1
|
Bartsch LJ, Borowiak M, Deneke C, Gruetzke J, Hammerl JA, Malorny B, Szabo I, Alter T, Nguyen KK, Fischer J. Genetic characterization of a multidrug-resistant Salmonella enterica serovar Agona isolated from a dietary supplement in Germany. Front Microbiol 2023; 14:1284929. [PMID: 38033583 PMCID: PMC10686068 DOI: 10.3389/fmicb.2023.1284929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Salmonella enterica subsp. enterica serovar Agona has a history of causing food-borne outbreaks and any emergence of multidrug-resistant (MDR) isolates in novel food products is of concern. Particularly, in food products frequently consumed without sufficient heating prior to consumption. Here, we report about the MDR isolate, 18-SA00377, which had been isolated from a dietary supplement in Germany in 2018 and submitted to the German National Reference Laboratory for Salmonella. WGS-based comparative genetic analyses were conducted to find a potential reservoir of the isolate itself or mobile genetic elements associated with MDR. As a phylogenetic analysis did not yield any closely related S. Agona isolates, either globally or from Germany, a detailed analysis of the largest plasmid (295,499 bp) was performed as it is the main carrier of resistances. A combined approach of long-read and short-read sequencing enabled the assembly of the isolate's chromosome and its four plasmids. Their characterization revealed the presence of 23 different antibiotic resistance genes (ARGs), conferring resistance to 12 different antibiotic drug classes, as well as genes conferring resistance to six different heavy metals. The largest plasmid, pSE18-SA00377-1, belongs to the IncHI2 plasmid family and carries 16 ARGs, that are organized as two distinct clusters, with each ARG associated with putative composite transposons. Through a two-pronged approach, highly similar plasmids to pSE18-SA00377-1 were identified in the NCBI database and a search for Salmonella isolates with a highly similar ARG resistance profile was conducted. Mapping and structural comparisons between pSE18-SA00377-1 and these plasmids and Salmonella isolates showed that both the plasmid backbone and identical or similar ARG clusters can be found not only in Salmonella isolates, originating mostly from a wide variety of livestock, but also in a diverse range of bacterial genera of varying geographical origins and isolation sources. Thus, it can be speculated that the host range of pSE18-SA00377-1 is not restricted to Salmonella and its spread already occurred in different bacterial populations. Overall, this hints at a complex history for pSE18-SA00377-1 and highlights the importance of surveilling multidrug-resistant S. enterica isolates, especially in novel food items that are not yet heavily regulated.
Collapse
Affiliation(s)
- Lee Julia Bartsch
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maria Borowiak
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Carlus Deneke
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Josephine Gruetzke
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens-Andre Hammerl
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Burkhard Malorny
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Istvan Szabo
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Thomas Alter
- Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | - Jennie Fischer
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
2
|
Balbuena-Alonso MG, Camps M, Cortés-Cortés G, Carreón-León EA, Lozano-Zarain P, Rocha-Gracia RDC. Strain belonging to an emerging, virulent sublineage of ST131 Escherichia coli isolated in fresh spinach, suggesting that ST131 may be transmissible through agricultural products. Front Cell Infect Microbiol 2023; 13:1237725. [PMID: 37876872 PMCID: PMC10591226 DOI: 10.3389/fcimb.2023.1237725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/15/2023] [Indexed: 10/26/2023] Open
Abstract
Food contamination with pathogenic Escherichia coli can cause severe disease. Here, we report the isolation of a multidrug resistant strain (A23EC) from fresh spinach. A23EC belongs to subclade C2 of ST131, a virulent clone of Extraintestinal Pathogenic E. coli (ExPEC). Most A23EC virulence factors are concentrated in three pathogenicity islands. These include PapGII, a fimbrial tip adhesin linked to increased virulence, and CsgA and CsgB, two adhesins known to facilitate spinach leaf colonization. A23EC also bears TnMB1860, a chromosomally-integrated transposon with the demonstrated potential to facilitate the evolution of carbapenem resistance among non-carbapenemase-producing enterobacterales. This transposon consists of two IS26-bound modular translocatable units (TUs). The first TU carries aac(6')-lb-cr, bla OXA-1, ΔcatB3, aac(3)-lle, and tmrB, and the second one harbors bla CXT-M-15. A23EC also bears a self-transmissible plasmid that can mediate conjugation at 20°C and that has a mosaic IncF [F(31,36):A(4,20):B1] and Col156 origin of replication. Comparing A23EC to 86 additional complete ST131 sequences, A23EC forms a monophyletic cluster with 17 other strains that share the following four genomic traits: (1) virotype E (papGII+); (2) presence of a PAI II536-like pathogenicity island with an additional cnf1 gene; (3) presence of chromosomal TnMB1860; and (4) frequent presence of an F(31,36):A(4,20):B1 plasmid. Sequences belonging to this cluster (which we named "C2b sublineage") are highly enriched in septicemia samples and their associated genetic markers align with recent reports of an emerging, virulent sublineage of the C2 subclade, suggesting significant pathogenic potential. This is the first report of a ST131 strain belonging to subclade C2 contaminating green leafy vegetables. The detection of this uropathogenic clone in fresh food is alarming. This work suggests that ST131 continues to evolve, gaining selective advantages and new routes of transmission. This highlights the pressing need for rigorous epidemiological surveillance of ExPEC in vegetables with One Health perspective.
