1
|
Luo W, Zhao M, Dwidar M, Gao Y, Xiang L, Wu X, Medema MH, Xu S, Li X, Schäfer H, Chen M, Feng R, Zhu Y. Microbial assimilatory sulfate reduction-mediated H 2S: an overlooked role in Crohn's disease development. MICROBIOME 2024; 12:152. [PMID: 39152482 PMCID: PMC11328384 DOI: 10.1186/s40168-024-01873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND H2S imbalances in the intestinal tract trigger Crohn's disease (CD), a chronic inflammatory gastrointestinal disorder characterized by microbiota dysbiosis and barrier dysfunction. However, a comprehensive understanding of H2S generation in the gut, and the contributions of both microbiota and host to systemic H2S levels in CD, remain to be elucidated. This investigation aimed to enhance comprehension regarding the sulfidogenic potential of both the human host and the gut microbiota. RESULTS Our analysis of a treatment-naive CD cohorts' fecal metagenomic and biopsy metatranscriptomic data revealed reduced expression of host endogenous H2S generation genes alongside increased abundance of microbial exogenous H2S production genes in correlation with CD. While prior studies focused on microbial H2S production via dissimilatory sulfite reductases, our metagenomic analysis suggests the assimilatory sulfate reduction (ASR) pathway is a more significant contributor in the human gut, given its high prevalence and abundance. Subsequently, we validated our hypothesis experimentally by generating ASR-deficient E. coli mutants ∆cysJ and ∆cysM through the deletion of sulfite reductase and L-cysteine synthase genes. This alteration significantly affected bacterial sulfidogenic capacity, colon epithelial cell viability, and colonic mucin sulfation, ultimately leading to colitis in murine model. Further study revealed that gut microbiota degrade sulfopolysaccharides and assimilate sulfate to produce H2S via the ASR pathway, highlighting the role of sulfopolysaccharides in colitis and cautioning against their use as food additives. CONCLUSIONS Our study significantly advances understanding of microbial sulfur metabolism in the human gut, elucidating the complex interplay between diet, gut microbiota, and host sulfur metabolism. We highlight the microbial ASR pathway as an overlooked endogenous H2S producer and a potential therapeutic target for managing CD. Video Abstract.
Collapse
Affiliation(s)
- Wanrong Luo
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Room 1209, Guangzhou, 510080, China
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Min Zhao
- Department of Gastroenterology, Shenzhen No.3 People's Hospital, Shenzhen, Guangdong, China
| | - Mohammed Dwidar
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Center for Microbiome and Human Health, Cleveland Clinic, Cleveland, OH, USA
| | - Yang Gao
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liyuan Xiang
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Room 1209, Guangzhou, 510080, China
| | - Xueting Wu
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Room 1209, Guangzhou, 510080, China
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Shu Xu
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Room 1209, Guangzhou, 510080, China
| | - Xiaozhi Li
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Room 1209, Guangzhou, 510080, China
| | - Hendrik Schäfer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Minhu Chen
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Room 1209, Guangzhou, 510080, China.
| | - Rui Feng
- Department of Gastroenterology, the First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Room 1209, Guangzhou, 510080, China.
| | - Yijun Zhu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Stewart DI, Vasconcelos EJR, Burke IT, Baker A. Metagenomes from microbial populations beneath a chromium waste tip give insight into the mechanism of Cr (VI) reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172507. [PMID: 38657818 DOI: 10.1016/j.scitotenv.2024.172507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Dumped Chromium Ore Processing Residue (COPR) at legacy sites poses a threat to health through leaching of toxic Cr(VI) into groundwater. Previous work implicates microbial activity in reducing Cr(VI) to less mobile and toxic Cr(III), but the mechanism has not been explored. To address this question a combined metagenomic and geochemical study was undertaken. Soil samples from below the COPR waste were used to establish anaerobic microcosms which were challenged with Cr(VI), with or without acetate as an electron donor, and incubated for 70 days. Cr was rapidly reduced in both systems, which also reduced nitrate, nitrite then sulfate, but this sequence was accelerated in the acetate amended microcosms. 16S rRNA gene sequencing revealed that the original soil sample was diverse but both microcosm systems became less diverse by the end of the experiment. A high proportion of 16S rRNA gene reads and metagenome-assembled genomes (MAGs) with high completeness could not be taxonomically classified, highlighting the distinctiveness of these alkaline Cr impacted systems. Examination of the coding capacity revealed widespread capability for metal tolerance and Fe uptake and storage, and both populations possessed metabolic capability to degrade a wide range of organic molecules. The relative abundance of genes for fatty acid degradation was 4× higher in the unamended compared to the acetate amended system, whereas the capacity for dissimilatory sulfate metabolism was 3× higher in the acetate amended system. We demonstrate that naturally occurring in situ bacterial populations have the metabolic capability to couple acetate oxidation to sequential reduction of electron acceptors which can reduce Cr(VI) to less mobile and toxic Cr(III), and that microbially produced sulfide may be important in reductive precipitation of chromate. This capability could be harnessed to create a Cr(VI) trap-zone beneath COPR tips without the need to disturb the waste.
Collapse
Affiliation(s)
- Douglas I Stewart
- School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK.
| | | | - Ian T Burke
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK.
| | - Alison Baker
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
3
|
Padalko A, Nair G, Sousa FL. Fusion/fission protein family identification in Archaea. mSystems 2024; 9:e0094823. [PMID: 38700364 PMCID: PMC11237513 DOI: 10.1128/msystems.00948-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
The majority of newly discovered archaeal lineages remain without a cultivated representative, but scarce experimental data from the cultivated organisms show that they harbor distinct functional repertoires. To unveil the ecological as well as evolutionary impact of Archaea from metagenomics, new computational methods need to be developed, followed by in-depth analysis. Among them is the genome-wide protein fusion screening performed here. Natural fusions and fissions of genes not only contribute to microbial evolution but also complicate the correct identification and functional annotation of sequences. The products of these processes can be defined as fusion (or composite) proteins, the ones consisting of two or more domains originally encoded by different genes and split proteins, and the ones originating from the separation of a gene in two (fission). Fusion identifications are required for proper phylogenetic reconstructions and metabolic pathway completeness assessments, while mappings between fused and unfused proteins can fill some of the existing gaps in metabolic models. In the archaeal genome-wide screening, more than 1,900 fusion/fission protein clusters were identified, belonging to both newly sequenced and well-studied lineages. These protein families are mainly associated with different types of metabolism, genetic, and cellular processes. Moreover, 162 of the identified fusion/fission protein families are archaeal specific, having no identified fused homolog within the bacterial domain. Our approach was validated by the identification of experimentally characterized fusion/fission cases. However, around 25% of the identified fusion/fission families lack functional annotations for both composite and split states, showing the need for experimental characterization in Archaea.IMPORTANCEGenome-wide fusion screening has never been performed in Archaea on a broad taxonomic scale. The overlay of multiple computational techniques allows the detection of a fine-grained set of predicted fusion/fission families, instead of rough estimations based on conserved domain annotations only. The exhaustive mapping of fused proteins to bacterial organisms allows us to capture fusion/fission families that are specific to archaeal biology, as well as to identify links between bacterial and archaeal lineages based on cooccurrence of taxonomically restricted proteins and their sequence features. Furthermore, the identification of poorly characterized lineage-specific fusion proteins opens up possibilities for future experimental and computational investigations. This approach enhances our understanding of Archaea in general and provides potential candidates for in-depth studies in the future.
Collapse
Affiliation(s)
- Anastasiia Padalko
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Govind Nair
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Filipa L. Sousa
- Genome Evolution and Ecology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Egas RA, Kurth JM, Boeren S, Sousa DZ, Welte CU, Sánchez-Andrea I. A novel mechanism for dissimilatory nitrate reduction to ammonium in Acididesulfobacillus acetoxydans. mSystems 2024; 9:e0096723. [PMID: 38323850 PMCID: PMC10949509 DOI: 10.1128/msystems.00967-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reducing bacterium (aSRB) Acididesulfobacillus acetoxydans can perform dissimilatory nitrate reduction to ammonium (DNRA). While encoding a Nar-type nitrate reductase, A. acetoxydans lacks recognized nitrite reductase genes. In this study, A. acetoxydans was cultivated under conditions conducive to DNRA. During cultivations, we monitored the production of potential nitrogen intermediates (nitrate, nitrite, nitric oxide, hydroxylamine, and ammonium). Resting cell experiments were performed with nitrate, nitrite, and hydroxylamine to confirm their reduction to ammonium, and formed intermediates were tracked. To identify the enzymes involved in DNRA, comparative transcriptomics and proteomics were performed with A. acetoxydans growing under nitrate- and sulfate-reducing conditions. Nitrite is likely reduced to ammonia by the previously undescribed nitrite reductase activity of the NADH-linked sulfite reductase AsrABC, or by a putatively ferredoxin-dependent homolog of the nitrite reductase NirA (DEACI_1836), or both. We identified enzymes and intermediates not previously associated with DNRA and nitrosative stress in aSRB. This increases our knowledge about the metabolism of this type of bacteria and helps the interpretation of (meta)genome data from various ecosystems on their DNRA potential and the nitrogen cycle.IMPORTANCENitrogen is crucial to any ecosystem, and its bioavailability depends on microbial nitrogen-transforming reactions. Over the recent years, various new nitrogen-transforming reactions and pathways have been identified, expanding our view on the nitrogen cycle and metabolic versatility. In this study, we elucidate a novel mechanism employed by Acididesulfobacillus acetoxydans, an acidophilic sulfate-reducing bacterium, to reduce nitrate to ammonium. This finding underscores the diverse physiological nature of dissimilatory reduction to ammonium (DNRA). A. acetoxydans was isolated from acid mine drainage, an extremely acidic environment where nitrogen metabolism is poorly studied. Our findings will contribute to understanding DNRA potential and variations in extremely acidic environments.
