1
|
Abstract
Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter - too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller-sized nanocompartments have therefore been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments, the prospects for applications as well as open question and challenges that need to be addressed to fully understand these important structures.
Collapse
|
2
|
Shih PM, Occhialini A, Cameron JC, Andralojc PJ, Parry MAJ, Kerfeld CA. Biochemical characterization of predicted Precambrian RuBisCO. Nat Commun 2016; 7:10382. [PMID: 26790750 PMCID: PMC4735906 DOI: 10.1038/ncomms10382] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 12/04/2015] [Indexed: 01/02/2023] Open
Abstract
The antiquity and global abundance of the enzyme, RuBisCO, attests to the crucial and longstanding role it has played in the biogeochemical cycles of Earth over billions of years. The counterproductive oxygenase activity of RuBisCO has persisted over billions of years of evolution, despite its competition with the carboxylase activity necessary for carbon fixation, yet hypotheses regarding the selective pressures governing RuBisCO evolution have been limited to speculation. Here we report the resurrection and biochemical characterization of ancestral RuBisCOs, dating back to over one billion years ago (Gyr ago). Our findings provide an ancient point of reference revealing divergent evolutionary paths taken by eukaryotic homologues towards improved specificity for CO2, versus the evolutionary emphasis on increased rates of carboxylation observed in bacterial homologues. Consistent with these distinctions, in vivo analysis reveals the propensity of ancestral RuBisCO to be encapsulated into modern-day carboxysomes, bacterial organelles central to the cyanobacterial CO2 concentrating mechanism.
Collapse
Affiliation(s)
- Patrick M. Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | - Alessandro Occhialini
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Jeffrey C. Cameron
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
| | - P John Andralojc
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
| | - Martin A. J. Parry
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK
- Lancaster Environment Centre, Lancaster University, Bailrigg, Lancaster LA1, 4YQ, UK
| | - Cheryl A. Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA
- Department of Biochemistry and Molecular Biology, DOE Plant Research Laboratories, Michigan State University, East Lansing, Michigan 488242, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
3
|
Chessher A, Breitling R, Takano E. Bacterial Microcompartments: Biomaterials for Synthetic Biology-Based Compartmentalization Strategies. ACS Biomater Sci Eng 2015; 1:345-351. [DOI: 10.1021/acsbiomaterials.5b00059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ashley Chessher
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Rainer Breitling
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| | - Eriko Takano
- Manchester Synthetic Biology
Research Centre SYNBIOCHEM, Manchester Institute of Biotechnology,
The Faculty of Life Sciences, The University of Manchester, 131 Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
4
|
Mangan NM, Brenner MP. Systems analysis of the CO2 concentrating mechanism in cyanobacteria. eLife 2014; 3:e02043. [PMID: 24842993 PMCID: PMC4027813 DOI: 10.7554/elife.02043] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/12/2014] [Indexed: 12/13/2022] Open
Abstract
Cyanobacteria are photosynthetic bacteria with a unique CO2 concentrating mechanism (CCM), enhancing carbon fixation. Understanding the CCM requires a systems level perspective of how molecular components work together to enhance CO2 fixation. We present a mathematical model of the cyanobacterial CCM, giving the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) for efficient carbon fixation. Efficiency requires saturating the RuBisCO reaction, staying below saturation for carbonic anhydrase, and avoiding wasteful oxygenation reactions. We find selectivity at the carboxysome shell is not necessary; there is an optimal non-specific carboxysome shell permeability. We compare the efficacy of facilitated CO2 uptake, CO2 scavenging, and HCO3- transport with varying external pH. At the optimal carboxysome permeability, contributions from CO2 scavenging at the cell membrane are small. We examine the cumulative benefits of CCM spatial organization strategies: enzyme co-localization and compartmentalization.