Collapse
Affiliation(s)
- Maria G. Balbuena-Alonso
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Manel Camps
- Departament of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Gerardo Cortés-Cortés
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departament of Microbiology and Environmental Toxicology, University of California at Santa Cruz, Santa Cruz, CA, United States
| | - Eder A. Carreón-León
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Chihuahua, Mexico
| | - Patricia Lozano-Zarain
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Rosa del Carmen Rocha-Gracia
- Posgrado en Microbiología, Centro de Investigaciones Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
3
|
Zheng M, Zheng M, Epstein S, Harnagel AP, Kim H, Lupoli TJ. Chemical Biology Tools for Modulating and Visualizing Gram-Negative Bacterial Surface Polysaccharides. ACS Chem Biol 2021; 16:1841-1865. [PMID: 34569792 DOI: 10.1021/acschembio.1c00341] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacterial cells present a wide diversity of saccharides that decorate the cell surface and help mediate interactions with the environment. Many Gram-negative cells express O-antigens, which are long sugar polymers that makeup the distal portion of lipopolysaccharide (LPS) that constitutes the surface of the outer membrane. This review highlights chemical biology tools that have been developed in recent years to facilitate the modulation of O-antigen synthesis and composition, as well as related bacterial polysaccharide pathways, and the detection of unique glycan sequences. Advances in the biochemistry and structural biology of O-antigen biosynthetic machinery are also described, which provide guidance for the design of novel chemical and biomolecular probes. Many of the tools noted here have not yet been utilized in biological systems and offer researchers the opportunity to investigate the complex sugar architecture of Gram-negative cells.
Collapse
Affiliation(s)
- Meng Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Maggie Zheng
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Samuel Epstein
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Alexa P. Harnagel
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Hanee Kim
- Department of Chemistry, New York University, New York, 10003 New York, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, 10003 New York, United States
| |
Collapse
|
4
|
McErlean M, Liu X, Cui Z, Gust B, Van Lanen SG. Identification and characterization of enzymes involved in the biosynthesis of pyrimidine nucleoside antibiotics. Nat Prod Rep 2021; 38:1362-1407. [PMID: 33404015 DOI: 10.1039/d0np00064g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to September 2020 Hundreds of nucleoside-based natural products have been isolated from various microorganisms, several of which have been utilized in agriculture as pesticides and herbicides, in medicine as therapeutics for cancer and infectious disease, and as molecular probes to study biological processes. Natural products consisting of structural modifications of each of the canonical nucleosides have been discovered, ranging from simple modifications such as single-step alkylations or acylations to highly elaborate modifications that dramatically alter the nucleoside scaffold and require multiple enzyme-catalyzed reactions. A vast amount of genomic information has been uncovered the past two decades, which has subsequently allowed the first opportunity to interrogate the chemically intriguing enzymatic transformations for the latter type of modifications. This review highlights (i) the discovery and potential applications of structurally complex pyrimidine nucleoside antibiotics for which genetic information is known, (ii) the established reactions that convert the canonical pyrimidine into a new nucleoside scaffold, and (iii) the important tailoring reactions that impart further structural complexity to these molecules.