Collapse
Affiliation(s)
- Reinier A. Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Julia M. Kurth
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Microcosm Earth Centre, Philipps-Universität Marburg & Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Environmental Sciences for Sustainability, IE University, Segovia, Spain
| |
Collapse
|
5
|
Elizabeth George S, Wan Y. Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131738. [PMID: 37285788 PMCID: PMC11249206 DOI: 10.1016/j.jhazmat.2023.131738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
The increasing environmental and human health concerns about lead in the environment have stimulated scientists to search for microbial processes as innovative bioremediation strategies for a suite of different contaminated media. In this paper, we provide a compressive synthesis of existing research on microbial mediated biogeochemical processes that transform lead into recalcitrant precipitates of phosphate, sulfide, and carbonate, in a genetic, metabolic, and systematics context as they relate to application in both laboratory and field immobilization of environmental lead. Specifically, we focus on microbial functionalities of phosphate solubilization, sulfate reduction, and carbonate synthesis related to their respective mechanisms that immobilize lead through biomineralization and biosorption. The contributions of specific microbes, both single isolates or consortia, to actual or potential applications in environmental remediation are discussed. While many of the approaches are successful under carefully controlled laboratory conditions, field application requires optimization for a host of variables, including microbial competitiveness, soil physical and chemical parameters, metal concentrations, and co-contaminants. This review challenges the reader to consider bioremediation approaches that maximize microbial competitiveness, metabolism, and the associated molecular mechanisms for future engineering applications. Ultimately, we outline important research directions to bridge future scientific research activities with practical applications for bioremediation of lead and other toxic metals in environmental systems.
Collapse
Affiliation(s)
- S Elizabeth George
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA
| | - Yongshan Wan
- US EPA Office of Research and Development, Center for Environmental Measurement and Modeling, Gulf Ecosystem Measurement and Modeling Division, One Sabine Island Drive, Gulf Breeze, FL 32561, USA.
| |
Collapse
|
6
|
Viacava K, Qiao J, Janowczyk A, Poudel S, Jacquemin N, Meibom KL, Shrestha HK, Reid MC, Hettich RL, Bernier-Latmani R. Meta-omics-aided isolation of an elusive anaerobic arsenic-methylating soil bacterium. THE ISME JOURNAL 2022; 16:1740-1749. [PMID: 35338334 PMCID: PMC9213503 DOI: 10.1038/s41396-022-01220-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
Soil microbiomes harbour unparalleled functional and phylogenetic diversity. However, extracting isolates with a targeted function from complex microbiomes is not straightforward, particularly if the associated phenotype does not lend itself to high-throughput screening. Here, we tackle the methylation of arsenic (As) in anoxic soils. As methylation was proposed to be catalysed by sulfate-reducing bacteria. However, to date, there are no available anaerobic isolates capable of As methylation, whether sulfate-reducing or otherwise. The isolation of such a microorganism has been thwarted by the fact that the anaerobic bacteria harbouring a functional arsenite S-adenosylmethionine methyltransferase (ArsM) tested to date did not methylate As in pure culture. Additionally, fortuitous As methylation can result from the release of non-specific methyltransferases upon lysis. Thus, we combined metagenomics, metatranscriptomics, and metaproteomics to identify the microorganisms actively methylating As in anoxic soil-derived microbial cultures. Based on the metagenome-assembled genomes of microorganisms expressing ArsM, we isolated Paraclostridium sp. strain EML, which was confirmed to actively methylate As anaerobically. This work is an example of the application of meta-omics to the isolation of elusive microorganisms.
Collapse
Affiliation(s)
- Karen Viacava
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Environmental Microbiology Laboratory, CH-1015, Lausanne, Switzerland.,Soil Science Group, Institute of Geography, University of Bern, Bern, Switzerland
| | - Jiangtao Qiao
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Environmental Microbiology Laboratory, CH-1015, Lausanne, Switzerland
| | - Andrew Janowczyk
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Suresh Poudel
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Nicolas Jacquemin
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Environmental Microbiology Laboratory, CH-1015, Lausanne, Switzerland.,Translational Bioinformatics and Statistics, Department of Oncology, Université de Lausanne, Lausanne, Switzerland
| | - Karin Lederballe Meibom
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Environmental Microbiology Laboratory, CH-1015, Lausanne, Switzerland
| | - Him K Shrestha
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.,Genome Science and Technology Graduate School, University of Tennessee, Knoxville, TN, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Robert L Hettich
- BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Rizlan Bernier-Latmani
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Environmental Microbiology Laboratory, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Hahn CR, Farag IF, Murphy CL, Podar M, Elshahed MS, Youssef NH. Microbial Diversity and Sulfur Cycling in an Early Earth Analogue: From Ancient Novelty to Modern Commonality. mBio 2022; 13:e0001622. [PMID: 35258328 PMCID: PMC9040765 DOI: 10.1128/mbio.00016-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 01/19/2023] Open
Abstract
Life emerged and diversified in the absence of molecular oxygen. The prevailing anoxia and unique sulfur chemistry in the Paleo-, Meso-, and Neoarchean and early Proterozoic eras may have supported microbial communities that differ from those currently thriving on the earth's surface. Zodletone spring in southwestern Oklahoma represents a unique habitat where spatial sampling could substitute for geological eras namely, from the anoxic, surficial light-exposed sediments simulating a preoxygenated earth to overlaid water column where air exposure simulates oxygen intrusion during the Neoproterozoic era. We document a remarkably diverse microbial community in the anoxic spring sediments, with 340/516 (65.89%) of genomes recovered in a metagenomic survey belonging to 200 bacterial and archaeal families that were either previously undescribed or that exhibit an extremely rare distribution on the current earth. Such diversity is underpinned by the widespread occurrence of sulfite, thiosulfate, tetrathionate, and sulfur reduction and the paucity of sulfate reduction machineries in these taxa. Hence, these processes greatly expand lineages mediating reductive sulfur-cycling processes in the tree of life. An analysis of the overlaying oxygenated water community demonstrated the development of a significantly less diverse community dominated by well-characterized lineages and a prevalence of oxidative sulfur-cycling processes. Such a transition from ancient novelty to modern commonality underscores the profound impact of the great oxygenation event on the earth's surficial anoxic community. It also suggests that novel and rare lineages encountered in current anaerobic habitats could represent taxa that once thrived in an anoxic earth but have failed to adapt to earth's progressive oxygenation. IMPORTANCE Life on earth evolved in an anoxic setting; however, the identity and fate of microorganisms that thrived in a preoxygenated earth are poorly understood. In Zodletone spring, the prevailing geochemical conditions are remarkably similar to conditions prevailing in surficial earth prior to oxygen buildup in the atmosphere. We identify hundreds of previously unknown microbial lineages in the spring and demonstrate that these lineages possess the metabolic machinery to mediate a wide range of reductive sulfur processes, with the capacity to respire sulfite, thiosulfate, sulfur, and tetrathionate, rather than sulfate, which is a reflection of the differences in sulfur-cycling chemistry in ancient versus modern times. Collectively, such patterns strongly suggest that microbial diversity and sulfur-cycling processes in a preoxygenated earth were drastically different from the currently observed patterns and that the Great Oxygenation Event has precipitated the near extinction of a wide range of oxygen-sensitive lineages and significantly altered the microbial reductive sulfur-cycling community on earth.
Collapse
Affiliation(s)
- C. Ryan Hahn
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ibrahim F. Farag
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chelsea L. Murphy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mircea Podar
- Department of Microbiology, University of Tennessee Knoxville, Knoxville, Tennessee, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mostafa S. Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Noha H. Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
8
|
Kushkevych I, Abdulina D, Kováč J, Dordević D, Vítězová M, Iutynska G, Rittmann SKMR. Adenosine-5'-Phosphosulfate- and Sulfite Reductases Activities of Sulfate-Reducing Bacteria from Various Environments. Biomolecules 2020; 10:E921. [PMID: 32560561 PMCID: PMC7357011 DOI: 10.3390/biom10060921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
A comparative study of the kinetic characteristics (specific activity, initial and maximum rate, and affinity for substrates) of key enzymes of assimilatory sulfate reduction (APS reductase and dissimilatory sulfite reductase) in cell-free extracts of sulphate-reducing bacteria (SRB) from various biotopes was performed. The material for the study represented different strains of SRB from various ecotopes. Microbiological (isolation and cultivation), biochemical (free cell extract preparation) and chemical (enzyme activity determination) methods served in defining kinetic characteristics of SRB enzymes. The determined affinity data for substrates (i.e., sulfite) were 10 times higher for SRB strains isolated from environmental (soil) ecotopes than for strains from the human intestine. The maximum rate of APS reductase reached 0.282-0.862 µmol/min×mg-1 of protein that is only 10 to 28% higher than similar initial values. The maximum rate of sulfite reductase for corrosive relevant collection strains and SRB strains isolated from heating systems were increased by 3 to 10 times. A completely different picture was found for the intestinal SRB Vmax in the strains Desulfovibrio piger Vib-7 (0.67 µmol/min × mg-1 protein) and Desulfomicrobium orale Rod-9 (0.45 µmol/min × mg-1 protein). The determinant in the cluster distribution of SRB strains is the activity of the terminal enzyme of dissimilatory sulfate reduction-sulfite reductase, but not APS reductase. The data obtained from the activity of sulfate reduction enzymes indicated the adaptive plasticity of SRB strains that is manifested in the change in enzymatic activity.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (M.V.)
- Department of Molecular Biology and Pharmaceutical Biotechnology, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic
| | - Daryna Abdulina
- Department of General and Soil Microbiology, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Acad. Zabolotnogo str. 154, 03143 Kyiv, Ukraine; (D.A.); (G.I.)
| | - Jozef Kováč
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (M.V.)
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, 61242 Brno, Czech Republic;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic; (J.K.); (M.V.)
| | - Galyna Iutynska
- Department of General and Soil Microbiology, D.K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine, Acad. Zabolotnogo str. 154, 03143 Kyiv, Ukraine; (D.A.); (G.I.)
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Althanstraße 14, 1090 Vienna, Austria
| |
Collapse
|
9
|
Colman DR, Lindsay MR, Amenabar MJ, Fernandes-Martins MC, Roden ER, Boyd ES. Phylogenomic analysis of novel Diaforarchaea is consistent with sulfite but not sulfate reduction in volcanic environments on early Earth. THE ISME JOURNAL 2020; 14:1316-1331. [PMID: 32066874 PMCID: PMC7174415 DOI: 10.1038/s41396-020-0611-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
The origin(s) of dissimilatory sulfate and/or (bi)sulfite reducing organisms (SRO) remains enigmatic despite their importance in global carbon and sulfur cycling since at least 3.4 Ga. Here, we describe novel, deep-branching archaeal SRO populations distantly related to other Diaforarchaea from two moderately acidic thermal springs. Dissimilatory (bi)sulfite reductase homologs, DsrABC, encoded in metagenome assembled genomes (MAGs) from spring sediments comprise one of the earliest evolving Dsr lineages. DsrA homologs were expressed in situ under moderately acidic conditions. MAGs lacked genes encoding proteins that activate sulfate prior to (bi)sulfite reduction. This is consistent with sulfide production in enrichment cultures provided sulfite but not sulfate. We suggest input of volcanic sulfur dioxide to anoxic spring-water yields (bi)sulfite and moderately acidic conditions that favor its stability and bioavailability. The presence of similar volcanic springs at the time SRO are thought to have originated (>3.4 Ga) may have supplied (bi)sulfite that supported ancestral SRO. These observations coincide with the lack of inferred SO42- reduction capacity in nearly all organisms with early-branching DsrAB and which are near universally found in hydrothermal environments.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Melody R Lindsay
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA
| | - Maximiliano J Amenabar
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA
| | | | - Eric R Roden
- Department of Geoscience, University of Wisconsin, Madison, WI, USA
- NASA Astrobiology Institute, Mountain View, CA, USA
| | - Eric S Boyd
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT, 59717, USA.