Collapse
Affiliation(s)
- Niall M Mangan
- School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, United States
| | - Michael P Brenner
- School of Engineering and Applied Sciences and Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, United States
| |
Collapse
|
5
|
Structure and expression of propanediol utilization microcompartments in Acetonema longum. J Bacteriol 2014; 196:1651-8. [PMID: 24532773 DOI: 10.1128/jb.00049-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous bacteria assemble proteinaceous microcompartments to isolate certain biochemical reactions within the cytoplasm. The assembly, structure, contents, and functions of these microcompartments are active areas of research. Here we show that the Gram-negative sporulating bacterium Acetonema longum synthesizes propanediol utilization (PDU) microcompartments when starved or grown on 1,2-propanediol (1,2-PD) or rhamnose. Electron cryotomography of intact cells revealed that PDU microcompartments are highly irregular in shape and size, similar to purified PDU microcompartments from Salmonella enterica serovar Typhimurium LT2 that were imaged previously. Homology searches identified a 20-gene operon in A. longum that contains most of the structural, enzymatic, and regulatory genes thought to be involved in PDU microcompartment assembly and function. Transcriptional data on PduU and PduC, which are major structural and enzymatic proteins, respectively, as well as imaging, indicate that PDU microcompartment synthesis is induced within 24 h of growth on 1,2-PD and after 48 h of growth on rhamnose.
Collapse
|
6
|
Kupriyanova EV, Sinetova MA, Cho SM, Park YI, Los DA, Pronina NA. CO2-concentrating mechanism in cyanobacterial photosynthesis: organization, physiological role, and evolutionary origin. PHOTOSYNTHESIS RESEARCH 2013; 117:133-146. [PMID: 23733616 DOI: 10.1007/s11120-013-9860-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/25/2013] [Indexed: 06/02/2023]
Abstract
The cellular and molecular organization of the CO2-concentrating mechanism (CCM) of cyanobacteria is reviewed. The primary processes of uptake, translocation, and accumulation of inorganic carbon (Ci) near the active site of carbon assimilation by the enzyme ribulose-1,5-bisphosphate carboxylase in the C3 cycle in cyanobacteria are described as one of the specialized forms of CO2 concentration which occurs in some photoautotrophic cells. The existence of this form of CO2 concentration expands our understanding of photosynthetic Ci assimilation. The means of supplying Ci to the C3 cycle in cyanobacteria is not by simple diffusion into the cell, but it is the result of coordinated functions of high-affinity systems for the uptake of CO2 and bicarbonate, as well as intracellular CO2/HCO3 (-) interconversions by carbonic anhydrases. These biochemical events are under genetic control, and they serve to maintain cellular homeostasis and adaptation to CO2 limitation. Here we describe the organization of the CCM in cyanobacteria with a special focus on the CCM of relict halo- and alkaliphilic cyanobacteria of soda lakes. We also assess the role of the CCM at the levels of the organism, the biosphere, and evolution.
Collapse
Affiliation(s)
- Elena V Kupriyanova
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street, 35, Moscow, 127276, Russia
| | | | | | | | | | | |
Collapse
|
7
|
Biogenesis of a Bacterial Organelle: The Carboxysome Assembly Pathway. Cell 2013; 155:1131-40. [DOI: 10.1016/j.cell.2013.10.044] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/30/2013] [Accepted: 10/25/2013] [Indexed: 11/18/2022]
|
8
|
O'Connell JD, Zhao A, Ellington AD, Marcotte EM. Dynamic reorganization of metabolic enzymes into intracellular bodies. Annu Rev Cell Dev Biol 2013; 28:89-111. [PMID: 23057741 DOI: 10.1146/annurev-cellbio-101011-155841] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both focused and large-scale cell biological and biochemical studies have revealed that hundreds of metabolic enzymes across diverse organisms form large intracellular bodies. These proteinaceous bodies range in form from fibers and intracellular foci--such as those formed by enzymes of nitrogen and carbon utilization and of nucleotide biosynthesis--to high-density packings inside bacterial microcompartments and eukaryotic microbodies. Although many enzymes clearly form functional mega-assemblies, it is not yet clear for many recently discovered cases whether they represent functional entities, storage bodies, or aggregates. In this article, we survey intracellular protein bodies formed by metabolic enzymes, asking when and why such bodies form and what their formation implies for the functionality--and dysfunctionality--of the enzymes that comprise them. The panoply of intracellular protein bodies also raises interesting questions regarding their evolution and maintenance within cells. We speculate on models for how such structures form in the first place and why they may be inevitable.