Collapse
Affiliation(s)
- M McErlean
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - X Liu
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - Z Cui
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| | - B Gust
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Germany
| | - S G Van Lanen
- Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, USA.
| |
Collapse
|
5
|
McLean TC, Lo R, Tschowri N, Hoskisson PA, Al Bassam MM, Hutchings MI, Som NF. Sensing and responding to diverse extracellular signals: an updated analysis of the sensor kinases and response regulators of Streptomyces species. MICROBIOLOGY-SGM 2020; 165:929-952. [PMID: 31334697 DOI: 10.1099/mic.0.000817] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Streptomyces venezuelae is a Gram-positive, filamentous actinomycete with a complex developmental life cycle. Genomic analysis revealed that S. venezuelae encodes a large number of two-component systems (TCSs): these consist of a membrane-bound sensor kinase (SK) and a cognate response regulator (RR). These proteins act together to detect and respond to diverse extracellular signals. Some of these systems have been shown to regulate antimicrobial biosynthesis in Streptomyces species, making them very attractive to researchers. The ability of S. venezuelae to sporulate in both liquid and solid cultures has made it an increasingly popular model organism in which to study these industrially and medically important bacteria. Bioinformatic analysis identified 58 TCS operons in S. venezuelae with an additional 27 orphan SK and 18 orphan RR genes. A broader approach identified 15 of the 58 encoded TCSs to be highly conserved in 93 Streptomyces species for which high-quality and complete genome sequences are available. This review attempts to unify the current work on TCS in the streptomycetes, with an emphasis on S. venezuelae.
Collapse
Affiliation(s)
- Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Rebecca Lo
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Natalia Tschowri
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Mahmoud M Al Bassam
- Department of Paediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Nicolle F Som
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
6
|
Böhm ME, Razavi M, Marathe NP, Flach CF, Larsson DGJ. Discovery of a novel integron-borne aminoglycoside resistance gene present in clinical pathogens by screening environmental bacterial communities. MICROBIOME 2020; 8:41. [PMID: 32197644 PMCID: PMC7085159 DOI: 10.1186/s40168-020-00814-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/02/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND New antibiotic resistance determinants are generally discovered too late, long after they have irreversibly emerged in pathogens and spread widely. Early discovery of resistance genes, before or soon after their transfer to pathogens could allow more effective measures to monitor and reduce spread, and facilitate genetics-based diagnostics. RESULTS We modified a functional metagenomics approach followed by in silico filtering of known resistance genes to discover novel, mobilised resistance genes in class 1 integrons in wastewater-impacted environments. We identified an integron-borne gene cassette encoding a protein that conveys high-level resistance against aminoglycosides with a garosamine moiety when expressed in E. coli. The gene is named gar (garosamine-specific aminoglycoside resistance) after its specificity. It contains none of the functional domains of known aminoglycoside modifying enzymes, but bears characteristics of a kinase. By searching public databases, we found that the gene occurs in three sequenced, multi-resistant clinical isolates (two Pseudomonas aeruginosa and one Luteimonas sp.) from Italy and China, respectively, as well as in two food-borne Salmonella enterica isolates from the USA. In all cases, gar has escaped discovery until now. CONCLUSION To the best of our knowledge, this is the first time a novel resistance gene, present in clinical isolates, has been discovered by exploring the environmental microbiome. The gar gene has spread horizontally to different species on at least three continents, further limiting treatment options for bacterial infections. Its specificity to garosamine-containing aminoglycosides may reduce the usefulness of the newest semisynthetic aminoglycoside plazomicin, which is designed to avoid common aminoglycoside resistance mechanisms. Since the gene appears to be not yet common in the clinics, the data presented here enables early surveillance and maybe even mitigation of its spread.