- NASA Astrobiology Institute, Mountain View, CA, USA.
| |
Collapse
|
10
|
Regulation and Maturation of the Shewanella oneidensis Sulfite Reductase SirA. Sci Rep 2020; 10:953. [PMID: 31969587 PMCID: PMC6976685 DOI: 10.1038/s41598-020-57587-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/27/2019] [Indexed: 01/12/2023] Open
Abstract
Shewanella oneidensis, a metal reducer and facultative anaerobe, expresses a large number of c-type cytochromes, many of which function as anaerobic reductases. All of these proteins contain the typical heme-binding motif CXXCH and require the Ccm proteins for maturation. Two c-type cytochrome reductases also possess atypical heme-binding sites, the NrfA nitrite reductase (CXXCK) and the SirA sulfite reductase (CX12NKGCH). S. oneidensis MR-1 encodes two cytochrome c synthetases (CcmF and SirE) and two apocytochrome c chaperones (CcmI and SirG). SirE located in the sir gene cluster is required for the maturation of SirA, but not NrfA. Here we show that maturation of SirA requires the combined function of the two apocytochrome c chaperones CcmI and SirG. Loss of either protein resulted in decreased sulfite reductase. Furthermore, SirA was not detected in a mutant that lacked both chaperones, perhaps due to misfolding or instability. These results suggest that CcmI interacts with SirEFG during SirA maturation, and with CcmF during maturation of NrfA. Additionally, we show that CRP regulates expression of sirA via the newly identified transcriptional regulatory protein, SirR.
Collapse
|
11
|
Kato S, Nakano S, Kouduka M, Hirai M, Suzuki K, Itoh T, Ohkuma M, Suzuki Y. Metabolic Potential of As-yet-uncultured Archaeal Lineages of Candidatus Hydrothermarchaeota Thriving in Deep-sea Metal Sulfide Deposits. Microbes Environ 2019; 34:293-303. [PMID: 31378759 PMCID: PMC6759336 DOI: 10.1264/jsme2.me19021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 06/04/2019] [Indexed: 12/15/2022] Open
Abstract
Candidatus Hydrothermarchaeota, formally called Marine Benthic Group E, has often been detected in iron- and sulfur-rich marine environments, such as hydrothermal vents and cold seeps. However, their ecology and physiology remain unclear. Cultivated representatives of this group are still lacking and only several metagenome-assembled genomes (MAGs) and single-amplified genomes (SAGs) are available from two deep-sea hydrothermal areas, the Juan de Fuca Ridge (JdFR) and Guaymas Basin (GB), in the north-east Pacific. We herein report four MAGs of Ca. Hydrothermarchaeota recovered from hydrothermally-inactive metal sulfide deposits at the Southern Mariana Trough (SMT) in the north-west Pacific. A phylogenetic analysis indicated that the MAGs of the SMT were distinct from those of the JdFR and GB at the genus or potentially family level. Ca. Hydrothermarchaeota MAGs from the SMT commonly possessed putative genes for carboxydotrophic and hydrogenotrophic respiration using oxidized chemical species of sulfur as electron acceptors and also for carbon fixation, as reported previously in MAGs/SAGs from the JdFR and GB. This result strongly supports Ca. Hydrothermarchaeota containing anaerobic chemolithoautotrophs using carbon monoxide and/or hydrogen as electron donors. A comparative genome analysis highlighted differences in the capability of nitrogen fixation between MAGs from the SMT and the other fields, which are consistent with environmental differences in the availability of nitrogen sources for assimilation between the fields. Based on the wide distribution in various areas, abundance, and metabolic potential of Ca. Hydrothermarchaeota, they may play a role in the biogeochemical cycling of carbon, nitrogen, sulfur, and iron in marine environments, particularly in deep-sea hydrothermal fields.
Collapse
Affiliation(s)
- Shingo Kato
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074Japan
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Yokosuka, Kanagawa, 237–0061Japan
| | - Shinsaku Nakano
- Graduate School of Science, The University of Tokyo7–3–1 Hongo Bunkyo-ku, Tokyo 113–0033Japan
| | - Mariko Kouduka
- Graduate School of Science, The University of Tokyo7–3–1 Hongo Bunkyo-ku, Tokyo 113–0033Japan
| | - Miho Hirai
- Research and Development Center for Marine Biosciences, JAMSTECYokosuka, Kanagawa, 237–0061Japan
| | - Katsuhiko Suzuki
- Ore Genesis Research Unit, Project Team for Development of New-generation Research Protocol for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)Yokosuka, Kanagawa, 237–0061Japan
| | - Takashi Itoh
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center3–1–1 Koyadai, Tsukuba, Ibaraki 305–0074Japan
| | - Yohey Suzuki
- Graduate School of Science, The University of Tokyo7–3–1 Hongo Bunkyo-ku, Tokyo 113–0033Japan
| |
Collapse
|
12
|
Hausmann B, Pelikan C, Rattei T, Loy A, Pester M. Long-Term Transcriptional Activity at Zero Growth of a Cosmopolitan Rare Biosphere Member. mBio 2019; 10:e02189-18. [PMID: 30755506 PMCID: PMC6372793 DOI: 10.1128/mbio.02189-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/04/2019] [Indexed: 01/05/2023] Open
Abstract
Microbial diversity in the environment is mainly concealed within the rare biosphere (all species with <0.1% relative abundance). While dormancy explains a low-abundance state very well, the mechanisms leading to rare but active microorganisms remain elusive. We used environmental systems biology to genomically and transcriptionally characterize "Candidatus Desulfosporosinus infrequens," a low-abundance sulfate-reducing microorganism cosmopolitan to freshwater wetlands, where it contributes to cryptic sulfur cycling. We obtained its near-complete genome by metagenomics of acidic peat soil. In addition, we analyzed anoxic peat soil incubated under in situ-like conditions for 50 days by Desulfosporosinus-targeted qPCR and metatranscriptomics. The Desulfosporosinus population stayed at a constant low abundance under all incubation conditions, averaging 1.2 × 106 16S rRNA gene copies per cm³ soil. In contrast, transcriptional activity of "Ca. Desulfosporosinus infrequens" increased at day 36 by 56- to 188-fold when minor amendments of acetate, propionate, lactate, or butyrate were provided with sulfate, compared to the no-substrate-control. Overall transcriptional activity was driven by expression of genes encoding ribosomal proteins, energy metabolism, and stress response but not by expression of genes encoding cell growth-associated processes. Since our results did not support growth of these highly active microorganisms in terms of biomass increase or cell division, they had to invest their sole energy for maintenance, most likely counterbalancing acidic pH conditions. This finding explains how a rare biosphere member can contribute to a biogeochemically relevant process while remaining in a zero-growth state over a period of 50 days.IMPORTANCE The microbial rare biosphere represents the largest pool of biodiversity on Earth and constitutes, in sum of all its members, a considerable part of a habitat's biomass. Dormancy or starvation is typically used to explain the persistence of low-abundance microorganisms in the environment. We show that a low-abundance microorganism can be highly transcriptionally active while remaining in a zero-growth state for at least 7 weeks. Our results provide evidence that this zero growth at a high cellular activity state is driven by maintenance requirements. We show that this is true for a microbial keystone species, in particular a cosmopolitan but permanently low-abundance sulfate-reducing microorganism in wetlands that is involved in counterbalancing greenhouse gas emissions. In summary, our results provide an important step forward in understanding time-resolved activities of rare biosphere members relevant for ecosystem functions.
Collapse
Affiliation(s)
- Bela Hausmann
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Claus Pelikan
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Computational Systems Biology, University of Vienna, Vienna, Austria
| | - Alexander Loy
- Research Network Chemistry meets Microbiology, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Michael Pester
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Microorganisms, Leibniz Institute DSMZ, Braunschweig, Germany
- Institute of Microbiology, Technical University of Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
Doyle CJ, O'Toole PW, Cotter PD. Genomic Characterization of Sulphite Reducing Bacteria Isolated From the Dairy Production Chain. Front Microbiol 2018; 9:1507. [PMID: 30026740 PMCID: PMC6041559 DOI: 10.3389/fmicb.2018.01507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/18/2018] [Indexed: 11/25/2022] Open
Abstract
Anaerobic sporeformers, specifically spoilage and pathogenic members of the genus Clostridium, are a concern for producers of dairy products, and of powdered dairy products in particular. As an alternative to testing for individual species, the traditional, and still current, approach to detecting these sporeformers, including non-spoilage/non-pathogenic species, in dairy products has involved testing for a sulphite reducing phenotype [Sulphite reducing Clostridia (SRCs)] under anaerobic conditions. This phenotype is conserved throughout the Order Clostridia. Unfortunately, however, this phenotype is exhibited by other sulphite reducing bacteria (SRBs) also, potentially leading to potential for false positives. Here, this risk was borne out through the identification of several SRBs from industry samples that were identified as Proteus mirabilis and various Bacillus/Paenibacillus sp. Genome wide comparison of a number of representative SRCs and SRBs was employed to determine phylogenetic relationships, especially among SRCs, and to characterize the genes responsible for the sulphite reducing phenotype. This screen identified two associated operons, i.e., asrABC in SRCs, and cysJI in Bacillus/Paenibacillus spp. and P. mirabilis. This screen identified spp. belonging to sensu stricto, Lachnospiraceae and Cluster XIV of the Clostridia all producing the SRC phenotype. This study highlights the inaccuracy of the industry standard SRC test but highlights the potential to generate an equivalent molecular test designed to detect the genes responsible for this phenotype in clostridia.
