1
|
Schada von Borzyskowski L, Sonntag F, Pöschel L, Vorholt JA, Schrader J, Erb TJ, Buchhaupt M. Replacing the Ethylmalonyl-CoA Pathway with the Glyoxylate Shunt Provides Metabolic Flexibility in the Central Carbon Metabolism of Methylobacterium extorquens AM1. ACS Synth Biol 2018; 7:86-97. [PMID: 29216425 DOI: 10.1021/acssynbio.7b00229] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ethylmalonyl-CoA pathway (EMCP) is an anaplerotic reaction sequence in the central carbon metabolism of numerous Proteo- and Actinobacteria. The pathway features several CoA-bound mono- and dicarboxylic acids that are of interest as platform chemicals for the chemical industry. The EMCP, however, is essential for growth on C1 and C2 carbon substrates and therefore cannot be simply interrupted to drain these intermediates. In this study, we aimed at reengineering central carbon metabolism of the Alphaproteobacterium Methylobacterium extorquens AM1 for the specific production of EMCP derivatives in the supernatant. Establishing a heterologous glyoxylate shunt in M. extorquens AM1 restored wild type-like growth in several EMCP knockout strains on defined minimal medium with acetate as carbon source. We further engineered one of these strains that carried a deletion of the gene encoding crotonyl-CoA carboxylase/reductase to demonstrate in a proof-of-concept the specific production of crotonic acid in the supernatant on a defined minimal medium. Our experiments demonstrate that it is in principle possible to further exploit the EMCP by establishing an alternative central carbon metabolic pathway in M. extorquens AM1, opening many possibilities for the biotechnological production of EMCP-derived compounds in future.
Collapse
Affiliation(s)
| | - Frank Sonntag
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Laura Pöschel
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Julia A. Vorholt
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Jens Schrader
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| | - Tobias J. Erb
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
- Center for Synthetic Microbiology, SYNMIKRO, 35043 Marburg, Germany
| | - Markus Buchhaupt
- DECHEMA Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt am Main, Germany
| |
Collapse
|
2
|
González JM, Marti-Arbona R, Chen JCH, Unkefer CJ. Structure of Methylobacterium extorquens malyl-CoA lyase: CoA-substrate binding correlates with domain shift. Acta Crystallogr F Struct Biol Commun 2017; 73:79-85. [PMID: 28177317 PMCID: PMC5297927 DOI: 10.1107/s2053230x17001029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022] Open
Abstract
Malyl-CoA lyase (MCL) is an Mg2+-dependent enzyme that catalyzes the reversible cleavage of (2S)-4-malyl-CoA to yield acetyl-CoA and glyoxylate. MCL enzymes, which are found in a variety of bacteria, are members of the citrate lyase-like family and are involved in the assimilation of one- and two-carbon compounds. Here, the 1.56 Å resolution X-ray crystal structure of MCL from Methylobacterium extorquens AM1 with bound Mg2+ is presented. Structural alignment with the closely related Rhodobacter sphaeroides malyl-CoA lyase complexed with Mg2+, oxalate and CoA allows a detailed analysis of the domain motion of the enzyme caused by substrate binding. Alignment of the structures shows that a simple hinge motion centered on the conserved residues Phe268 and Thr269 moves the C-terminal domain by about 30° relative to the rest of the molecule. This domain motion positions a conserved aspartate residue located in the C-terminal domain in the active site of the adjacent monomer, which may serve as a general acid/base in the catalytic mechanism.
Collapse
Affiliation(s)
- Javier M. González
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Julian C.-H. Chen
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Clifford J. Unkefer
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
3
|
Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA. Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl Microbiol Biotechnol 2014; 99:517-34. [PMID: 25432674 DOI: 10.1007/s00253-014-6240-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 01/06/2023]
Abstract
Methylotrophy is the ability to use reduced one-carbon compounds, such as methanol, as a single source of carbon and energy. Methanol is, due to its availability and potential for production from renewable resources, a valuable feedstock for biotechnology. Nature offers a variety of methylotrophic microorganisms that differ in their metabolism and represent resources for engineering of value-added products from methanol. The most extensively studied methylotroph is the Alphaproteobacterium Methylobacterium extorquens. Over the past five decades, the metabolism of M. extorquens has been investigated physiologically, biochemically, and more recently, using complementary omics technologies such as transcriptomics, proteomics, metabolomics, and fluxomics. These approaches, together with a genome-scale metabolic model, facilitate system-wide studies and the development of rational strategies for the successful generation of desired products from methanol. This review summarizes the knowledge of methylotrophy in M. extorquens, as well as the available tools and biotechnological applications.