Collapse
Affiliation(s)
- Maria-Elisabeth Böhm
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P. Marathe
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Institute of Marine Research (IMR), Bergen, Norway
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
de Curraize C, Neuwirth C, Bador J, Chapuis A, Amoureux L, Siebor E. Two new Salmonella genomic islands 1 from Proteus mirabilis and description of blaCTX-M-15 on a variant (SGI1-K7). J Antimicrob Chemother 2019; 73:1804-1807. [PMID: 29659873 DOI: 10.1093/jac/dky108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 03/07/2018] [Indexed: 11/12/2022] Open
Abstract
Objectives To characterize the structure of Salmonella genomic islands 1 (SGI1s) from two clinical Proteus mirabilis isolates: one producing an ESBL and the other a penicillinase. Methods WGS completed by PCR and Sanger sequencing was performed to determine sequences of SGI1s from Pm2CHAMA and Pm37THOMI strains. Results Two new variants of SGI1 named SGI1-Pm2CHAMA (53.6 kb) and SGI1-K7 (55.1 kb) were identified. The backbone of SGI1-Pm2CHAMA shared 99.9% identity with that of SGI1. Its MDR region (26.3 kb) harboured two class 1 integrons (an In2-type integron and an In4-type integron) containing in particular a qacH cassette (encoding a quaternary ammonium compound efflux pump). These two integrons framed a complex region (harbouring among others blaCARB-4) resulting from transposon insertions mediated by IS26 and successive transposition events of ISs (ISAba14 isoform and the new ISPmi2). The second variant (SGI1-K7) had the same backbone as SGI1-K. Its MDR region (29.7 kb) was derived from that of SGI1-K and was generated by three events. The two main events were mediated by IS26: inversion of a large portion of the MDR region of SGI1-K and insertion of a structure previously reported on plasmids carried by prevalent and successful MDR clones of Enterobacteriaceae. This last event led to the insertion of the blaCTX-M-15 gene into SGI1-K7. Conclusions This study confirmed the great plasticity of the MDR region of SGI1 and its potential key role for the dissemination of clinically significant antibiotic resistance among Enterobacteriaceae.
Collapse
Affiliation(s)
- Claire de Curraize
- Laboratory of Bacteriology, Dijon University Hospital, Plateau technique de Biologie, BP 37013, 21070 Dijon cedex, France.,UMR 6249 CNRS Chrono-environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Catherine Neuwirth
- Laboratory of Bacteriology, Dijon University Hospital, Plateau technique de Biologie, BP 37013, 21070 Dijon cedex, France.,UMR 6249 CNRS Chrono-environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Julien Bador
- Laboratory of Bacteriology, Dijon University Hospital, Plateau technique de Biologie, BP 37013, 21070 Dijon cedex, France.,UMR 6249 CNRS Chrono-environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Angélique Chapuis
- Laboratory of Bacteriology, Dijon University Hospital, Plateau technique de Biologie, BP 37013, 21070 Dijon cedex, France.,UMR 6249 CNRS Chrono-environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Lucie Amoureux
- Laboratory of Bacteriology, Dijon University Hospital, Plateau technique de Biologie, BP 37013, 21070 Dijon cedex, France.,UMR 6249 CNRS Chrono-environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| | - Eliane Siebor
- Laboratory of Bacteriology, Dijon University Hospital, Plateau technique de Biologie, BP 37013, 21070 Dijon cedex, France.,UMR 6249 CNRS Chrono-environnement, Université de Bourgogne Franche-Comté, 25000 Besançon, France
| |
Collapse
|
8
|
Self-Resistance during Muraymycin Biosynthesis: a Complementary Nucleotidyltransferase and Phosphotransferase with Identical Modification Sites and Distinct Temporal Order. Antimicrob Agents Chemother 2018; 62:AAC.00193-18. [PMID: 29735559 DOI: 10.1128/aac.00193-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/29/2018] [Indexed: 11/20/2022] Open
Abstract
Muraymycins are antibacterial natural products from Streptomyces spp. that inhibit translocase I (MraY), which is involved in cell wall biosynthesis. Structurally, muraymycins consist of a 5'-C-glycyluridine (GlyU) appended to a 5″-amino-5″-deoxyribose (ADR), forming a disaccharide core that is found in several peptidyl nucleoside inhibitors of MraY. For muraymycins, the GlyU-ADR disaccharide is further modified with an aminopropyl-linked peptide to generate the simplest structures, annotated as the muraymycin D series. Two enzymes encoded in the muraymycin biosynthetic gene cluster, Mur29 and Mur28, were functionally assigned in vitro as a Mg·ATP-dependent nucleotidyltransferase and a Mg·ATP-dependent phosphotransferase, respectively, both modifying the 3″-OH of the disaccharide. Biochemical characterization revealed that both enzymes can utilize several nucleotide donors as cosubstrates and the acceptor substrate muraymycin also behaves as an inhibitor. Single-substrate kinetic analyses revealed that Mur28 preferentially phosphorylates a synthetic GlyU-ADR disaccharide, a hypothetical biosynthetic precursor of muraymycins, while Mur29 preferentially adenylates the D series of muraymycins. The adenylated or phosphorylated products have significantly reduced (170-fold and 51-fold, respectively) MraY inhibitory activities and reduced antibacterial activities, compared with the respective unmodified muraymycins. The results are consistent with Mur29-catalyzed adenylation and Mur28-catalyzed phosphorylation serving as complementary self-resistance mechanisms, with a distinct temporal order during muraymycin biosynthesis.