Collapse
Affiliation(s)
- Conor J Doyle
- Teagasc Food Research Centre, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Cork, Ireland.,APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
14
|
Antibiotic resistance and molecular characterization of the hydrogen sulfide-negative phenotype among diverse Salmonella serovars in China. BMC Infect Dis 2018; 18:292. [PMID: 29970024 PMCID: PMC6029346 DOI: 10.1186/s12879-018-3209-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Among 2179 Salmonella isolates obtained during national surveillance for salmonellosis in China from 2005 to 2013, we identified 46 non-H2S-producing strains originating from different sources. METHODS The isolates were characterized in terms of antibiotic resistance and genetic variability by pulsed-field gel electrophoresis and multilocus sequence typing. Mutation in the phs operon, which may account for the non-H2S-producing phenotype of the isolated Salmonella strains, was performed in this study. RESULTS Among isolated non-H2S-producing Salmonella strains, more than 50% were recovered from diarrhea patients, of which H2S-negative S. Gallinarum, S. Typhimurium, S. Choleraesuis and S. Paratyphi A isolates constituted 76%. H2S-negative isolates exhibited a high rate of resistance to ticarcillin, ampicillin, and tetracycline, and eight of them had the multidrug resistance phenotype. Most H2S-negative Salmonella isolates had similar pulsed-field gel electrophoresis profiles and the same sequence type as H2S-positive strains, indicating a close origin, but carried mutations in the phsA gene, which may account for the non-H2S-producing phenotype. CONCLUSIONS Our data indicate that multiple H2S-negative strains have emerged and persist in China, emphasizing the necessity to implement efficient surveillance measures for controlling dissemination of these atypical Salmonella strains.
Collapse
|
15
|
Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H 2 and CO 2 compared to organotrophic growth with fructose. Sci Rep 2017; 7:13135. [PMID: 29030620 PMCID: PMC5640608 DOI: 10.1038/s41598-017-12712-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/14/2017] [Indexed: 01/13/2023] Open
Abstract
Clostridium ljungdahlii derives energy by lithotrophic and organotrophic acetogenesis. C. ljungdahlii was grown organotrophically with fructose and also lithotrophically, either with syngas - a gas mixture containing hydrogen (H2), carbon dioxide (CO2), and carbon monoxide (CO), or with H2 and CO2. Gene expression was compared quantitatively by microarrays using RNA extracted from all three conditions. Gene expression with fructose and with H2/CO2 was compared by RNA-Seq. Upregulated genes with both syngas and H2/CO2 (compared to fructose) point to the urea cycle, uptake and degradation of peptides and amino acids, response to sulfur starvation, potentially NADPH-producing pathways involving (S)-malate and ornithine, quorum sensing, sporulation, and cell wall remodeling, suggesting a global and multicellular response to lithotrophic conditions. With syngas, the upregulated (R)-lactate dehydrogenase gene represents a route of electron transfer from ferredoxin to NAD. With H2/CO2, flavodoxin and histidine biosynthesis genes were upregulated. Downregulated genes corresponded to an intracytoplasmic microcompartment for disposal of methylglyoxal, a toxic byproduct of glycolysis, as 1-propanol. Several cytoplasmic and membrane-associated redox-active protein genes were differentially regulated. The transcriptomic profiles of C. ljungdahlii in lithotrophic and organotrophic growth modes indicate large-scale physiological and metabolic differences, observations that may guide biofuel and commodity chemical production with this species.
Collapse
|
16
|
Barton LL, Ritz NL, Fauque GD, Lin HC. Sulfur Cycling and the Intestinal Microbiome. Dig Dis Sci 2017; 62:2241-2257. [PMID: 28766244 DOI: 10.1007/s10620-017-4689-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023]
Abstract
In this review, we focus on the activities transpiring in the anaerobic segment of the sulfur cycle occurring in the gut environment where hydrogen sulfide is produced. While sulfate-reducing bacteria are considered as the principal agents for hydrogen sulfide production, the enzymatic desulfhydration of cysteine by heterotrophic bacteria also contributes to production of hydrogen sulfide. For sulfate-reducing bacteria respiration, molecular hydrogen and lactate are suitable as electron donors while sulfate functions as the terminal electron acceptor. Dietary components provide fiber and macromolecules that are degraded by bacterial enzymes to monomers, and these are fermented by intestinal bacteria with the production to molecular hydrogen which promotes the metabolic dominance by sulfate-reducing bacteria. Sulfate is also required by the sulfate-reducing bacteria, and this can be supplied by sulfate- and sulfonate-containing compounds that are hydrolyzed by intestinal bacterial with the release of sulfate. While hydrogen sulfide in the intestinal biosystem may be beneficial to bacteria by increasing resistance to antibiotics, and protecting them from reactive oxygen species, hydrogen sulfide at elevated concentrations may become toxic to the host.
Collapse
Affiliation(s)
- Larry L Barton
- Department of Biology, MSCO3 2020, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Nathaniel L Ritz
- New Mexico VA Health Care System, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Guy D Fauque
- CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Aix-Marseille Université, Université de Toulon, Campus de Luminy, Case 901, 13288, Marseille Cedex 09, France
| | - Henry C Lin
- New Mexico VA Health Care System, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
17
|
Booker AE, Borton MA, Daly RA, Welch SA, Nicora CD, Hoyt DW, Wilson T, Purvine SO, Wolfe RA, Sharma S, Mouser PJ, Cole DR, Lipton MS, Wrighton KC, Wilkins MJ. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales. mSphere 2017; 2:e00257-17. [PMID: 28685163 PMCID: PMC5497025 DOI: 10.1128/mspheredirect.00257-17] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 11/20/2022] Open
Abstract
Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as "souring") is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary.
Collapse
Affiliation(s)
- Anne E. Booker
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Mikayla A. Borton
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Rebecca A. Daly
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Susan A. Welch
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Carrie D. Nicora
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - David W. Hoyt
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Travis Wilson
- Department of Geology and Geography, West Virginia University, Morgantown, West Virginia, USA
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Richard A. Wolfe
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Shikha Sharma
- Department of Geology and Geography, West Virginia University, Morgantown, West Virginia, USA
| | - Paula J. Mouser
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
| | - David R. Cole
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Mary S. Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Kelly C. Wrighton
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Michael J. Wilkins
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- School of Earth Sciences, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
Abstract
Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively.
Collapse
Affiliation(s)
- Jason M. Ridlon
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Patricia G. Wolf
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H. Rex Gaskins
- Carl R. Woese Institute for Genome Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA,Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA,University of Illinois Cancer Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
19
|
Abstract
The synthesis of L-cysteine from inorganic sulfur is the predominant mechanism by which reduced sulfur is incorporated into organic compounds. L-cysteineis used for protein and glutathione synthesis and serves as the primary source of reduced sulfur in L-methionine, lipoic acid, thiamin, coenzyme A (CoA), molybdopterin, and other organic molecules. Sulfate and thiosulfate uptake in E. coli and serovar Typhimurium are achieved through a single periplasmic transport system that utilizes two different but similar periplasmic binding proteins. Kinetic studies indicate that selenate and selenite share a single transporter with sulfate, but molybdate also has a separate transport system. During aerobic growth, the reduction of sulfite to sulfide is catalyzed by NADPH-sulfite reductase (SiR), and serovar Typhimurium mutants lacking this enzyme accumulate sulfite from sulfate, implying that sulfite is a normal intermediate in assimilatory sulfate reduction. L-Cysteine biosynthesis in serovar Typhimurium and E. coli ceases almost entirely when cells are grown on L-cysteine or L-cystine, owing to a combination of end product inhibition of serine transacetylase by L-cysteine and a gene regulatory system known as the cysteine regulon, wherein genes for sulfate assimilation and alkanesulfonate utilization are expressed only when sulfur is limiting. In vitro studies with the cysJIH, cysK, and cysP promoters have confirmed that they are inefficient at forming transcription initiation complexes without CysB and N-acetyl-L-serine. Activation of the tauA and ssuE promoters requires Cbl. It has been proposed that the three serovar Typhimurium anaerobic reductases for sulfite, thiosulfate, and tetrathionate may function primarily in anaerobic respiration.
Collapse
|
20
|
Rivera-Chávez F, Bäumler AJ. The Pyromaniac Inside You: Salmonella Metabolism in the Host Gut. Annu Rev Microbiol 2015; 69:31-48. [PMID: 26002180 DOI: 10.1146/annurev-micro-091014-104108] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A metabolically diverse microbial community occupies all available nutrient-niches in the lumen of the mammalian intestine, making it difficult for pathogens to establish themselves in this highly competitive environment. Salmonella serovars sidestep the competition by using their virulence factors to coerce the host into creating a novel nutrient-niche. Inflammation-derived nutrients available in this new niche support a bloom of Salmonella serovars, thereby ensuring transmission of the pathogen to the next susceptible host by the fecal-oral route. Here we review the anaerobic food chain that characterizes resident gut-associated microbial communities along with the winning metabolic strategy Salmonella serovars use to edge out competing microbes in the inflamed intestine.
Collapse
Affiliation(s)
- Fabian Rivera-Chávez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616;
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, California 95616;
| |
Collapse
|
21
|
Abstract
Despite its reactivity and hence toxicity to living cells, sulfite is readily converted by various microorganisms using distinct assimilatory and dissimilatory metabolic routes. In respiratory pathways, sulfite either serves as a primary electron donor or terminal electron acceptor (yielding sulfate or sulfide, respectively), and its conversion drives electron transport chains that are coupled to chemiosmotic ATP synthesis. Notably, such processes are also seen to play a general role in sulfite detoxification, which is assumed to have an evolutionary ancient origin. The diversity of sulfite conversion is reflected by the fact that the range of microbial sulfite-converting enzymes displays different cofactors such as siroheme, heme c, or molybdopterin. This chapter aims to summarize the current knowledge of microbial sulfite metabolism and focuses on sulfite catabolism. The structure and function of sulfite-converting enzymes and the emerging picture of the modular architecture of the corresponding respiratory/detoxifying electron transport chains is emphasized.