Collapse
Affiliation(s)
- Andrea M Ochsner
- Institute of Microbiology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
4
|
Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 2010; 192:1813-23. [PMID: 20118267 DOI: 10.1128/jb.01166-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylobacterium extorquens AM1 is a facultative methylotroph capable of growth on both single-carbon and multicarbon compounds. Mutants defective in a pathway involved in converting acetyl-coenzyme A (CoA) to glyoxylate (the ethylmalonyl-CoA pathway) are unable to grow on both C(1) and C(2) compounds, showing that both modes of growth have this pathway in common. However, growth on C(2) compounds via the ethylmalonyl-CoA pathway should require glyoxylate consumption via malate synthase, but a mutant lacking malyl-CoA/beta-methylmalyl-CoA lyase activity (MclA1) that is assumed to be responsible for malate synthase activity still grows on C(2) compounds. Since glyoxylate is toxic to this bacterium, it seemed likely that a system is in place to keep it from accumulating. In this study, we have addressed this question and have shown by microarray analysis, mutant analysis, metabolite measurements, and (13)C-labeling experiments that M. extorquens AM1 contains an additional malyl-CoA/beta-methylmalyl-CoA lyase (MclA2) that appears to take part in glyoxylate metabolism during growth on C(2) compounds. In addition, an alternative pathway appears to be responsible for consuming part of the glyoxylate, converting it to glycine, methylene-H(4)F, and serine. Mutants lacking either pathway have a partial defect for growth on ethylamine, while mutants lacking both pathways are unable to grow appreciably on ethylamine. Our results suggest that the malate synthase reaction is a bottleneck for growth on C(2) compounds by this bacterium, which is partially alleviated by this alternative route for glyoxylate consumption. This strategy of multiple enzymes/pathways for the consumption of a toxic intermediate reflects the metabolic versatility of this facultative methylotroph and is a model for other metabolic networks involving high flux through toxic intermediates.
Collapse
|
5
|
Marx CJ. Development of a broad-host-range sacB-based vector for unmarked allelic exchange. BMC Res Notes 2008; 1:1. [PMID: 18710539 PMCID: PMC2518277 DOI: 10.1186/1756-0500-1-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 02/26/2008] [Indexed: 11/26/2022] Open
Abstract
Background Although genome sequences are available for an ever-increasing number of bacterial species, the availability of facile genetic tools for physiological analysis have generally lagged substantially behind traditional genetic models. Results Here I describe the development of an improved, broad-host-range "in-out" allelic exchange vector, pCM433, which permits the generation of clean, marker-free genetic manipulations. Wild-type and mutant alleles were reciprocally exchanged at three loci in Methylobacterium extorquens AM1 in order to demonstrate the utility of pCM433. Conclusion The broad-host-range vector for marker-free allelic exchange described here, pCM433, has the advantages of a high copy, general Escherichia coli replicon for easy cloning, an IncP oriT enabling conjugal transfer, an extensive set of restriction sites in its polylinker, three antibiotic markers, and sacB (encoding levansucrase) for negative selection upon sucrose plates. These traits should permit pCM433 to be broadly applied across many bacterial taxa for marker-free allelic exchange, which is particularly important if multiple manipulations or more subtle genetic manipulations such as point mutations are desired.
Collapse
Affiliation(s)
- Christopher J Marx
- Department of Organismic and Evolutionary Biology, Harvard University, 3083 Biological Laboratories, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
6
|
Rintala E, Pitkänen JP, Vehkomäki ML, Penttilä M, Ruohonen L. The ORF YNL274c (GOR1) codes for glyoxylate reductase in Saccharomyces cerevisiae. Yeast 2007; 24:129-36. [PMID: 17173333 DOI: 10.1002/yea.1434] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme glyoxylate reductase reversibly reduces glyoxylate to glycolate, or alternatively hydroxypyruvate to D-glycerate, using either NADPH or NADH as a co-factor. The enzyme has multiple metabolic roles in different organisms. In this paper we show that GOR1 (ORF YNL274c) encodes a glyoxylate reductase and not a hydroxyisocaproate dehydrogenase in Saccharomyces cerevisiae, even though it also has minor activity on alpha-ketoisocaproate. In addition, we show that deletion of the glyoxylate reductase-encoding gene leads to higher biomass concentration after diauxic shift.