Collapse
|
9
|
Polyvalent Proteins, a Pervasive Theme in the Intergenomic Biological Conflicts of Bacteriophages and Conjugative Elements. J Bacteriol 2017; 199:JB.00245-17. [PMID: 28559295 PMCID: PMC5512222 DOI: 10.1128/jb.00245-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/29/2022] Open
Abstract
Intense biological conflicts between prokaryotic genomes and their genomic parasites have resulted in an arms race in terms of the molecular “weaponry” deployed on both sides. Using a recursive computational approach, we uncovered a remarkable class of multidomain proteins with 2 to 15 domains in the same polypeptide deployed by viruses and plasmids in such conflicts. Domain architectures and genomic contexts indicate that they are part of a widespread conflict strategy involving proteins injected into the host cell along with parasite DNA during the earliest phase of infection. Their unique feature is the combination of domains with highly disparate biochemical activities in the same polypeptide; accordingly, we term them polyvalent proteins. Of the 131 domains in polyvalent proteins, a large fraction are enzymatic domains predicted to modify proteins, target nucleic acids, alter nucleotide signaling/metabolism, and attack peptidoglycan or cytoskeletal components. They further contain nucleic acid-binding domains, virion structural domains, and 40 novel uncharacterized domains. Analysis of their architectural network reveals both pervasive common themes and specialized strategies for conjugative elements and plasmids or (pro)phages. The themes include likely processing of multidomain polypeptides by zincin-like metallopeptidases and mechanisms to counter restriction or CRISPR/Cas systems and jump-start transcription or replication. DNA-binding domains acquired by eukaryotes from such systems have been reused in XPC/RAD4-dependent DNA repair and mitochondrial genome replication in kinetoplastids. Characterization of the novel domains discovered here, such as RNases and peptidases, are likely to aid in the development of new reagents and elucidation of the spread of antibiotic resistance. IMPORTANCE This is the first report of the widespread presence of large proteins, termed polyvalent proteins, predicted to be transmitted by genomic parasites such as conjugative elements, plasmids, and phages during the initial phase of infection along with their DNA. They are typified by the presence of multiple domains with disparate activities combined in the same protein. While some of these domains are predicted to assist the invasive element in replication, transcription, or protection of their DNA, several are likely to target various host defense systems or modify the host to favor the parasite's life cycle. Notably, DNA-binding domains from these systems have been transferred to eukaryotes, where they have been incorporated into DNA repair and mitochondrial genome replication systems.
Collapse
|
10
|
Shiraishi T, Hiro N, Igarashi M, Nishiyama M, Kuzuyama T. Biosynthesis of the antituberculous agent caprazamycin: Identification of caprazol-3ʺ-phosphate, an unprecedented caprazamycin-related metabolite. J GEN APPL MICROBIOL 2016; 62:164-6. [DOI: 10.2323/jgam.2016.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Noboru Hiro
- Biotechnology Research Center, The University of Tokyo
| | | | | | | |
Collapse
|
11
|
Kwon SY, Kwon HJ. The Possible Role of SCO3388, a tmrB-like Gene of Streptomyces coelicolor, in Germination and Stress Survival of Spores. ACTA ACUST UNITED AC 2013. [DOI: 10.3839/jabc.2013.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Chi X, Baba S, Tibrewal N, Funabashi M, Nonaka K, Van Lanen SG. The muraminomicin biosynthetic gene cluster and enzymatic formation of the 2-deoxyaminoribosyl appendage. MEDCHEMCOMM 2012; 4:239-243. [PMID: 23476724 DOI: 10.1039/c2md20245j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Muraminomicin is a lipopeptidyl nucleoside antibiotic produced by Streptosporangium amethystogenes SANK 60709. Similar to several members of this antibiotic family such as A-90289 and muraymycin, the structure of muraminomicin consists of a disaccharide comprised of two modified ribofuranose units linked by an O-β(1 → 5) glycosidic bond; however, muraminomicin holds the distinction in that both ribose units are 2-deoxy sugars. The biosynthetic gene cluster of muraminomicin has been identified, cloned and sequenced, and bioinformatic analysis revealed a minimum of 24 open reading frames putatively involved in the biosynthesis, resistance, and regulation of muraminomicin. Fives enzymes are likely involved in the assembly and attachment of the 2,5-dideoxy-5-aminoribose saccharide unit, and two are now functionally assigned and characterized: Mra20, a 5'-amino-2',5'-dideoxyuridine phosphorylase and Mra23, a UTP:5-amino-2,5-dideoxy-α-D-ribose-1-phosphate uridylyltransferase. The cumulative results are consistent with the incorporation of the ribosyl appendage of muraminomicin via the archetypical sugar biosynthetic pathway that parallels A-90289 biosynthesis, and the specificity for this appendage is dictated primarily by the two characterized enzymes.