Collapse
Affiliation(s)
- Jeremy D O'Connell
- Center for Systems and Synthetic Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
9
|
Yeates TO, Thompson MC, Bobik TA. The protein shells of bacterial microcompartment organelles. Curr Opin Struct Biol 2011; 21:223-31. [PMID: 21315581 PMCID: PMC3070793 DOI: 10.1016/j.sbi.2011.01.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/07/2011] [Accepted: 01/19/2011] [Indexed: 01/27/2023]
Abstract
Details are emerging on the structure and function of a remarkable class of capsid-like protein assemblies that serve as simple metabolic organelles in many bacteria. These bacterial microcompartments consist of a few thousand shell proteins, which encapsulate two or more sequentially acting enzymes in order to enhance or sequester certain metabolic pathways, particularly those involving toxic or volatile intermediates. Genomic data indicate that bacterial microcompartment shell proteins are present in a wide range of bacterial species, where they encapsulate varied reactions. Crystal structures of numerous shell proteins from distinct types of microcompartments have provided keys for understanding how the shells are assembled and how they conduct molecular transport into and out of microcompartments. The structural data emphasize a high level of mechanistic sophistication in the protein shell, and point the way for further studies on this fascinating but poorly appreciated class of subcellular structures.
Collapse
Affiliation(s)
- Todd O Yeates
- UCLA Department of Chemistry and Biochemistry, Los Angeles, CA, USA.
| | | | | |
Collapse
|
10
|
Abstract
Bacterial microcompartments (BMCs) are organelles composed entirely of protein. They promote specific metabolic processes by encapsulating and colocalizing enzymes with their substrates and cofactors, by protecting vulnerable enzymes in a defined microenvironment, and by sequestering toxic or volatile intermediates. Prototypes of the BMCs are the carboxysomes of autotrophic bacteria. However, structures of similar polyhedral shape are being discovered in an ever-increasing number of heterotrophic bacteria, where they participate in the utilization of specialty carbon and energy sources. Comparative genomics reveals that the potential for this type of compartmentalization is widespread across bacterial phyla and suggests that genetic modules encoding BMCs are frequently laterally transferred among bacteria. The diverse functions of these BMCs suggest that they contribute to metabolic innovation in bacteria in a broad range of environments.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- U.S. Department of Energy-Joint Genome Institute, Walnut Creek, California 94598, USA.
| | | | | |
Collapse
|
11
|
Yeates TO, Kerfeld CA, Heinhorst S, Cannon GC, Shively JM. Protein-based organelles in bacteria: carboxysomes and related microcompartments. Nat Rev Microbiol 2009; 6:681-91. [PMID: 18679172 DOI: 10.1038/nrmicro1913] [Citation(s) in RCA: 326] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many bacteria contain intracellular microcompartments with outer shells that are composed of thousands of protein subunits and interiors that are filled with functionally related enzymes. These microcompartments serve as organelles by sequestering specific metabolic pathways in bacterial cells. The carboxysome, a prototypical bacterial microcompartment that is found in cyanobacteria and some chemoautotrophs, encapsulates ribulose-l,5-bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase, and thereby enhances carbon fixation by elevating the levels of CO2 in the vicinity of RuBisCO. Evolutionarily related, but functionally distinct, microcompartments are present in diverse bacteria. Although bacterial microcompartments were first observed more than 40 years ago, a detailed understanding of how they function is only now beginning to emerge.
Collapse
|
12
|
|
13
|
Long BM, Price GD, Badger MR. Proteomic assessment of an established technique for carboxysome enrichment from Synechococcus PCC7942. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-058] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carboxysomes are protein-bound, polyhedral microbodies within cyanobacteria, containing the key enzyme for photosynthetic CO2 fixation, ribulose-1,5-bisphosphate carboxylaseoxygenase (Rubisco). Sequencing of cyanobacterial genomes has revealed that cyanobacteria possess one or other of two types of carboxysomes. Cyanobacteria containing form 1A Rubisco possess α-carboxysomes, while those with form 1B Rubisco possess β-carboxysomes. Given the central importance of carboxysomes in the CO2-concentrating mechanism of cyanobacteria, understanding the nature and composition of these structures is of considerable importance. In an effort to develop techniques for the characterization of the structure of β-carboxysomes, particularly the outer protein shell, we have undertaken a proteomic assessment of the PercollMg2+ carboxysome enrichment technique using the freshwater cyanobacterium Synechococcus sp. PCC7942. Both matrix-assisted laser desorptionionization time of flight mass spectrometry (MALDI-TOF MS) and multidimensional protein identification technology (MuDPIT) methods were used to determine the protein content of a novel carboxysome-rich fraction. A total of 17 proteins were identified using MALDI-TOF MS from enriched carboxysome preparations, while 122 proteins were identified using MuDPIT analysis on the same material. The carboxysomal protein CcmM was identified by MALDI-TOF MS as two distinct proteins of 38 and 58 kDa. The only other carboxysomal proteins identified were the large and small subunits of Rubisco (RbcL and RbcS). Reasons for the lack of evidence for the expected full complement of carboxysomal proteins and future directions are discussed.Key words: CO2-concentrating mechanism, cyanobacteria, carboxysomes, proteomics.