Collapse
Affiliation(s)
- Eija Rintala
- VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT, Finland.
| | | | | | | | | |
Collapse
|
7
|
Chistoserdova L, Chen SW, Lapidus A, Lidstrom ME. Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 2003; 185:2980-7. [PMID: 12730156 PMCID: PMC154073 DOI: 10.1128/jb.185.10.2980-2987.2003] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-2125, USA
| | | | | | | |
Collapse
|
8
|
Korotkova N, Chistoserdova L, Lidstrom ME. Poly-beta-hydroxybutyrate biosynthesis in the facultative methylotroph methylobacterium extorquens AM1: identification and mutation of gap11, gap20, and phaR. J Bacteriol 2002; 184:6174-81. [PMID: 12399487 PMCID: PMC151960 DOI: 10.1128/jb.184.22.6174-6181.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Accepted: 08/20/2002] [Indexed: 11/20/2022] Open
Abstract
Methylobacterium extorquens AM1, a serine cycle facultative methylotroph, accumulates poly-beta-hydroxybutyrate (PHB) as a carbon and energy reserve material during growth on both multicarbon- and single-carbon substrates. Recently, the identification and mutation of the genes involved in the biosynthesis and degradation of PHB have been described for this bacterium, demonstrating that two of the genes of the PHB cycle (phaA and phaB) are also involved in C(1) and C(2) metabolism, as part of a novel pathway for glyoxylate regeneration in the serine cycle (N. Korotkova and M. E. Lidstrom, J. Bacteriol. 183:1038-1046, 2001; N. Korotkova, L. Chistoserdova, V. Kuksa, and M. E. Lidstrom, J. Bacteriol. 184:1750-1758, 2002). In this work, three new genes involved in PHB biosynthesis in this bacterium have been investigated via mutation and phenotypic analysis: gap11, gap20, and phaR. We demonstrate that gap11 and gap20 encode two major granule-associated proteins (phasins) and that mutants with mutations in these genes are defective in PHB production and also in growth on C(2) compounds, while they show wild-type growth characteristics on C(1) or multicarbon compounds. The phaR mutant shows defects in both PHB accumulation and growth characteristics when grown on C(1) compounds and has defects in PHB accumulation but grows normally on C(3) and C(4) compounds, while both PHB accumulation and growth rate are at wild-type levels during growth on C(2) compounds. Our results suggest that this phenotype is due to altered fluxes of acetyl coenzyme A (CoA), a major intermediate in C(1), C(2), and heterotrophic metabolism in M. extorquens AM1, as well as the entry metabolite for the PHB cycle. Therefore, it seems likely that PhaR acts to control acetyl-CoA flux to PHB in this methylotrophic bacterium.
Collapse
Affiliation(s)
- Natalia Korotkova
- Department of Chemical Engineering, University of Washington, Seattle 98195-1750, USA
| | | | | |
Collapse
|
9
|
Kayser MF, Ucurum Z, Vuilleumier S. Dichloromethane metabolism and C1 utilization genes in Methylobacterium strains. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1915-1922. [PMID: 12055310 DOI: 10.1099/00221287-148-6-1915] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability of methylotrophic alpha-proteobacteria to grow with dichloromethane (DCM) as source of carbon and energy has long been thought to depend solely on a single cytoplasmic enzyme, DCM dehalogenase, which converts DCM to formaldehyde, a central intermediate of methylotrophic growth. The gene dcmA encoding DCM dehalogenase of Methylobacterium dichloromethanicum DM4 was expressed from a plasmid in closely related Methylobacterium strains lacking this enzyme. The ability to grow with DCM could be conferred upon Methylobacterium chloromethanicum CM4, a chloromethane degrader, but not upon Methylobacterium extorquens AM1. In addition, growth of strain AM1 with methanol was impaired in the presence of DCM. The possibility that single-carbon (C1) utilization pathways in dehalogenating Methylobacterium strains differed from those discovered in strain AM1 was addressed. Homologues of tetrahydrofolate-linked and tetrahydromethanopterin-linked C1 utilization genes of strain AM1 were detected in both strain DM4 and strain CM4, and cloning and sequencing of several of these genes from strain DM4 revealed very high sequence identity (96.5-99.7%) to the corresponding genes of strain AM1. The expression of transcriptional xylE fusions of selected genes of the tetrahydrofolate- and tetrahydromethanopterin-linked pathways from strain DM4 was investigated. The data obtained suggest that the expression levels of some C1 utilization genes in M. dichloromethanicum DM4 grown with DCM may differ from those observed during growth with methanol.