Collapse
Affiliation(s)
- Xiuling Chi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | | | | | | | | | | |
Collapse
|
13
|
Cheng L, Chen W, Zhai L, Xu D, Huang T, Lin S, Zhou X, Deng Z. Identification of the genecluster involved in muraymycin biosynthesis from Streptomyces sp. NRRL 30471. ACTA ACUST UNITED AC 2011; 7:920-7. [DOI: 10.1039/c0mb00237b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Chen W, Qu D, Zhai L, Tao M, Wang Y, Lin S, Price NPJ, Deng Z. Characterization of the tunicamycin gene cluster unveiling unique steps involved in its biosynthesis. Protein Cell 2010; 1:1093-105. [PMID: 21153459 DOI: 10.1007/s13238-010-0127-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 01/03/2023] Open
Abstract
Tunicamycin, a potent reversible translocase I inhibitor, is produced by several Actinomycetes species. The tunicamycin structure is highly unusual, and contains an 11-carbon dialdose sugar and an α, β-1″,11'-glycosidic linkage. Here we report the identification of a gene cluster essential for tunicamycin biosynthesis by high-throughput heterologous expression (HHE) strategy combined with a bioassay. Introduction of the genes into heterologous non-producing Streptomyces hosts results in production of tunicamycin by these strains, demonstrating the role of the genes for the biosynthesis of tunicamycins. Gene disruption experiments coupled with bioinformatic analysis revealed that the tunicamycin gene cluster is minimally composed of 12 genes (tunA-tunL). Amongst these is a putative radical SAM enzyme (Tun B) with a potentially unique role in biosynthetic carbon-carbon bond formation. Hence, a seven-step novel pathway is proposed for tunicamycin biosynthesis. Moreover, two gene clusters for the potential biosynthesis of tunicamycin-like antibiotics were also identified in Streptomyces clavuligerus ATCC 27064 and Actinosynnema mirums DSM 43827. These data provide clarification of the novel mechanisms for tunicamycin biosynthesis, and for the generation of new-designer tunicamycin analogs with selective/enhanced bioactivity via combinatorial biosynthesis strategies.
Collapse
Affiliation(s)
- Wenqing Chen
- Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kapp U, Macedo S, Hall DR, Leiros I, McSweeney SM, Mitchell E. Structure of Deinococcus radiodurans tunicamycin-resistance protein (TmrD), a phosphotransferase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:479-86. [PMID: 18540055 PMCID: PMC2496873 DOI: 10.1107/s1744309108011822] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 04/24/2008] [Indexed: 11/10/2022]
Abstract
The open-reading frame (ORF) DR_1419 in the Deinococcus radiodurans genome is annotated as a representative of the wide family of tunicamycin-resistance proteins as identified in a range of bacterial genomes. The D. radiodurans ORF DR_1419 was cloned and expressed; the protein TmrD was crystallized and its X-ray crystal structure was determined to 1.95 A resolution. The structure was determined using single-wavelength anomalous diffraction with selenomethionine-derivatized protein. The refined structure is the first to be reported for a member of the tunicamycin-resistance family. It reveals strong structural similarity to the family of nucleoside monophosphate kinases and to the chloramphenicol phosphotransferase of Streptomyces venezuelae, suggesting that the mode of action is possibly by phosphorylation of tunicamycin.