Collapse
|
14
|
Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM. Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 2001; 67:5351-61. [PMID: 11722879 PMCID: PMC93316 DOI: 10.1128/aem.67.12.5351-5361.2001] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- G C Cannon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5043, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Kofoid E, Rappleye C, Stojiljkovic I, Roth J. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 1999; 181:5317-29. [PMID: 10464203 PMCID: PMC94038 DOI: 10.1128/jb.181.17.5317-5329.1999] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eut operon of Salmonella typhimurium encodes proteins involved in the cobalamin-dependent degradation of ethanolamine. Previous genetic analysis revealed six eut genes that are needed for aerobic use of ethanolamine; one (eutR), encodes a positive regulator which mediates induction of the operon by vitamin B12 plus ethanolamine. The DNA sequence of the eut operon included 17 genes, suggesting a more complex pathway than that revealed genetically. We have correlated an open reading frame in the sequence with each of the previously identified genes. Nonpolar insertion and deletion mutations made with the Tn10-derived transposable element T-POP showed that at least 10 of the 11 previously undetected eut genes have no Eut phenotype under the conditions tested. Of the dispensable eut genes, five encode apparent homologues of proteins that serve (in other organisms) as shell proteins of the carboxysome. This bacterial organelle, found in photosynthetic and sulfur-oxidizing bacteria, may contribute to CO2 fixation by concentrating CO2 and excluding oxygen. The presence of these homologues in the eut operon of Salmonella suggests that CO2 fixation may be a feature of ethanolamine catabolism in Salmonella.
Collapse
Affiliation(s)
- E Kofoid
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
16
|
English RS, Jin S, Shively JM. Use of Electroporation To Generate a Thiobacillus neapolitanus Carboxysome Mutant. Appl Environ Microbiol 1995; 61:3256-60. [PMID: 16535117 PMCID: PMC1388571 DOI: 10.1128/aem.61.9.3256-3260.1995] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two cloning vectors designed for use in Escherichia coli and the thiobacilli were constructed by combining a Thiobacillus intermedius plasmid replicon with a multicloning site, lacZ(prm1), and either a kanamycin or a streptomycin resistance gene. Conditions necessary for the introduction of DNA into T. intermedius and T. neapolitanus via electroporation were examined and optimized. By using optimal electroporation conditions, the gene encoding a carboxysome shell protein, csoS1A, was insertionally inactivated in T. neapolitanus. The mutant showed a reduced number of carboxysomes and an increased level of CO(inf2) necessary for growth.
Collapse
|
17
|
Schwarz R, Reinhold L, Kaplan A. Low Activation State of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase in Carboxysome-Defective Synechococcus Mutants. PLANT PHYSIOLOGY 1995; 108:183-190. [PMID: 12228462 PMCID: PMC157319 DOI: 10.1104/pp.108.1.183] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high-CO2-requiring mutant of Synechococcus sp. PCC 7942, EK6, was obtained after extension of the C terminus of the small subunit of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco). The carboxysomes in EK6 were much larger than in the wild type, but the cellular distribution of the large and small sub-units of Rubisco was not affected. The kinetic parameters of in vitro-activated Rubisco were similar in EK6 and in the wild type. On the other hand, Rubisco appeared to be in a low state of activation in situ in EK6 cells pretreated with an air level of CO2. This was deduced from the appearance of a lag phase when carboxylation was followed with time in cells permeabilized by detergent and subsequently supplied with saturating CO2 and RuBP. Pretreatment of the cells with high CO2 virtually abolished the lag. After low-CO2 treatment, the internal RuBP pool was much higher in mutant cells than in the wild-type cells; pretreatment with high CO2 reduced the pool in mutant cells. We suggest that the high-CO2-requiring phenotype in mutants that possess aberrant carboxysomes arises from the inactivated state of Rubisco when the cells are exposed to low CO2.
Collapse
Affiliation(s)
- R. Schwarz
- Department of Botany, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | | | | |
Collapse
|