Cold-shock response of protein, RNA, DNA and phospholipid synthesis inBacillus subtilis. Folia Microbiol (Praha) 1995. [DOI: 10.1007/bf02818520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Raina S, Missiakas D, Georgopoulos C. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli. EMBO J 1995; 14:1043-55. [PMID: 7889935 PMCID: PMC398177 DOI: 10.1002/j.1460-2075.1995.tb07085.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous work has established that the transcription factor sigma E (sigma 24) is necessary for maintaining the induction of the heat shock response of Escherichia coli at high temperatures. We have identified the gene encoding sigma E using a genetic screen designed to isolate trans-acting mutations that abolish expression from either htrA or rpoHP3, two promoters recognized uniquely by sigma E-containing RNA polymerase. Such a screen was achieved by transducing strains carrying a single copy of either phtrA-lacZ or rpoHP3-lacZ fusions with mutagenized bacteriophage P1 lysates and screening for Lac- mutant colonies at 22 degrees C. Lac- mutants were subsequently tested for inability to grow at 43 degrees C (Ts- phenotype). Only those Lac- Ts- mutants that were unable to accumulate heat shock proteins at 50 degrees C were retained for further characterization. In a complementary approach, those genes which when cloned on a multicopy plasmid led to higher constitutive expression of the sigma E regulon were characterized and mapped. Both approaches identified the same gene, rpoE, mapping at 55.5 min on the E.coli genetic map and encoding a polypeptide of 191 amino acid residues. The wild-type and a mutant rpoE gene products were over-expressed and purified. It was found that the purified wild-type sigma E protein, when used in in vitro run-off transcription assays in combination with core RNA polymerase, was able to direct transcription from the htrA and rpoHP3 promoters, but not from known sigma 70-dependent promoters. In vivo and in vitro analyses of rpoE transcriptional regulation showed that the rpoE gene is transcribed from two major promoters, one of which is positively regulated by sigma E itself.
Collapse
Affiliation(s)
- S Raina
- Département de Biochimie Médicale, Centre Médical Universitaire, Genève, Switzerland
| | | | | |
Collapse
|
12
|
Sorokin A, Zumstein E, Azevedo V, Ehrlich SD, Serror P. The organization of the Bacillus subtilis 168 chromosome region between the spoVA and serA genetic loci, based on sequence data. Mol Microbiol 1993; 10:385-95. [PMID: 7934829 DOI: 10.1111/j.1365-2958.1993.tb02670.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three different lambda phage clones with overlapping inserts of Bacillus subtilis DNA, which cover the region from spoIIAA to serA, have been isolated. The nucleotide sequence of their inserts, starting after spoVAF and ending at serA, has been determined. A contiguous sequence of 35,354 bp was established, including previously analysed overlapping adjacent regions. Within the newly determined sequence 31 open reading frames (ORFs) with putative ribosome-binding sites have been found. Nine of them correspond to previously sequenced and characterized genes: spo-VAF, lysA, sipS, ribG, ribB, ribA, ribH, ribTD and dacB. Comparison of the amino acid sequences of the products encoded by the other ORFs to known proteins allowed putative functions to be assigned to seven of these ORFs. Among these are the following: (i) the ppiB gene, encoding a cytoplasmic peptidylprolyl isomerase; (ii) two pairs of signal-transducers, one homologous to phoR-phoP of B. subtilis, encoding regulators of phosphatase biosynthesis, and the second to the fecI-fecR of Escherichia coli, which is responsible for the regulation of the citrate-dependent iron (III) transport system; (iii) aroC and serA genes, involved in the biosynthesis of aromatic amino acids and serine, respectively, the function of which has been confirmed by constructing corresponding mutants with disrupted ORFs. The organization of putative operons has been postulated on the basis of the sequences of their transcription terminators, promoters and regulatory elements.