Collapse
Affiliation(s)
- Jörg Simon
- Department of Biology, Microbial Energy Conversion and Biotechnology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|
22
|
Yelton AP, Comolli LR, Justice NB, Castelle C, Denef VJ, Thomas BC, Banfield JF. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics 2013; 14:485. [PMID: 23865623 PMCID: PMC3750248 DOI: 10.1186/1471-2164-14-485] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/15/2013] [Indexed: 11/10/2022] Open
Abstract
Background Metal sulfide mineral dissolution during bioleaching and acid mine drainage (AMD) formation creates an environment that is inhospitable to most life. Despite dominance by a small number of bacteria, AMD microbial biofilm communities contain a notable variety of coexisting and closely related Euryarchaea, most of which have defied cultivation efforts. For this reason, we used metagenomics to analyze variation in gene content that may contribute to niche differentiation among co-occurring AMD archaea. Our analyses targeted members of the Thermoplasmatales and related archaea. These results greatly expand genomic information available for this archaeal order. Results We reconstructed near-complete genomes for uncultivated, relatively low abundance organisms A-, E-, and Gplasma, members of Thermoplasmatales order, and for a novel organism, Iplasma. Genomic analyses of these organisms, as well as Ferroplasma type I and II, reveal that all are facultative aerobic heterotrophs with the ability to use many of the same carbon substrates, including methanol. Most of the genomes share genes for toxic metal resistance and surface-layer production. Only Aplasma and Eplasma have a full suite of flagellar genes whereas all but the Ferroplasma spp. have genes for pili production. Cryogenic-electron microscopy (cryo-EM) and tomography (cryo-ET) strengthen these metagenomics-based ultrastructural predictions. Notably, only Aplasma, Gplasma and the Ferroplasma spp. have predicted iron oxidation genes and Eplasma and Iplasma lack most genes for cobalamin, valine, (iso)leucine and histidine synthesis. Conclusion The Thermoplasmatales AMD archaea share a large number of metabolic capabilities. All of the uncultivated organisms studied here (A-, E-, G-, and Iplasma) are metabolically very similar to characterized Ferroplasma spp., differentiating themselves mainly in their genetic capabilities for biosynthesis, motility, and possibly iron oxidation. These results indicate that subtle, but important genomic differences, coupled with unknown differences in gene expression, distinguish these organisms enough to allow for co-existence. Overall this study reveals shared features of organisms from the Thermoplasmatales lineage and provides new insights into the functioning of AMD communities.
Collapse
Affiliation(s)
- Alexis P Yelton
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 2011; 193:3556-68. [PMID: 21602358 DOI: 10.1128/jb.00297-11] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Despite extensive surveillance, food-borne Salmonella enterica infections continue to be a significant burden on public health systems worldwide. As the S. enterica species comprises sublineages that differ greatly in antigenic representation, virulence, and antimicrobial resistance phenotypes, a better understanding of the species' evolution is critical for the prediction and prevention of future outbreaks. The roles that virulence and resistance phenotype acquisition, exchange, and loss play in the evolution of S. enterica sublineages, which to a certain extent are represented by serotypes, remains mostly uncharacterized. Here, we compare 17 newly sequenced and phenotypically characterized nontyphoidal S. enterica strains to 11 previously sequenced S. enterica genomes to carry out the most comprehensive comparative analysis of this species so far. These phenotypic and genotypic data comparisons in the phylogenetic species context suggest that the evolution of known S. enterica sublineages is mediated mostly by two mechanisms, (i) the loss of coding sequences with known metabolic functions, which leads to functional reduction, and (ii) the acquisition of horizontally transferred phage and plasmid DNA, which provides virulence and resistance functions and leads to increasing specialization. Matches between S. enterica clustered regularly interspaced short palindromic repeats (CRISPR), part of a defense mechanism against invading plasmid and phage DNA, and plasmid and prophage regions suggest that CRISPR-mediated immunity could control short-term phenotype changes and mediate long-term sublineage evolution. CRISPR analysis could therefore be critical in assessing the evolutionary potential of S. enterica sublineages and aid in the prediction and prevention of future S. enterica outbreaks.
Collapse
|
24
|
Shirodkar S, Reed S, Romine M, Saffarini D. The octahaem SirA catalyses dissimilatory sulfite reduction inShewanella oneidensisMR-1. Environ Microbiol 2010; 13:108-115. [DOI: 10.1111/j.1462-2920.2010.02313.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Schwarz C, Poss Z, Hoffmann D, Appel J. Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:305-48. [DOI: 10.1007/978-1-4419-1528-3_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Seshadri R, Joseph SW, Chopra AK, Sha J, Shaw J, Graf J, Haft D, Wu M, Ren Q, Rosovitz MJ, Madupu R, Tallon L, Kim M, Jin S, Vuong H, Stine OC, Ali A, Horneman AJ, Heidelberg JF. Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol 2006; 188:8272-82. [PMID: 16980456 PMCID: PMC1698176 DOI: 10.1128/jb.00621-06] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome of Aeromonas hydrophila ATCC 7966(T) was sequenced. Aeromonas, a ubiquitous waterborne bacterium, has been placed by the Environmental Protection Agency on the Contaminant Candidate List because of its potential to cause human disease. The 4.7-Mb genome of this emerging pathogen shows a physiologically adroit organism with broad metabolic capabilities and considerable virulence potential. A large array of virulence genes, including some identified in clinical isolates of Aeromonas spp. or Vibrio spp., may confer upon this organism the ability to infect a wide range of hosts. However, two recognized virulence markers, a type III secretion system and a lateral flagellum, that are reported in other A. hydrophila strains are not identified in the sequenced isolate, ATCC 7966(T). Given the ubiquity and free-living lifestyle of this organism, there is relatively little evidence of fluidity in terms of mobile elements in the genome of this particular strain. Notable aspects of the metabolic repertoire of A. hydrophila include dissimilatory sulfate reduction and resistance mechanisms (such as thiopurine reductase, arsenate reductase, and phosphonate degradation enzymes) against toxic compounds encountered in polluted waters. These enzymes may have bioremediative as well as industrial potential. Thus, the A. hydrophila genome sequence provides valuable insights into its ability to flourish in both aquatic and host environments.
Collapse
Affiliation(s)
- Rekha Seshadri
- The Institute for Genomic Research, Division of J. Craig Venter Institute, Rockville, MD 20850,USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Factors affecting iron sulfide-enhanced bacteriophage plaque assays in Salmonella. J Microbiol Methods 2006; 67:611-5. [PMID: 16876271 DOI: 10.1016/j.mimet.2006.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 05/11/2006] [Accepted: 05/24/2006] [Indexed: 11/24/2022]
Abstract
Reaction of ferric ions with hydrogen sulfide (H(2)S) enhances contrast of phage plaques in H(2)S+ Salmonella, but contrast diminishes in weak H(2)S+ strains. H(2)S was affected by concentrations of peptones, glucose, ferric ammonium citrate (FAC) and sodium thiosulfate (ST), and by FAC:ST ratio, temperature, pH, air, and host strain. Increasing peptone levels was most important for improving contrast in weak H(2)S+ strains.
Collapse
|
28
|
Johnson EF, Mukhopadhyay B. A new type of sulfite reductase, a novel coenzyme F420-dependent enzyme, from the methanarchaeon Methanocaldococcus jannaschii. J Biol Chem 2005; 280:38776-86. [PMID: 16048999 DOI: 10.1074/jbc.m503492200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methanocaldococcus jannaschii is a hypertheromphilic, strictly hydrogenotrophic, methanogenic archaeon of ancient lineage isolated from a deep-sea hydrothermal vent. It requires sulfide for growth. Sulfite is inhibitory to the methanogens. Yet, we observed that M. jannaschii grows and produces methane with sulfite as the sole sulfur source. We found that in this organism sulfite induces a novel, highly active, coenzyme F(420)-dependent sulfite reductase (Fsr) with a cell extract specific activity of 0.57 mumol sulfite reduced min(-1) mg(-1) protein. The cellular level of Fsr protein is comparable to that of methyl-coenzyme M reductase, an enzyme essential for methanogenesis and a possible target for sulfite. Purified Fsr reduces sulfite to sulfide using reduced F(420) (H(2)F(420)) as the electron source (K(m): sulfite, 12 microm; H(2)F(420), 21 microm). Therefore, Fsr provides M. jannaschii an anabolic ability and protection from sulfite toxicity. The N-terminal half of the 70-kDa Fsr polypeptide represents a H(2)F(420) dehydrogenase and the C-terminal half a dissimilatory-type siroheme sulfite reductase, and Fsr catalyzes the corresponding partial reactions. Previously described sulfite reductases use nicotinamides and cytochromes as electron carriers. Therefore, this is the first report of a coenzyme F(420)-dependent sulfite reductase. Fsr homologs were found only in Methanopyrus kandleri and Methanothermobacter thermautotrophicus, two strictly hydrogenotrophic thermophilic methanogens. fsr is the likely ancestor of H(2)F(420) dehydrogenases, which serve as electron input units for membrane-based energy transduction systems of certain late evolving archaea, and dissimilatory sulfite reductases of bacteria and archaea. fsr could also have arisen from lateral gene transfer and gene fusion events.
Collapse
Affiliation(s)
- Eric F Johnson
- Virginia Bioinformatics Institute, State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
29
|
Dhillon A, Goswami S, Riley M, Teske A, Sogin M. Domain evolution and functional diversification of sulfite reductases. ASTROBIOLOGY 2005; 5:18-29. [PMID: 15711167 DOI: 10.1089/ast.2005.5.18] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sulfite reductases are key enzymes of assimilatory and dissimilatory sulfur metabolism, which occur in diverse bacterial and archaeal lineages. They share a highly conserved domain "C-X5-C-n-C-X3-C" for binding siroheme and iron-sulfur clusters that facilitate electron transfer to the substrate. For each sulfite reductase cluster, the siroheme-binding domain is positioned slightly differently at the N-terminus of dsrA and dsrB, while in the assimilatory proteins the siroheme domain is located at the C-terminus. Our sequence and phylogenetic analysis of the siroheme-binding domain shows that sulfite reductase sequences diverged from a common ancestor into four separate clusters (aSir, alSir, dsr, and asrC) that are biochemically distinct; each serves a different assimilatory or dissimilatory role in sulfur metabolism. The phylogenetic distribution and functional grouping in sulfite reductase clusters (dsrA and dsrB vs. aSiR, asrC, and alSir) suggest that their functional diversification during evolution may have preceded the bacterial/archaeal divergence.