Collapse
Affiliation(s)
- Martin F Kayser
- Institut für Mikrobiologie, ETH Zürich, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland1
| | - Zöhre Ucurum
- Institut für Mikrobiologie, ETH Zürich, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland1
| | - Stéphane Vuilleumier
- Institut für Mikrobiologie, ETH Zürich, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland1
| |
Collapse
|
10
|
Korotkova N, Chistoserdova L, Kuksa V, Lidstrom ME. Glyoxylate regeneration pathway in the methylotroph Methylobacterium extorquens AM1. J Bacteriol 2002; 184:1750-8. [PMID: 11872727 PMCID: PMC134890 DOI: 10.1128/jb.184.6.1750-1758.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most serine cycle methylotrophic bacteria lack isocitrate lyase and convert acetyl coenzyme A (acetyl-CoA) to glyoxylate via a novel pathway thought to involve butyryl-CoA and propionyl-CoA as intermediates. In this study we have used a genome analysis approach followed by mutation to test a number of genes for involvement in this novel pathway. We show that methylmalonyl-CoA mutase, an R-specific crotonase, isobutyryl-CoA dehydrogenase, and a GTPase are involved in glyoxylate regeneration. We also monitored the fate of (14)C-labeled carbon originating from acetate, butyrate, or bicarbonate in mutants defective in glyoxylate regeneration and identified new potential intermediates in the pathway: ethylmalonyl-CoA, methylsuccinyl-CoA, isobutyryl-CoA, methacrylyl-CoA, and beta-hydroxyisobutyryl-CoA. A new scheme for the pathway is proposed based on these data.
Collapse
Affiliation(s)
- Natalia Korotkova
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, USA
| | | | | | | |
Collapse
|
11
|
Ohshima T, Nunoura-Kominato N, Kudome T, Sakuraba H. A novel hyperthermophilic archaeal glyoxylate reductase from Thermococcus litoralis. Characterization, gene cloning, nucleotide sequence and expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4740-7. [PMID: 11532010 DOI: 10.1046/j.1432-1327.2001.02394.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A novel NADH-dependent glyoxylate reductase has been found in a hyperthermophilic archaeon Thermococcus litoralis DSM 5473. This is the first evidence for glyoxylate metabolism and its corresponding enzyme in hyperthermophilic archaea. NADH-dependent glyoxylate reductase was purified approximately 560-fold from a crude extract of the hyperthermophile by five successive column chromatographies and preparative PAGE. The molecular mass of the purified enzyme was estimated to be 76 kDa, and the enzyme consisted of a homodimer with a subunit molecular mass of approximately 37 kDa. The optimum pH and temperature for enzyme activity were approximately 6.5 and 90 degrees C, respectively. The enzyme was extremely thermostable; the activity was stable up to 90 degrees C. The glyoxylate reductase catalyzed the reduction of glyoxylate and hydroxypyruvate, and the relative activity for hydroxypyruvate was approximately one-quarter that of glyoxylate in the presence of NADH as an electron donor. NADPH exhibited rather low activity as an electron donor compared with NADH. The Km values for glyoxylate, hydroxypyruvate, and NADH were determined to be 0.73, 1.3 and 0.067 mM, respectively. The gene encoding the enzyme was cloned and expressed in Escherichia coli. The nucleotide sequence of the glyoxylate reductase gene was determined and found to encode a peptide of 331 amino acids with a calculated relative molecular mass of 36,807. The amino-acid sequence of the T. litoralis enzyme showed high similarity with those of probable dehydrogenases in Pyrococcus horikoshii and P. abyssi. The purification of the enzyme from recombinant E. coli was much simpler compared with that from T. litoralis; only two steps of heat treatment and dye-affinity chromatography were needed.
Collapse
Affiliation(s)
- T Ohshima
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, Japan.