Collapse
Affiliation(s)
- A Sorokin
- Laboratoire de Génétique Microbienne, Institut National de la Recherche Agronomique, Jouy en Josas, France
| | | | | | | | | |
Collapse
|
13
|
Pogliano KJ, Beckwith J. The Cs sec mutants of Escherichia coli reflect the cold sensitivity of protein export itself. Genetics 1993; 133:763-73. [PMID: 8462840 PMCID: PMC1205398 DOI: 10.1093/genetics/133.4.763] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We have found that temperature can have a striking effect upon protein export in Escherichia coli, suggesting that there is a cold-sensitive step in the protein export pathway. Cs mutations comprise the largest class of mutations affecting the membrane-localized Sec proteins SecD, SecE, SecF and SecY. Although some of these mutations could encode cold-labile proteins, this is unlikely to account for the Cs phenotype of most export mutants, as mutations which simply produce lower amounts of SecE protein have the same phenotype. Certain signal sequence mutations affecting maltose binding protein are also cold sensitive for export. These effects appear to arise by a specific interaction of cold with certain export defects. We believe that the Cs sec mutations are representative of a large class of conditional lethal mutations, whose conditional phenotype reflects an underlying thermal sensitivity of the process in which they are involved.
Collapse
Affiliation(s)
- K J Pogliano
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
14
|
|
15
|
Delaney JM, Wall D, Georgopoulos C. Molecular characterization of the Escherichia coli htrD gene: cloning, sequence, regulation, and involvement with cytochrome d oxidase. J Bacteriol 1993; 175:166-75. [PMID: 8380150 PMCID: PMC196110 DOI: 10.1128/jb.175.1.166-175.1993] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Escherichia coli htrD gene was originally isolated during a search for new genes required for growth at high temperature. Insertional inactivation of htrD leads to a pleiotropic phenotype characterized by temperature-sensitive growth in rich medium, H2O2 sensitivity, and sensitivity to cysteine. The htrD gene was cloned and sequenced, and an htrD::mini-Tn10 insertion mutation was mapped within this gene. The htrD gene was shown to encode a protein of approximately 17.5 kDa. Expression of the htrD gene was examined by using an phi (htrD-lacZ) operon fusion. It was found that htrD is not temperature regulated and therefore is not a heat shock gene. Further study revealed that htrD expression is increased under aerobic growth conditions. Conversely, under anaerobic growth conditions, htrD expression is decreased. In addition, a mutation within the nearby cydD gene was found to drastically reduce htrD expression under all conditions tested. These results indicate that htrD is somehow involved in aerobic respiration and that the cydD gene product is necessary for htrD gene expression. In agreement with this conclusion, htrD mutant bacteria are unable to oxidize the cytochrome d-specific electron donor N,N,N',N'-tetramethyl-p-phenylenediamine.
Collapse
Affiliation(s)
- J M Delaney
- Department of Cellular, Viral, and Molecular Biology, University of Utah School of Medicine, Salt Lake City 84132
| | | | | |
Collapse
|
16
|
Meighen EA, Dunlap PV. Physiological, biochemical and genetic control of bacterial bioluminescence. Adv Microb Physiol 1993; 34:1-67. [PMID: 8452091 DOI: 10.1016/s0065-2911(08)60027-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- E A Meighen
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
17
|
Wall D, Delaney JM, Fayet O, Lipinska B, Yamamoto T, Georgopoulos C. arc-dependent thermal regulation and extragenic suppression of the Escherichia coli cytochrome d operon. J Bacteriol 1992; 174:6554-62. [PMID: 1328158 PMCID: PMC207623 DOI: 10.1128/jb.174.20.6554-6562.1992] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In a screen for Escherichia coli genes whose products are required for high-temperature growth, we identified and characterized a mini-Tn10 insertion that allows the formation of wild-type-size colonies at 30 degrees C but results in microcolony formation at 36 degrees C and above (Ts- phenotype). Mapping, molecular cloning, and DNA sequencing analyses showed that the mini-Tn10 insertion resides in the cydB gene, the distal gene of the cydAB operon (cytochrome d). The Ts- growth phenotype was also shown to be associated with previously described cyd alleles. In addition, all cyd mutants were found to be extremely sensitive to hydrogen peroxide. Northern (RNA) blot analysis showed that cyd-specific mRNA levels accumulate following a shift to high temperature. Interestingly, this heat shock induction of the cyd operon was not affected in an rpoH delta background but was totally absent in an arcA or arcB mutant background. Extragenic suppressors of the Cyd Ts- phenotype are found at approximately 10(-3). Two extragenic suppressors were shown to be null alleles in either arcA or arcB. One interpretation of our results is that in the absence of ArcA or ArcB, which are required for the repression of the cyo operon (cytochrome o), elevated levels of Cyo are produced, thus compensating for the missing cytochrome d function. Consistent with this interpretation, the presence of the cyo gene on a multicopy plasmid suppressed the Ts- and hydrogen peroxide-sensitive phenotypes of cyd mutants.