Collapse
Affiliation(s)
- Ashita Dhillon
- Marine Biological Laboratory, The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts 02543, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
Over the past 120 to 160 million years, the genus Salmonella has evolved into a complex group of more than 2,300 genetically and phenotypically diverse serovars. Members of this genus are able to infect a wide diversity of vertebrate and invertebrate hosts; disease manifestations in humans range from gastroenteritis to typhoid fever. The evolution of the genus Salmonella and the divergence and radiation of particular lineages within this group have resulted from selection acting on new genetic variation generated by events such as the gain, loss, and/or rearrangement of genetic material. These types of genetic events have contributed to the speciation of Salmonella from its ancestral association with cold-blood animals to a pathogen of warm-blooded hosts. Moreover, adaptive radiation due to changes in gene content within S. enterica subspecies I has impacted host specificity and aided in the selection of host-restricted, host-adapted, and non-host-adapted serovars. In addition to the genetic diversity important for the wide phenotypic heterogeneity within the genus, a subset of core Salmonella-specific genes present in all Salmonella species and serovars has been identified that may contribute to the conserved aspects of the lifestyle of this microorganism, including the ability to survive in nutrient-poor nonhost environments such as soil and water. Whole-genome comparisons of isolates differing in host range and virulence will continue to elucidate the genetic mechanisms that have contributed to the evolution and diverse ecology of the genus Salmonella.
Collapse
|
31
|
Kanai T, Ito S, Imanaka T. Characterization of a cytosolic NiFe-hydrogenase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Bacteriol 2003; 185:1705-11. [PMID: 12591889 PMCID: PMC148058 DOI: 10.1128/jb.185.5.1705-1711.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified an NiFe-hydrogenase exclusively localized in the cytoplasm of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 (T. kodakaraensis hydrogenase). A gene cluster encoding T. kodakaraensis hydrogenase was composed of four open reading frames (hyhBGSL(Tk)), where the hyhS(Tk) and hyhL(Tk) gene products corresponded to the small and the large subunits of NiFe-hydrogenase, respectively. A putative open reading frame for hydrogenase-specific maturation endopeptidase (hybD(Tk)) was found downstream of the cluster. Polyclonal antibodies raised against recombinant HyhL(Tk) were used for immunoaffinity purification of T. kodakaraensis hydrogenase, leading to a 259-fold concentration of hydrogenase activity. The purified T. kodakaraensis hydrogenase was composed of four subunits (beta, gamma, delta, and alpha), corresponding to the products of hyhBGSL(Tk), respectively. Each alphabetagammadelta unit contained 0.8 mol of Ni, 22.3 mol of Fe, 21.1 mol of acid-labile sulfide, and 1.01 mol of flavin adenine dinucleotide. The optimal temperature for the T. kodakaraensis hydrogenase was 95 degrees C for H(2) uptake and 90 degrees C for H(2) production with methyl viologen as the electron carrier. We found that NADP(+) and NADPH promoted high levels of uptake and evolution of H(2), respectively, suggesting that the molecule is the electron carrier for the T. kodakaraensis hydrogenase.
Collapse
Affiliation(s)
- Tamotsu Kanai
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
32
|
O'Brian MR, Thöny-Meyer L. Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes. Adv Microb Physiol 2002; 46:257-318. [PMID: 12073655 DOI: 10.1016/s0065-2911(02)46006-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Haems are involved in many cellular processes in prokaryotes and eukaryotes. The biosynthetic pathway leading to haem formation is, with few exceptions, well-conserved, and is controlled in accordance with cellular function. Here, we review the biosynthesis of haem and its regulation in prokaryotes. In addition, we focus on a modification of haem for cytochrome c biogenesis, a complex process that entails both transport between cellular compartments and a specific thioether linkage between the haem moiety and the apoprotein. Finally, a whole genome analysis from 63 prokaryotes indicates intriguing exceptions to the universality of the haem biosynthetic pathway and helps define new frontiers for future study.
Collapse
Affiliation(s)
- Mark R O'Brian
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | | |
Collapse
|
33
|
Affiliation(s)
- C Dahl
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn D-53115, Germany
| | | |
Collapse
|
34
|
Price-Carter M, Tingey J, Bobik TA, Roth JR. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol. J Bacteriol 2001; 183:2463-75. [PMID: 11274105 PMCID: PMC95162 DOI: 10.1128/jb.183.8.2463-2475.2001] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis of cobalamin de novo by Salmonella enterica serovar Typhimurium strain LT2 and the absence of this ability in Escherichia coli present several problems. This large synthetic pathway is shared by virtually all salmonellae and must be maintained by selection, yet no conditions are known under which growth depends on endogenous B12. The cofactor is required for degradation of 1,2-propanediol and ethanolamine. However, cofactor synthesis occurs only anaerobically, and neither of these carbon sources supports anaerobic growth with any of the alternative electron acceptors tested thus far. This paradox is resolved by the electron acceptor tetrathionate, which allows Salmonella to grow anaerobically on ethanolamine or 1,2-propanediol by using endogenously synthesized B12. Tetrathionate provides the only known conditions under which simple cob mutants (unable to make B12) show a growth defect. Genes involved in this metabolism include the ttr operon, which encodes tetrathionate reductase. This operon is globally regulated by OxrA (Fnr) and induced anaerobically by a two-component system in response to tetrathionate. Salmonella reduces tetrathionate to thiosulfate, which it can further reduce to H2S, by using enzymes encoded by the genes phs and asr. The genes for 1,2-propanediol degradation (pdu) and B12 synthesis (cob), along with the genes for sulfur reduction (ttr, phs, and asr), constitute more than 1% of the Salmonella genome and are all absent from E. coli. In diverging from E. coli, Salmonella acquired some of these genes unilaterally and maintained others that are ancestral but have been lost from the E. coli lineage.
Collapse
Affiliation(s)
- M Price-Carter
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
35
|
Laue H, Friedrich M, Ruff J, Cook AM. Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB-DsrD subunit. J Bacteriol 2001; 183:1727-33. [PMID: 11160104 PMCID: PMC95058 DOI: 10.1128/jb.183.5.1727-1733.2001] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2000] [Accepted: 12/06/2000] [Indexed: 11/20/2022] Open
Abstract
A dissimilatory sulfite reductase (DSR) was purified from the anaerobic, taurine-degrading bacterium Bilophila wadsworthia RZATAU to apparent homogeneity. The enzyme is involved in energy conservation by reducing sulfite, which is formed during the degradation of taurine as an electron acceptor, to sulfide. According to its UV-visible absorption spectrum with maxima at 392, 410, 583, and 630 nm, the enzyme belongs to the desulfoviridin type of DSRs. The sulfite reductase was isolated as an alpha2beta)gamma(n) (n > or = 2) multimer with a native size of 285 kDa as determined by gel filtration. We have sequenced the genes encoding the alpha and beta subunits (dsrA and dsrB, respectively), which probably constitute one operon. dsrA and dsrB encode polypeptides of 49 (alpha) and 54 kDa (beta) which show significant similarities to the homologous subunits of other DSRs. The dsrB gene product of B. wadsworthia is apparently a fusion protein of dsrB and dsrD. This indicates a possible functional role of DsrD in DSR function because of its presence as a fusion protein as an integral part of the DSR holoenzyme in B. wadsworthia. A phylogenetic analysis using the available Dsr sequences revealed that B. wadsworthia grouped with its closest 16S rDNA relative Desulfovibrio desulfuricans Essex 6.
Collapse
Affiliation(s)
- H Laue
- Fachbereich Biologie, Universität Konstanz, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
36
|
Ruepp A, Graml W, Santos-Martinez ML, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 2000; 407:508-13. [PMID: 11029001 DOI: 10.1038/35035069] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermoplasma acidophilum is a thermoacidophilic archaeon that thrives at 59 degrees C and pH 2, which was isolated from self-heating coal refuse piles and solfatara fields. Species of the genus Thermoplasma do not possess a rigid cell wall, but are only delimited by a plasma membrane. Many macromolecular assemblies from Thermoplasma, primarily proteases and chaperones, have been pivotal in elucidating the structure and function of their more complex eukaryotic homologues. Our interest in protein folding and degradation led us to seek a more complete representation of the proteins involved in these pathways by determining the genome sequence of the organism. Here we have sequenced the 1,564,905-base-pair genome in just 7,855 sequencing reactions by using a new strategy. The 1,509 open reading frames identify Thermoplasma as a typical euryarchaeon with a substantial complement of bacteria-related genes; however, evidence indicates that there has been much lateral gene transfer between Thermoplasma and Sulfolobus solfataricus, a phylogenetically distant crenarchaeon inhabiting the same environment. At least 252 open reading frames, including a complete protein degradation pathway and various transport proteins, resemble Sulfolobus proteins most closely.
Collapse
Affiliation(s)
- A Ruepp
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ma K, Weiss R, Adams MW. Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J Bacteriol 2000; 182:1864-71. [PMID: 10714990 PMCID: PMC101868 DOI: 10.1128/jb.182.7.1864-1871.2000] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/1999] [Accepted: 01/13/2000] [Indexed: 11/20/2022] Open
Abstract
The fermentative hyperthermophile Pyrococcus furiosus contains an NADPH-utilizing, heterotetrameric (alphabetagammadelta), cytoplasmic hydrogenase (hydrogenase I) that catalyzes both H(2) production and the reduction of elemental sulfur to H(2)S. Herein is described the purification of a second enzyme of this type, hydrogenase II, from the same organism. Hydrogenase II has an M(r) of 320,000 +/- 20,000 and contains four different subunits with M(r)s of 52,000 (alpha), 39,000 (beta), 30,000 (gamma), and 24,000 (delta). The heterotetramer contained Ni (0.9 +/- 0.1 atom/mol), Fe (21 +/- 1.6 atoms/mol), and flavin adenine dinucleotide (FAD) (0.83 +/- 0.1 mol/mol). NADPH and NADH were equally efficient as electron donors for H(2) production with K(m) values near 70 microM and k(cat)/K(m) values near 350 min(-1) mM(-1). In contrast to hydrogenase I, hydrogenase II catalyzed the H(2)-dependent reduction of NAD (K(m), 128 microM; k(cat)/K(m), 770 min(-1) mM(-1)). Ferredoxin from P. furiosus was not an efficient electron carrier for either enzyme. Both H(2) and NADPH served as electron donors for the reduction of elemental sulfur (S(0)) and polysulfide by hydrogenase I and hydrogenase II, and both enzymes preferentially reduce polysulfide to sulfide rather than protons to H(2) using NADPH as the electron donor. At least two [4Fe-4S] and one [2Fe-2S] cluster were detected in hydrogenase II by electron paramagnetic resonance spectroscopy, but amino acid sequence analyses indicated a total of five [4Fe-4S] clusters (two in the beta subunit and three in the delta subunit) and one [2Fe-2S] cluster (in the gamma subunit), as well as two putative nucleotide-binding sites in the gamma subunit which are thought to bind FAD and NAD(P)(H). The amino acid sequences of the four subunits of hydrogenase II showed between 55 and 63% similarity to those of hydrogenase I. The two enzymes are present in the cytoplasm at approximately the same concentration. Hydrogenase II may become physiologically relevant at low S(0) concentrations since it has a higher affinity than hydrogenase I for both S(0) and polysulfide.