| | | | | | | |
Collapse
|
12
|
Nuñez MF, Pellicer MT, Badia J, Aguilar J, Baldoma L. Biochemical characterization of the 2-ketoacid reductases encoded by ycdW and yiaE genes in Escherichia coli. Biochem J 2001; 354:707-15. [PMID: 11237876 PMCID: PMC1221703 DOI: 10.1042/0264-6021:3540707] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Glyoxylate is an important intermediate of the central microbial metabolism formed from acetate, allantoin or glycolate. Depending on the physiological conditions, glyoxylate is incorporated into the central metabolism by the combined actions of the activity of malate synthase and the D-glycerate pathway, or alternatively it can be reduced to glycolate by constitutive glyoxylate reductase activity. At present no information is available on this latter enzyme in Escherichia coli, although similar enzymes, classified as 2-hydroxyacid dehydrogenases, have been characterized in other organisms. A BLAST search using as the query sequence the hydroxypyruvate/glyoxylate reductase from Cucumis sativus identified as an orthologue the yiaE gene of E. coli encoding a ketoaldonate reductase. Use of this sequence in a subsequent BLAST search yielded the ycdW gene as a good candidate to encode glyoxylate reductase in this bacterium. Cloning and overexpression of the ycdW gene showed that its product displayed a high NADPH-linked glyoxylate reductase activity, and also catalysed the reduction of hydroxypyruvate with a lower efficiency. Disruption of the ycdW gene by a chloramphenicol acetyltransferase ('CAT') cassette did not totally abolish the glyoxylate reductase activity, indicating that another enzyme accomplished this function. The similarity with YiaE led us to test whether this protein was responsible for the remaining glyoxylate reductase activity. Purification of YcdW and YiaE proteins permitted their kinetic characterization and comparison. Analysis of the catalytic power (k(cat)/K(m)) disclosed a higher ratio of YcdW for glyoxylate and of YiaE for hydroxypyruvate.
Collapse
Affiliation(s)
- M F Nuñez
- Department of Biochemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
13
|
Korotkova N, Lidstrom ME. Connection between poly-beta-hydroxybutyrate biosynthesis and growth on C(1) and C(2) compounds in the methylotroph Methylobacterium extorquens AM1. J Bacteriol 2001; 183:1038-46. [PMID: 11208803 PMCID: PMC94972 DOI: 10.1128/jb.183.3.1038-1046.2001] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several DNA regions containing genes involved in poly-beta-hydroxybutyrate (PHB) biosynthesis and degradation and also in fatty acid degradation were identified from genomic sequence data and have been characterized in the serine cycle facultative methylotroph Methylobacterium extorquens AM1. Genes involved in PHB biosynthesis include those encoding beta-ketothiolase (phaA), NADPH-linked acetoacetyl coenzyme A (acetyl-CoA) reductase (phaB), and PHB synthase (phaC). phaA and phaB are closely linked on the chromosome together with a third gene with identity to a regulator of PHB granule-associated protein, referred to as orf3. phaC was unlinked to phaA and phaB. Genes involved in PHB degradation include two unlinked genes predicted to encode intracellular PHB depolymerases (depA and depB). These genes show a high level of identity with each other at both DNA and amino acid levels. In addition, a gene encoding beta-hydroxybutyrate dehydrogenase (hbd) was identified. Insertion mutations were introduced into depA, depB, phaA, phaB, phaC, and hbd and also in a gene predicted to encode crotonase (croA), which is involved in fatty acid degradation, to investigate their role in PHB cycling. Mutants in depA, depB, hbd, and croA all produced normal levels of PHB, and the only growth phenotype observed was the inability of the hbd mutant to grow on beta-hydroxybutyrate. However, the phaA, phaB, and phaC mutants all showed defects in PHB synthesis. Surprisingly, these mutants also showed defects in growth on C(1) and C(2) compounds and, for phaB, these defects were rescued by glyoxylate supplementation. These results suggest that beta-hydroxybutyryl-CoA is an intermediate in the unknown pathway that converts acetyl-CoA to glyoxylate in methylotrophs and Streptomyces spp.
Collapse
Affiliation(s)
- N Korotkova
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, USA
| | | |
Collapse
|
14
|
Springer AL, Auman AJ, Lidstrom ME. Sequence and characterization of mxaB, a response regulator involved in regulation of methanol oxidation, and of mxaW, a methanol-regulated gene in Methylobacterium extorquens AM1. FEMS Microbiol Lett 1998; 160:119-24. [PMID: 9495022 DOI: 10.1111/j.1574-6968.1998.tb12900.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the facultative serine cycle methylotroph Methylobacterium extorquens AM1, mxaB is required for regulation of methanol oxidation and is located at the end of a large cluster of methylotrophy genes that begins with mxaF. The sequence of mxaB has been obtained and indicates that the gene product is a member of the response regulator family. None of the open reading frames near mxaB showed sequence identity to sensor kinases. Complementation studies suggest a promoter may be located adjacent to mxaB. Another gene (mxaW) is present immediately upstream of mxaF, divergently transcribed from a methanol-inducible promoter. The sequence in the region of mxaW was also obtained. MxaW showed no identity to known proteins. Mutations in mxaW and in an adjacent open reading frame, OrfR, had no effect on growth of M. extorquens AM1 on methanol or other substrates. The MxaW mutant had normal methanol dehydrogenase activity and normal transcription of the mxaF promoter. Therefore, the function of mxaW is unknown.