Collapse
Affiliation(s)
- D Wall
- Department of Cellular, Viral, and Molecular Biology, University of Utah Medical Center, Salt Lake City 84132
| | | | | | | | | | | |
Collapse
|
18
|
Lee CY, Meighen EA. The lux genes in Photobacterium leiognathi are closely linked with genes corresponding in sequence to riboflavin synthesis genes. Biochem Biophys Res Commun 1992; 186:690-7. [PMID: 1339274 DOI: 10.1016/0006-291x(92)90802-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three open reading frames (ORFs) have been found in the region downstream of the luxG gene in the Photobacterium leiognathi lux operon. These genes (ORF I, II, and III) are not only closely linked to the lux operon and transcribed in the same direction but also show the same organization and code for proteins homologous in sequence to the gene products of ribB, ribA, and ribH of Bacillus subtilis, respectively. The Photobacterium leiognathi gene (ORF II) corresponding to ribA was expressed in Escherichia coli in the bacteriophage T7 promoter-RNA polymerase system and a 40 kDa 35S-labeled polypeptide has been detected on SDS-PAGE. Expression of DNA extending from luxBEG to ORF II inserted between a strong promoter and a reporter gene and transferred by conjugation into Vibrio harveyi did not affect the expression of the reporter gene. The results provide evidence that neither promoter nor terminator sites were present in the DNA between the luxG and ORF II indicating that these genes might be part of the lux operon.
Collapse
Affiliation(s)
- C Y Lee
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
19
|
Richter G, Volk R, Krieger C, Lahm HW, Röthlisberger U, Bacher A. Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli. J Bacteriol 1992; 174:4050-6. [PMID: 1597419 PMCID: PMC206115 DOI: 10.1128/jb.174.12.4050-4056.1992] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
3,4-Dihydroxy-2-butanone 4-phosphate is biosynthesized from ribulose 5-phosphate and serves as the biosynthetic precursor for the xylene ring of riboflavin. The gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli has been cloned and sequenced. The gene codes for a protein of 217 amino acid residues with a calculated molecular mass of 23,349.6 Da. The enzyme was purified to near homogeneity from a recombinant E. coli strain and had a specific activity of 1,700 nmol mg-1 h-1. The N-terminal amino acid sequence and the amino acid composition of the protein were in agreement with the deduced sequence. The molecular mass as determined by ion spray mass spectrometry was 23,351 +/- 2 Da, which is in agreement with the predicted mass. The previously reported loci htrP, "luxH-like," and ribB at 66 min of the E. coli chromosome are all identical to the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase, but their role had not been hitherto determined. Sequence homology indicates that gene luxH of Vibrio harveyi and the central open reading frame of the Bacillus subtilis riboflavin operon code for 3,4-dihydroxy-2-butanone 4-phosphate synthase.
Collapse
Affiliation(s)
- G Richter
- Lehrstuhl für Organische Chemie und Biochemie, Technische Universität München, Garching, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Yang TP, Depew RE. Nucleotide sequence of a region duplicated in Escherichia coli toc mutants. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1130:227-8. [PMID: 1314093 DOI: 10.1016/0167-4781(92)90535-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have sequenced about 5 kb of the Escherichia coli chromosome downstream from the tolC gene, looking for a topoisomerase gene. This region does not contain a topoisomerase gene.
Collapse
Affiliation(s)
- T P Yang
- Department of Microbiology and Immunology, Northeastern Ohio Universities College of Medicine, Rootstown
| | | |
Collapse
|
21
|
Affiliation(s)
- T P Yang
- Department of Microbiology and Immunology, Northeastern Ohio Universities College of Medicine, Rootstown 44272
| | | |
Collapse
|
22
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1991; 19:6985-99. [PMID: 1762950 PMCID: PMC329386 DOI: 10.1093/nar/19.24.6985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|