Collapse
Affiliation(s)
- K Ma
- Department of Biochemistry and Molecular Biology, Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
38
|
Rákhely G, Zhou ZH, Adams MW, Kovács KL. Biochemical and molecular characterization of the [NiFe] hydrogenase from the hyperthermophilic archaeon, Thermococcus litoralis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 266:1158-65. [PMID: 10583413 DOI: 10.1046/j.1432-1327.1999.00969.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thermococcus litoralis is a hyperthermophilic archaeon that grows at temperatures up to 98 degrees C by fermentative metabolism and reduces elemental sulfur (S0) to H2S. A [NiFe] hydrogenase, responsible for H2S or H2 production, has been purified and characterized. The enzyme is composed of four subunits with molecular mass 46, 42, 34 and 32 kDa. Elemental analyses gave approximate values of 22 Fe, 22 S and 1 Ni per hydrogenase. EPR spectra at 70 and 5 K indicated the presence of four or five [4Fe-4S] and one [2Fe-2S] type clusters. The optimal temperature for both H2 evolution and oxidation, using artificial electron carriers, was around 80 degrees C. The operon encoding the T. litoralis enzyme is composed of four genes forming one transcriptional unit, and transcription is not regulated by S0. An unusual transcription-initiation site is located 139 bp upstream from the translational start point. Sequence analyses indicated the presence of new putative nucleotide-binding domains. Upstream from the hydrogenase operon, ORFs probably encoding a molybdopterin oxidoreductase enzyme have been identified. Based on sequence, biochemical and biophysical analyses, a model of the enzyme and the pathway of electron flow during catalysis is proposed.
Collapse
Affiliation(s)
- G Rákhely
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | | | | | | |
Collapse
|
39
|
Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 1998; 180:2975-82. [PMID: 9603890 PMCID: PMC107267 DOI: 10.1128/jb.180.11.2975-2982.1998] [Citation(s) in RCA: 400] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/1998] [Accepted: 03/24/1998] [Indexed: 02/07/2023] Open
Abstract
Microorganisms that use sulfate as a terminal electron acceptor for anaerobic respiration play a central role in the global sulfur cycle. Here, we report the results of comparative sequence analysis of dissimilatory sulfite reductase (DSR) genes from closely and distantly related sulfate-reducing organisms to infer the evolutionary history of DSR. A 1.9-kb DNA region encoding most of the alpha and beta subunits of DSR could be recovered only from organisms capable of dissimilatory sulfate reduction with a PCR primer set targeting highly conserved regions in these genes. All DNA sequences obtained were highly similar to one another (49 to 89% identity), and their inferred evolutionary relationships were nearly identical to those inferred on the basis of 16S rRNA. We conclude that the high similarity of bacterial and archaeal DSRs reflects their common origin from a conserved DSR. This ancestral DSR was either present before the split between the domains Bacteria, Archaea, and Eucarya or laterally transferred between Bacteria and Archaea soon after domain divergence. Thus, if the physiological role of the DSR was constant over time, then early ancestors of Bacteria and Archaea already possessed a key enzyme of sulfate and sulfite respiration.
Collapse
Affiliation(s)
- M Wagner
- Department of Civil Engineering, Technological Institute, Northwestern University, Evanston, Illinois 60208-3109, USA
| | | | | | | | | |
Collapse
|
40
|
Sasahara KC, Heinzinger NK, Barrett EL. Hydrogen sulfide production and fermentative gas production by Salmonella typhimurium require F0F1 ATP synthase activity. J Bacteriol 1997; 179:6736-40. [PMID: 9352924 PMCID: PMC179603 DOI: 10.1128/jb.179.21.6736-6740.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A previously isolated mutant of Salmonella typhimurium lacking hydrogen sulfide production from both thiosulfate and sulfite was shown to have a single mutation which also caused the loss of fermentative gas production and the ability to grow on nonfermentable substrates and which mapped in the vicinity of the atp chromosomal locus. The implication that F0F1 ATP synthase might be essential for H2S and fermentative gas production was explored. The phs plasmid conferring H2S production on wild-type Escherichia coli failed to confer this ability on seven of eight E. coli atp point mutants representing, collectively, the eight genes encoding the subunits of F0F1 ATP synthase. However, it did confer some thiosulfate reductase activity on all except the mutant with a lesion in the ATP synthase catalytic subunit. Localized mutagenesis of the Salmonella atp chromosomal region yielded 500 point mutants unable to reduce thiosulfate to H2S or to produce gas from glucose, but differing in the extents of their ability to grow on succinate, to perform proton translocation as measured in a fluorescence quenching assay, and to reduce sulfite to H2S. Biochemical assays showed that all mutants were completely devoid of both methyl viologen and formate-linked thiosulfate reductase and that N,N'-dicyclohexylcarbodiimide blocked thiosulfate reductase activity by the wild type, suggesting that thiosulfate reductase activity has an absolute requirement for F0F1 ATP synthase. Hydrogenase-linked formate dehydrogenase was also affected, but not as severely as thiosulfate reductase. These results imply that in addition to linking oxidation with phosphorylation, F0F1 ATP synthase plays a key role in the proton movement accompanying certain anaerobic reductions and oxidations.
Collapse
Affiliation(s)
- K C Sasahara
- Department of Food Science and Technology, University of California, Davis 95616-8598, USA
| | | | | |
Collapse
|
41
|
Abstract
Biogenesis of respiratory cytochromes is defined as consisting of the posttranslational processes that are necessary to assemble apoprotein, heme, and sometimes additional cofactors into mature enzyme complexes with electron transfer functions. Different biochemical reactions take place during maturation: (i) targeting of the apoprotein to or through the cytoplasmic membrane to its subcellular destination; (ii) proteolytic processing of precursor forms; (iii) assembly of subunits in the membrane and oligomerization; (iv) translocation and/or modification of heme and covalent or noncovalent binding to the protein moiety; (v) transport, processing, and incorporation of other cofactors; and (vi) folding and stabilization of the protein. These steps are discussed for the maturation of different oxidoreductase complexes, and they are arranged in a linear pathway to best account for experimental findings from studies concerning cytochrome biogenesis. The example of the best-studied case, i.e., maturation of cytochrome c, appears to consist of a pathway that requires at least nine specific genes and more general cellular functions such as protein secretion or the control of the redox state in the periplasm. Covalent attachment of heme appears to be enzyme catalyzed and takes place in the periplasm after translocation of the precursor through the membrane. The genetic characterization and the putative biochemical functions of cytochrome c-specific maturation proteins suggest that they may be organized in a membrane-bound maturase complex. Formation of the multisubunit cytochrome bc, complex and several terminal oxidases of the bo3, bd, aa3, and cbb3 types is discussed in detail, and models for linear maturation pathways are proposed wherever possible.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH Zentrum, Zürich, Switzerland.
| |
Collapse
|
42
|
Kahler AE, Switzer RL. Identification of a novel gene of pyrimidine nucleotide biosynthesis, pyrDII, that is required for dihydroorotate dehydrogenase activity in Bacillus subtilis. J Bacteriol 1996; 178:5013-6. [PMID: 8759868 PMCID: PMC178287 DOI: 10.1128/jb.178.16.5013-5016.1996] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An in-frame deletion in the coding region of a gene of previously unidentified function (which is called orf2 and which we propose to rename pyrDII) in the Bacillus subtilis pyr operon led to pyrimidine bradytrophy, markedly reduced dihydroorotate dehydrogenase activity, and derepressed levels of other enzymes of pyrimidine biosynthesis. The deletion mutation was not corrected by a plasmid encoding pyrDI, the previously identified gene encoding dihydroorotate dehydrogenase, but was complemented by a plasmid encoding pyrDII. We propose that pyrDII encodes a protein subunit of dihydroorotate dehydrogenase that catalyzes electron transfer from the pyrDI-encoded subunit to components of the electron transport chain.
Collapse
Affiliation(s)
- A E Kahler
- Department of Biochemistry, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
43
|
Andersen PS, Martinussen J, Hammer K. Sequence analysis and identification of the pyrKDbF operon from Lactococcus lactis including a novel gene, pyrK, involved in pyrimidine biosynthesis. J Bacteriol 1996; 178:5005-12. [PMID: 8759867 PMCID: PMC178286 DOI: 10.1128/jb.178.16.5005-5012.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Three genes encoding enzymes involved in the biosynthesis of pyrimidines have been found to constitute an operon in Lactococcus lactis. Two of the genes are the well-known pyr genes pyrDb and pyrF, encoding dihydroorotate dehydrogenase and orotidine monophosphate decarboxylase, respectively. The third gene encodes a protein which was shown to be necessary for the activity of the pyrDb-encoded dihydroorotate dehydrogenase; we propose to name the gene pyrK. The pyrK-encoded protein is homologous to a number of proteins which are involved in electron transfer. The lactococcal pyrKDbF operon is highly homologous to the corresponding part of the much-larger pyr operon of Bacillus subtilis. orf2, the pyrK homolog in B. subtilis, has also been shown to be necessary for pyrimidine biosynthesis (A. E. Kahler and R. L. Switzer, J. Bacteriol. 178:5013-5016, 1996). Four genes adjacent to the operon, i.e., orfE, orfA, orfC, and gidB, were also sequenced. Three of these were excluded as members of the pyr operon by insertional analysis (orfA) or by their opposite direction of transcription (orfE and gidB). orfC, however, seems to be the distal gene in the pyrKDbF-orfC operon.