Collapse
Affiliation(s)
- A L Springer
- Department of Chemical Engineering, University of Washington, Seattle 98195-1750, USA
| | | | | |
Collapse
|
15
|
Chistoserdova L, Lidstrom ME. Molecular and mutational analysis of a DNA region separating two methylotrophy gene clusters in Methylobacterium extorquens AM1. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 5):1729-1736. [PMID: 9168622 DOI: 10.1099/00221287-143-5-1729] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A region of 14.2 kb has been analysed that is a part of a locus on the Methylobacterium extorquens AM1 chromosome containing a number of genes involved in one-carbon (C1) metabolism, including serine cycle genes, pqq genes, regulatory methanol oxidation genes and the gene for N5,N10-methylene tetrahydrofolate dehydrogenase (mtdA). Fifteen new ORFs have been identified within the new region, and their sequences suggest that they encode the following polypeptides: the C-terminal part of phosphoenolpyruvate carboxylase, malyl-CoA lyase, polypeptides of 9.4 and 31 kDa of unknown function, three putative subunits of an ABC-type transporter, two polypeptides similar to the products of mxaF and mxaJ from M. extorquens AM1 and other methylotrophs, a cytochrome c, three enzymes of folate metabolism, and polypeptides of 13 and 20.5 kDa with no homologues in the protein database. Ten insertion mutations have been generated in the region to determine if the newly identified genes are associated with C1 metabolism. A mutation in mclA, encoding malyl-CoA lyase, resulted in a C1-minus phenotype, while mutations in the other genes all showed a C1-plus phenotype. It was not possible to obtain null mutants in a putative folate metabolism gene, folC, implying the necessity of these folate synthesis genes for metabolism of C1 and multicarbon compounds. Mutations in the putative ABC transporter genes, the genes similar to mxaG and mxaJ, and other unidentified ORFs produced double-crossover recombinants with a C1-positive phenotype. Promoter regions have been investigated upstream of orf3 and orf4 using the promoter probe vector pHX200. Transcription from these promoters was weak in wild-type M. extorquens AM1 but increased in regulatory mox mutants.
Collapse
Affiliation(s)
- Ludmila Chistoserdova
- Department of Chemical Engineering, Box 351750, University of Washington, Seattle, WA 98195-1750, USA
| | - Mary E Lidstrom
- Department of Microbiology, Box 35742, University of Washington, Seattle, WA 98195-1750, USA
- Department of Chemical Engineering, Box 351750, University of Washington, Seattle, WA 98195-1750, USA
| |
Collapse
|
16
|
Abstract
Methane-utilizing bacteria (methanotrophs) are a diverse group of gram-negative bacteria that are related to other members of the Proteobacteria. These bacteria are classified into three groups based on the pathways used for assimilation of formaldehyde, the major source of cell carbon, and other physiological and morphological features. The type I and type X methanotrophs are found within the gamma subdivision of the Proteobacteria and employ the ribulose monophosphate pathway for formaldehyde assimilation, whereas type II methanotrophs, which employ the serine pathway for formaldehyde assimilation, form a coherent cluster within the beta subdivision of the Proteobacteria. Methanotrophic bacteria are ubiquitous. The growth of type II bacteria appears to be favored in environments that contain relatively high levels of methane, low levels of dissolved oxygen, and limiting concentrations of combined nitrogen and/or copper. Type I methanotrophs appear to be dominant in environments in which methane is limiting and combined nitrogen and copper levels are relatively high. These bacteria serve as biofilters for the oxidation of methane produced in anaerobic environments, and when oxygen is present in soils, atmospheric methane is oxidized. Their activities in nature are greatly influenced by agricultural practices and other human activities. Recent evidence indicates that naturally occurring, uncultured methanotrophs represent new genera. Methanotrophs that are capable of oxidizing methane at atmospheric levels exhibit methane oxidation kinetics different from those of methanotrophs available in pure cultures. A limited number of methanotrophs have the genetic capacity to synthesize a soluble methane monooxygenase which catalyzes the rapid oxidation of environmental pollutants including trichloroethylene.