Collapse
Affiliation(s)
- Ulrike Kapp
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - Sofia Macedo
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - David Richard Hall
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - Ingar Leiros
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - Sean M. McSweeney
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
| | - Edward Mitchell
- European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP-220, 38043 Grenoble, France
- EPSAM, Keele University, Staffordshire ST5 5BG, England
| |
Collapse
|
16
|
Price NP, Momany FA. Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases. Glycobiology 2005; 15:29R-42R. [PMID: 15843595 DOI: 10.1093/glycob/cwi065] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein N-glycosylation in eukaryotes and peptidoglycan biosynthesis in bacteria are both initiated by the transfer of a D-N-acetylhexosamine 1-phosphate to a membrane-bound polyprenol phosphate. These reactions are catalyzed by a family of transmembrane proteins known as the UDP-D-N-acetylhexosamine: polyprenol phosphate D-N-acetylhexosamine 1-phosphate transferases. The sole eukaryotic member of this family, the d-N-acetylglucosamine 1-phosphate transferase (GPT), is specific for UDP-GlcNAc as the donor substrate and uses dolichol phosphate as the membrane-bound acceptor. The bacterial translocases, MraY, WecA, and WbpL, utilize undecaprenol phosphate as the acceptor substrate, but differ in their specificity for the UDP-sugar donor substrate. The structural basis of this sugar nucleotide specificity is uncertain. However, potential carbohydrate recognition (CR) domains have been identified within the C-terminal cytoplasmic loops of MraY, WecA, and WbpL that are highly conserved in family members with the same UDP-N-acetylhexosamine specificity. This review focuses on the catalytic mechanism and substrate specificity of these bacterial UDP-D-N-acetylhexosamine: polyprenol phosphate D-N-acetylhexosamine 1-P transferases and may provide insights for the development of selective inhibitors of cell wall biosynthesis.
Collapse
Affiliation(s)
- Neil P Price
- USDA-ARS-NCAUR, Bioproducts and Biocatalysis Research Unit, Peoria, IL, USA.
| | | |
Collapse
|
17
|
Margolles A, Putman M, van Veen HW, Konings WN. The purified and functionally reconstituted multidrug transporter LmrA of Lactococcus lactis mediates the transbilayer movement of specific fluorescent phospholipids. Biochemistry 1999; 38:16298-306. [PMID: 10587454 DOI: 10.1021/bi990855s] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lactococcus lactis possesses an ATP-binding cassette transporter, LmrA, which is a homolog of the mammalian multidrug resistance (MDR) P-glycoprotein, and is able to transport a broad range of structurally unrelated amphiphilic drugs. A histidine tag was introduced at the N-terminus of LmrA to facilitate purification by nickel affinity chromatography. The histidine-tagged protein was overexpressed in L. lactis using a novel protein expression system for cytotoxic proteins based on the tightly regulated, nisin-inducible nisA promoter. This system allowed us to get functional overexpression of LmrA up to a level of 30% of total membrane protein. For reconstitution, LmrA was solubilized with dodecylmaltoside, purified by nickel-chelate affinity chromatography, and reconstituted in dodecylmaltoside-destabilized, preformed liposomes prepared from L. lactis phospholipids. The detergent was removed by adsorption onto polystyrene beads. The LmrA protein was reconstituted in a functional form, and mediated the ATP-dependent transport of the fluorescent substrate Hoechst-33342 into the proteoliposomes. Interestingly, reconstituted LmrA also catalyzed the ATP-dependent transport of fluorescent phosphatidylethanolamine, but not of fluorescent phosphatidylcholine. These data demonstrate that LmrA activity is independent of accessory proteins and support the notion that LmrA may be involved in the transport of specific lipids or lipid-linked precursors in L. lactis.
Collapse
Affiliation(s)
- A Margolles
- Department of Microbiology, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
18
|
Putman M, van Veen HW, Poolman B, Konings WN. Restrictive use of detergents in the functional reconstitution of the secondary multidrug transporter LmrP. Biochemistry 1999; 38:1002-8. [PMID: 9893996 DOI: 10.1021/bi981863w] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The histidine-tagged secondary multidrug transporter LmrP was overexpressed in Lactococcus lactis, using a novel protein expression system for cytotoxic proteins based on the tightly regulated, nisin-inducible nisA promoter. LmrP-mediated H+/drug antiport activity in inside-out membrane vesicles was inhibited by detergents, such as Triton X-100, Triton X-114, and Tween 80, at low concentrations that did not affect the magnitude or composition of the proton motive force. The inhibition of the activity of LmrP by detergents restricted the range of compounds that could be used for the solubilization and reconstitution of the protein because low concentrations of detergent are retained in proteoliposomes. Surprisingly, dodecyl maltoside did not modulate the activity of LmrP. Therefore, LmrP was solubilized with dodecyl maltoside, purified by nickel-chelate affinity chromatography, and reconstituted in dodecyl maltoside-destabilized, preformed liposomes prepared from Escherichia coli phospholipids and egg phosphatidylcholine. Reconstituted LmrP mediated the transport of multiple drugs in response to an artificially imposed pH gradient, demonstrating that the protein functions as a proton motive force-dependent multidrug transporter, independent of accessory proteins. These observations are relevant for the effective solubilization and reconstitution of multidrug transporters belonging to the major facilitator superfamily, which, in view of their broad drug specificity, may strongly interact with detergents.