Collapse
Affiliation(s)
- P S Andersen
- Department of Microbiology, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
44
|
Adams MW, Kletzin A. Oxidoreductase-type enzymes and redox proteins involved in fermentative metabolisms of hyperthermophilic Archaea. ADVANCES IN PROTEIN CHEMISTRY 1996; 48:101-80. [PMID: 8791625 DOI: 10.1016/s0065-3233(08)60362-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | |
Collapse
|
45
|
Werner JA, Görögh T, Lippert BM, Rudert H. DNA amplification for the in vitro detection of Candida albicans in head and neck squamous cell carcinomas. Eur Arch Otorhinolaryngol 1995; 252:417-21. [PMID: 8562037 DOI: 10.1007/bf00167312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
DNA was extracted from whole cells of Candida albicans and digested with HindIII restriction enzyme. After electrophoresis in a segment of the lane containing between 800 and 1200 base pairs (bp) of DNA fragments, a 1.1-kilobase (kb) fragment was found that hybridizes to biopsied tumor cells from head and neck squamous cell carcinomas (SCC). From the nucleotide sequence of the putative gene locus, primers were synthesized for use in a polymerase chain reaction (PCR) with DNA extracted from 18 SCC of the upper aerodigestive tract. After 30 cycles of amplification all tumors were found to contain sufficient amplified DNA to be detected in polyacrylamide or agarose gels. In contrast, template DNA from lymph nodes and malignant lymphomas failed to generate positive signals under these conditions. However, samples of DNA obtained from head and neck SCC cells in vitro, Candida glabrata, and Candida parapsilosis after PCR were found to contain homologous sequences. Application of this technique to head and neck SCC biopsies may help to identify quickly the presence of concurrent candidal species.
Collapse
Affiliation(s)
- J A Werner
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Germany
| | | | | | | |
Collapse
|
46
|
van der Palen CJ, Slotboom DJ, Jongejan L, Reijnders WN, Harms N, Duine JA, van Spanning RJ. Mutational analysis of mau genes involved in methylamine metabolism in Paracoccus denitrificans. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:860-71. [PMID: 7601147 DOI: 10.1111/j.1432-1033.1995.tb20629.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A chromosomal fragment containing DNA downstream from mauC was isolated from Paracoccus denitrificans. Sequence analysis of this fragment revealed the presence of four open reading frames, all transcribed in the same direction. The products of the putative genes were found to be highly similar to MauJ, MauG, MauM and MauN of Methylobacterium extorquens AM1. Using these four mau genes, 11 mau genes have been cloned from P. denitrificans to date. The gene order is mauRFBEDACJGMN, which is similar to that in M. extorquens AM1. mauL, present in M. extorquens AM1, seems to be absent in P. denitrificans. MauJ is predicted to be a cytoplasmic protein, and MauG a periplasmic protein. The latter protein contains two putative heme-binding sites, and has some sequence resemblance to the cytochrome c peroxidase from Pseudomonas aeruginosa. MauM is also predicted to be located in the periplasm, but MauN appears to be membrane associated. Both resemble ferredoxin-like proteins and contain four and two motifs, respectively, characteristic for [4Fe-4S] clusters. Inactivation of mauA, mauJ, mauG, mauM and mauN was carried out by introduction of unmarked mutations in the chromosomal copies of these genes. mauA and mauG mutant strains were unable to grow on methylamine. The mauJ mutant strain had an impaired growth rate and showed a lower dye-linked methylamine dehydrogenase (MADH) activity than the parent strain. Mutations in mauM and mauN had no effect on methylamine metabolism. The mauA mutant strain specifically lacked the beta subunit of MADH, but the alpha subunit and amicyanin, the natural electron acceptors of MADH, were still produced. The mauG mutant strain synthesized the alpha and beta subunits of MADH as well as amicyanin. However, no dye-linked MADH activity was found in this mutant strain. In addition, as the wild-type enzyme displays a characteristic fluorescence emission spectrum upon addition of methylamine, this property was lost in the mauG mutant strain. These results clearly show that MauG is essential for the maturation of the beta subunit of MADH, presumably via a step in the biosynthesis of tryptophan tryptophylquinone, the cofactor of MADH. The mau gene cluster mauRFBEDACJGMN was cloned on the broad-host vector pEG400. Transfer of this construct to mutant strains which were unable to grow on methylamine fully restored their ability to grow on this compound. A similar result was achieved for the closely related bacterium Thiosphaera pantotropha, which is unable to utilize methylamine as the sole sources of carbon and energy.
Collapse
Affiliation(s)
- C J van der Palen
- Department of Molecular and Cellular Biology, BioCentrum Amsterdam, Vrije Universiteit, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
We present edition VIII of the genetic map of Salmonella typhimurium LT2. We list a total of 1,159 genes, 1,080 of which have been located on the circular chromosome and 29 of which are on pSLT, the 90-kb plasmid usually found in LT2 lines. The remaining 50 genes are not yet mapped. The coordinate system used in this edition is neither minutes of transfer time in conjugation crosses nor units representing "phage lengths" of DNA of the transducing phage P22, as used in earlier editions, but centisomes and kilobases based on physical analysis of the lengths of DNA segments between genes. Some of these lengths have been determined by digestion of DNA by rare-cutting endonucleases and separation of fragments by pulsed-field gel electrophoresis. Other lengths have been determined by analysis of DNA sequences in GenBank. We have constructed StySeq1, which incorporates all Salmonella DNA sequence data known to us. StySeq1 comprises over 548 kb of nonredundant chromosomal genomic sequences, representing 11.4% of the chromosome, which is estimated to be just over 4,800 kb in length. Most of these sequences were assigned locations on the chromosome, in some cases by analogy with mapped Escherichia coli sequences.
Collapse
Affiliation(s)
- K E Sanderson
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
48
|
Heinzinger NK, Fujimoto SY, Clark MA, Moreno MS, Barrett EL. Sequence analysis of the phs operon in Salmonella typhimurium and the contribution of thiosulfate reduction to anaerobic energy metabolism. J Bacteriol 1995; 177:2813-20. [PMID: 7751291 PMCID: PMC176953 DOI: 10.1128/jb.177.10.2813-2820.1995] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The phs chromosomal locus of Salmonella typhimurium is essential for the dissimilatory anaerobic reduction of thiosulfate to hydrogen sulfide. Sequence analysis of the phs region revealed a functional operon with three open reading frames, designated phsA, phsB, and phsC, which encode peptides of 82.7, 21.3, and 28.5 kDa, respectively. The predicted products of phsA and phsB exhibited significant homology with the catalytic and electron transfer subunits of several other anaerobic molybdoprotein oxidoreductases, including Escherichia coli dimethyl sulfoxide reductase, nitrate reductase, and formate dehydrogenase. Simultaneous comparison of PhsA to seven homologous molybdoproteins revealed numerous similarities among all eight throughout the entire frame, hence, significant amino acid conservation among molybdoprotein oxidoreductases. Comparison of PhsB to six other homologous sequences revealed four highly conserved iron-sulfur clusters. The predicted phsC product was highly hydrophobic and similar in size to the hydrophobic subunits of the molybdoprotein oxidoreductases containing subunits homologous to phsA and phsB. Thus, phsABC appears to encode thiosulfate reductase. Single-copy phs-lac translational fusions required both anaerobiosis and thiosulfate for full expression, whereas multicopy phs-lac translational fusions responded to either thiosulfate or anaerobiosis, suggesting that oxygen and thiosulfate control of phs involves negative regulation. A possible role for thiosulfate reduction in anaerobic respiration was examined. Thiosulfate did not significantly augment the final densities of anaerobic cultures grown on any of the 18 carbon sources tested. on the other hand, washed stationary-phase cells depleted of ATP were shown to synthesize small amounts of ATP on the addition of the formate and thiosulfate, suggesting that the thiosulfate reduction plays a unique role in anaerobic energy conservation by S typhimurium.
Collapse
Affiliation(s)
- N K Heinzinger
- Department of Food Science and Technology, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
49
|
Huang CJ, Wagner EK. The herpes simplex virus type 1 major capsid protein (VP5-UL19) promoter contains two cis-acting elements influencing late expression. J Virol 1994; 68:5738-47. [PMID: 8057455 PMCID: PMC236977 DOI: 10.1128/jvi.68.9.5738-5747.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) major capsid protein VP5 gene (UL19) is expressed with beta gamma (gamma 1 [leaky late]) kinetics. We have previously described the construction of recombinant HSV-1 in which the VP5 promoter was engineered to control the expression of the bacterial beta-galactosidase gene as a reporter (C.-J. Huang, S. A. Goodart, M. K. Rice, J. F. Guzowski, and E. K. Wagner, J. Virol. 67:5109-5116, 1993). Here we describe further mutational analysis in recombinant viruses. We have precisely defined the boundaries of the VP5 promoter and identified two regions important for both the level and the kinetics of expression. The 5' boundary was located at -48 relative to the initiation site of transcription by analyzing a series of nested deletions in the upstream sequence, and although a number of cis-acting sites influencing transient expression have been identified upstream of this point, these sites have no role in promoter activity during productive infection. Deletion of an Sp1-binding site located between -48 and the TATA box at -30 greatly reduced VP5 promoter activity late but not early after infection. A cis-acting element whose sequence resembles the human immunodeficiency virus type 1 initiator was located between -2 and +10 in the VP5 sequence by characterizing a series of deletions and site-directed block mutations downstream the TATA box. This element defines the 3' limit of the VP5 promoter, and like the upstream element, disruption of this element also inhibited promoter activity late in the productive cycle.
Collapse
Affiliation(s)
- C J Huang
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92717
| | | |
Collapse
|
50
|
Gisselmann G, Klausmeier P, Schwenn JD. The ferredoxin:sulphite reductase gene from Synechococcus PCC7942. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:102-6. [PMID: 8347657 DOI: 10.1016/0005-2728(93)90037-g] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The structural gene of the ferredoxin:sulphite reductase (EC 1.8.7.1) from the cyanobacterium Synechococcus PCC7942 (formerly 'Anacystis nidulans') was cloned and sequenced. The gene termed 'sir' was detected by heterologous Southern hybridisation with the structural gene cysI from Escherichia coli encoding the iron-sulphur haemoprotein of the NADPH:sulphite reductase. The open reading frame is comprised of 1875 bp encoding for a polypeptide of M(r) 70.028. The deduced amino acid sequence is 35.6% identical with the enterobacterial iron-sulphur haemoprotein. This putative fd-dependent sulphite reductase is only distantly related to the fd-dependent nitrite reductase (binary matching coefficient SAB: 0.23) or with the NADPH-sulphite reductase (SAB: 0.32). Highly conserved residues are found within the two Cys clusters forming the reactive Fe4S4-sirohaem centre of the enzyme. Expression of the sir gene using a fusion vector gave a single gene product which is immunologically related with the fd-sulphite reductase from the wild-type bacterium.
Collapse
Affiliation(s)
- G Gisselmann
- Biochemistry of Plants, Faculty of Biology, Ruhr University Bochum, Germany
| | | | | |
Collapse
|