Collapse
Affiliation(s)
- R S Hanson
- Department of Microbiology, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
17
|
Chistoserdova LV, Lidstrom ME. Molecular characterization of a chromosomal region involved in the oxidation of acetyl-CoA to glyoxylate in the isocitrate-lyase-negative methylotroph Methylobacterium extorquens AM1. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 6):1459-1468. [PMID: 8704985 DOI: 10.1099/13500872-142-6-1459] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A region on the Methylobacterium extorquens AM1 chromosome previously shown to complement a chemically induced mutant (PCT48) unable to convert acetyl-CoA into glyoxylate was characterized in detail in order to identify the gene(s) involved in the unknown pathway for acetyl-CoA oxidation. Six complete and two partial ORFs were identified by sequencing. Sequence comparisons suggested these might code for, respectively, a dehydrogenase of unknown specificity, a polypeptide of at least 15 kDa with unknown function, a coenzyme-B12-linked mutase, a catalase, an alcohol dehydrogenase (ADH) of unknown function, a polypeptide of 28 kDa, a ketol-acid reductoisomerase and a propionyl-CoA carboxylase (PCC). Insertion mutations were introduced into each ORF in order to determine their involvement in C1 and C2 metabolism. Mutations in three genes, encoding the mutase, ADH and PCC, resulted in a phenotype characteristic of mutants unable to oxidize acetyl-CoA, i.e. they were C1-and C2-negative and their growth on these compounds was restored by the addition of glycolate or glyoxylate. Mutants in the genes thought to encode catalase and PCC were found to be deficient in the corresponding enzyme activity, confirming the identity of these genes, while physiological substrates for the mutase and ADH remain unidentified. This work, in which three new genes necessary for conversion of acetyl-CoA into glyoxylate were identified, is an intermediary step on the way to the solution of the unknown pathway for acetyl-CoA oxidation in isocitrate-lyase-negative methylotrophs.
Collapse
Affiliation(s)
| | - Mary E Lidstrom
- Keck Laboratories 138-78, California Institute of Technology, Pasadena, CA 91 125, USA
| |
Collapse
|
18
|
Chistoserdova LV, Lidstrom ME. Genetics of the serine cycle in Methylobacterium extorquens AM1: identification, sequence, and mutation of three new genes involved in C1 assimilation, orf4, mtkA, and mtkB. J Bacteriol 1994; 176:7398-404. [PMID: 7961516 PMCID: PMC197134 DOI: 10.1128/jb.176.23.7398-7404.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In a recent paper we reported the sequence of the beginning of a serine cycle gene cluster on the Methylobacterium extorquens AM1 chromosome, containing the genes encoding serine glyoxylate aminotransferase (sgaA), hydroxypyruvate reductase (hprA), and 5,10-methylenetetrahydrofolate dehydrogenase (mtdA) (L. V. Chistoserdova and M. E. Lidstrom J. Bacteriol. 176:1957-1968, 1994). Here we present the sequence of the adjacent downstream region containing three full and one partial open reading frames. The first of the full open reading frames (orf4) remains unidentified, while the other two (mtkA and mtkB) code for the two subunits of malate thiokinase, and the fourth, a partial open reading frame (ppcA), apparently encodes phosphoenolpyruvate carboxylase. Mutants containing insertion mutations in orf4, mtdA, and mtdB all were unable to grow on C1 compounds, showing that these three newly identified genes are indispensable for the operation of the serine cycle. Mutants in orf4 were also unable to grow on C2 compounds, but growth was restored by glyoxylate, suggesting that orf4 might be required for the conversion of acetyl coenzyme A to glyoxylate.
Collapse
Affiliation(s)
- L V Chistoserdova
- W. M. Keck Laboratories, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
19
|
Chistoserdova LV, Lidstrom ME. Genetics of the serine cycle in Methylobacterium extorquens AM1: cloning, sequence, mutation, and physiological effect of glyA, the gene for serine hydroxymethyltransferase. J Bacteriol 1994; 176:6759-62. [PMID: 7961431 PMCID: PMC197035 DOI: 10.1128/jb.176.21.6759-6762.1994] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gene (glyA) of Methylobacterium extorquens AM1 encoding serine hydroxymethyltransferase (SHMT), one of the key enzymes of the serine cycle for C1 assimilation, was isolated by using a synthetic oligonucleotide with a sequence based on amino acid sequence conserved in SHMTs from different sources. The amino acid sequence deduced from the gene revealed high similarity to those of known SHMTs. The cloned gene was inactivated by insertion of a kanamycin resistance gene, and recombination of this insertion derivative with the wild-type gene produced an SHMT null mutant. Surprisingly, this mutant had lost its ability to grow on C1 as well as on C2 compounds but was still able to grow on succinate. The DNA fragment containing glyA was shown not to be linked with fragments carrying serine cycle genes identified earlier, making it the fourth chromosomal region of M. extorquens AM1 to be indicated as being involved in C1 assimilation.