Collapse
Affiliation(s)
- M Putman
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Bolhuis H, van Veen HW, Poolman B, Driessen AJ, Konings WN. Mechanisms of multidrug transporters. FEMS Microbiol Rev 1997; 21:55-84. [PMID: 9299702 DOI: 10.1111/j.1574-6976.1997.tb00345.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drug resistance, mediated by various mechanisms, plays a crucial role in the failure of the drug-based treatment of various infectious diseases. As a result, these infectious diseases re-emerge rapidly and cause many victims every year. Another serious threat is imposed by the development of multidrug resistance (MDR) in eukaryotic (tumor) cells, where many different drugs fail to perform their therapeutic function. One of the causes of the occurrence of MDR in these cells is the action of transmembrane transport proteins that catalyze the active extrusion of a large number of structurally and functionally unrelated compounds out of the cell. The mode of action of these MDR transporters and their apparent lack of substrate specificity is poorly understood and has been subject to many speculations. In this review we will summarize our current knowledge about the occurrence, mechanism and molecular basis of (multi-)drug resistance especially as found in bacteria.
Collapse
Affiliation(s)
- H Bolhuis
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Abstract
Protein folding that is coupled to disulphide bond formation has many experimental advantages. In particular, the kinetic roles and importance of all the disulphide intermediates can be determined, usually unambiguously. This contrasts with other types of protein folding, where the roles of any intermediates detected are usually not established. Nevertheless, there is considerable confusion in the literature about even the best-characterized disulphide folding pathways. This article attempts to set the record straight.
Collapse
|
21
|
|
22
|
Olano C, Rodríguez AM, Méndez C, Salas JA. A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Mol Microbiol 1995; 16:333-43. [PMID: 7565095 DOI: 10.1111/j.1365-2958.1995.tb02305.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 3.2 kb Sstl-Sphl DNA fragment of Streptomyces antibioticus, an oleandomycin producer, conferring resistance to oleandomycin was sequenced and found to contain an open reading frame of 1710 bp (oleB). Its deduced gene product (OleB) showed a high degree of similarity with other proteins belonging to the ABC-transporter superfamily including the gene product of another oleandomycin-resistance gene (OleC). The OleB protein contains two ATP-binding domains, each of approximately 200 amino acids in length, and no hydrophobic transmembrane regions. Functional analysis of the oleB gene was carried out by deleting specific regions of the gene and assaying for oleandomycin resistance. These experiments showed that either the first or the second half of the gene containing only one ATP-binding domain was sufficient to confer resistance to oleandomycin. The gene oleB was expressed in Escherichia coli fused to a maltose-binding protein (MBP) using the pMal-c2 vector. The MBP-OleB hybrid protein was purified by affinity chromatography on an amylose resin and polyclonal antibodies were raised against the fusion protein. These were used to monitor the biosynthesis and physical location of OleB during growth. By Western analysis, the OleB protein was detected both in the soluble and in the membrane fraction and its synthesis paralleled oleandomycin biosynthesis. It was also shown that a Streptomyces albus strain, containing both a glycosyltransferase (OleD) able to inactivate oleandomycin and the OleB protein, was capable of glycosylating oleandomycin and secreting the inactive glycosylated molecule. It is proposed that OleB constitutes the secretion system by which oleandomycin or its inactive glycosylated form could be secreted by S. antibioticus.
Collapse
Affiliation(s)
- C Olano
- Departamento de Biología Funcional e Instituto Universitario de Biotecnologia (I.U.B.A.), Universidad de Oviedo, Spain
| | | | | | | |
Collapse
|
23
|
Nakane A, Ogawa KI, Nakamura K, Yamane K. Nucleotide sequence of the shikimate kinase gene (aroI) of Bacillus subtilis. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0922-338x(94)90240-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|