Collapse
Affiliation(s)
- L V Chistoserdova
- W.M. Keck Laboratories 138-78, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
20
|
Chistoserdova LV, Lidstrom ME. Genetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA. J Bacteriol 1994; 176:1957-68. [PMID: 8144463 PMCID: PMC205300 DOI: 10.1128/jb.176.7.1957-1968.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In a previous paper, we reported identification of the 5' part of hprA of Methylobacterium extorquens AM1, which encodes the serine cycle enzyme hydroxypyruvate reductase (L. V. Chistoserdova and M. E. Lidstrom, J. Bacteriol. 174:71-77, 1992). Here we present the complete sequence of hprA and partial sequence of genes adjacent to hprA. Upstream of hprA, the 3' part of an open reading frame was discovered, separated from hprA by 263 bp. This open reading frame was identified as the gene encoding another serine cycle enzyme, serine glyoxylate aminotransferase (sgaA). Cells containing an insertion mutation into sgaA were unable to grow on C1 compounds, demonstrating that the gene is required for C1 metabolism. Sequencing downstream of hprA has revealed the presence of another open reading frame (mtdA), which is probably cotranscribed with hprA. This open reading frame was identified as the gene required for the synthesis of 5,10-methylenetetrahydrofolate dehydrogenase. Our data suggest that this enzyme plays an integral role in methylotrophic metabolism in M. extorquens AM1, either in formaldehyde oxidation or as part of the serine cycle.
Collapse
Affiliation(s)
- L V Chistoserdova
- W. M. Keck Laboratories 138-78, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
21
|
Barta TM, Hanson RS. Genetics of methane and methanol oxidation in gram-negative methylotrophic bacteria. Antonie Van Leeuwenhoek 1994; 64:109-20. [PMID: 8092853 DOI: 10.1007/bf00873021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Within the past few years, considerable progress has been made in the understanding of the molecular genetics of methane and methanol oxidation. In order to summarize this progress and to illustrate the important genetic methods employed, this review will focus on several well-studied organisms. These organisms include the gram-negative faculative methylotrophs Methylobacterium extorquens, Methylobacterium organophilum and Paracoccus denitrificans. In addition, the obligate methanotrophs Methylococcus capsulatus and Methylosinus trichosporium are discussed. We have chosen not to discuss the genetics of methanol oxidation in the yeasts or in gram-positive bacteria. Likewise, the genetics of related topics (for example, methylamine oxidation and carbon assimilation pathways) are not reviewed here. Broad host range conjugatable plasmids have enabled researchers to complement mutations and clone genes from gram-negative methylotrophic bacteria. More recently, 'promoter probe' derivative plasmids have been used to elucidate aspects of gene regulation. Also, alternative gene-cloning techniques are proving useful in circumventing problems in the genetic studies of the obligate methanotrophs, the group of bacteria that is the most refractory to traditional methods.
Collapse
Affiliation(s)
- T M Barta
- Gray Freshwater Biological Institute, University of Minnesota, Navarre 55392
| | | |
Collapse
|
22
|
Arps PJ, Fulton GF, Minnich EC, Lidstrom ME. Genetics of serine pathway enzymes in Methylobacterium extorquens AM1: phosphoenolpyruvate carboxylase and malyl coenzyme A lyase. J Bacteriol 1993; 175:3776-83. [PMID: 8509332 PMCID: PMC204794 DOI: 10.1128/jb.175.12.3776-3783.1993] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Methylobacterium extorquens AM1 is a facultative methylotrophic bacterium that uses the serine pathway for formaldehyde incorporation as its assimilation pathway during growth on one-carbon compounds. A DNA region from M. extorquens AM1 previously shown to contain genes for the serine pathway enzymes malyl coenzyme A (CoA) lyase and hydroxypyruvate reductase has been characterized in more detail. Insertion mutagenesis revealed an additional region required for growth on one-carbon compounds, and all of the insertion mutants in this region lacked activity for another serine pathway enzyme, the acetyl-CoA-independent phosphoenolpyruvate (PEP) carboxylase. Expression analysis with Escherichia coli of DNA fragments that included the malyl-CoA lyase and PEP carboxylase regions identified five polypeptides, all transcribed in the same direction. Three of these polypeptides were expressed from the region necessary for the acetyl-CoA-independent PEP carboxylase, one was expressed from the region containing the malyl-CoA lyase gene, and the fifth was expressed from a region immediately downstream from the gene encoding hydroxypyruvate reductase. All six genes are transcribed in the same direction, but the transposon insertion data suggest that they are not all cotranscribed.
Collapse
Affiliation(s)
- P J Arps
- Keck Laboratories, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|