1
|
Qian J, Fan L, Yang J, Feng J, Gao N, Cheng G, Pu W, Zhou W, Cai T, Li S, Zheng P, Sun J, Wang D, Wang Y. Directed evolution of a neutrophilic and mesophilic methanol dehydrogenase based on high-throughput and accurate measurement of formaldehyde. Synth Syst Biotechnol 2023; 8:386-395. [PMID: 37342805 PMCID: PMC10277290 DOI: 10.1016/j.synbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 06/23/2023] Open
Abstract
Methanol is a promising one-carbon feedstock for biomanufacturing, which can be sustainably produced from carbon dioxide and natural gas. However, the efficiency of methanol bioconversion is limited by the poor catalytic properties of nicotinamide adenine dinucleotide (NAD+)-dependent methanol dehydrogenase (Mdh) that oxidizes methanol to formaldehyde. Herein, the neutrophilic and mesophilic NAD+-dependent Mdh from Bacillus stearothermophilus DSM 2334 (MdhBs) was subjected to directed evolution for enhancing the catalytic activity. The combination of formaldehyde biosensor and Nash assay allowed high-throughput and accurate measurement of formaldehyde and facilitated efficient selection of desired variants. MdhBs variants with up to 6.5-fold higher Kcat/KM value for methanol were screened from random mutation libraries. The T153 residue that is spatially proximal to the substrate binding pocket has significant influence on enzyme activity. The beneficial T153P mutation changes the interaction network of this residue and breaks the α-helix important for substrate binding into two short α-helices. Reconstructing the interaction network of T153 with surrounding residues may represent a promising strategy to further improve MdhBs, and this study provides an efficient strategy for directed evolution of Mdh.
Collapse
Affiliation(s)
- Jin Qian
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Liwen Fan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Jinxing Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jinhui Feng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ning Gao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guimin Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Wenjuan Zhou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Tao Cai
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
| | - Yu Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Klein VJ, Brito LF, Perez-Garcia F, Brautaset T, Irla M. Metabolic engineering of thermophilic Bacillus methanolicus for riboflavin overproduction from methanol. Microb Biotechnol 2023; 16:1011-1026. [PMID: 36965151 PMCID: PMC10128131 DOI: 10.1111/1751-7915.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/27/2023] Open
Abstract
The growing need of next generation feedstocks for biotechnology spurs an intensification of research on the utilization of methanol as carbon and energy source for biotechnological processes. In this paper, we introduced the methanol-based overproduction of riboflavin into metabolically engineered Bacillus methanolicus MGA3. First, we showed that B. methanolicus naturally produces small amounts of riboflavin. Then, we created B. methanolicus strains overexpressing either homologous or heterologous gene clusters encoding the riboflavin biosynthesis pathway, resulting in riboflavin overproduction. Our results revealed that the supplementation of growth media with sublethal levels of chloramphenicol contributes to a higher plasmid-based riboflavin production titre, presumably due to an increase in plasmid copy number and thus biosynthetic gene dosage. Based on this, we proved that riboflavin production can be increased by exchanging a low copy number plasmid with a high copy number plasmid leading to a final riboflavin titre of about 523 mg L-1 in methanol fed-batch fermentation. The findings of this study showcase the potential of B. methanolicus as a promising host for methanol-based overproduction of extracellular riboflavin and serve as basis for metabolic engineering of next generations of riboflavin overproducing strains.
Collapse
Affiliation(s)
- Vivien Jessica Klein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Luciana Fernandes Brito
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fernando Perez-Garcia
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marta Irla
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem. Nat Microbiol 2022; 7:2089-2100. [PMID: 36329197 DOI: 10.1038/s41564-022-01252-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2022] [Indexed: 11/06/2022]
Abstract
So far, only members of the bacterial phyla Proteobacteria and Verrucomicrobia are known to grow methanotrophically under aerobic conditions. Here we report that this metabolic trait is also observed within the Actinobacteria. We enriched and cultivated a methanotrophic Mycobacterium from an extremely acidic biofilm growing on a cave wall at a gaseous chemocline interface between volcanic gases and the Earth's atmosphere. This Mycobacterium, for which we propose the name Candidatus Mycobacterium methanotrophicum, is closely related to well-known obligate pathogens such as M. tuberculosis and M. leprae. Genomic and proteomic analyses revealed that Candidatus M. methanotrophicum expresses a full suite of enzymes required for aerobic growth on methane, including a soluble methane monooxygenase that catalyses the hydroxylation of methane to methanol and enzymes involved in formaldehyde fixation via the ribulose monophosphate pathway. Growth experiments combined with stable isotope probing using 13C-labelled methane confirmed that Candidatus M. methanotrophicum can grow on methane as a sole carbon and energy source. A broader survey based on 16S metabarcoding suggests that species closely related to Candidatus M. methanotrophicum may be abundant in low-pH, high-methane environments.
Collapse
|
4
|
Wu L, Zhang L. Biochemical and Functional Characterization of an Iron-Containing Alcohol Dehydrogenase from Thermococcus barophilus Ch5. Appl Biochem Biotechnol 2022; 194:5537-5555. [DOI: 10.1007/s12010-022-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
|
5
|
Le TK, Lee YJ, Han GH, Yeom SJ. Methanol Dehydrogenases as a Key Biocatalysts for Synthetic Methylotrophy. Front Bioeng Biotechnol 2022; 9:787791. [PMID: 35004648 PMCID: PMC8741260 DOI: 10.3389/fbioe.2021.787791] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
One-carbon (C1) chemicals are potential building blocks for cheap and sustainable re-sources such as methane, methanol, formaldehyde, formate, carbon monoxide, and more. These resources have the potential to be made into raw materials for various products used in our daily life or precursors for pharmaceuticals through biological and chemical processes. Among the soluble C1 substrates, methanol is regarded as a biorenewable platform feedstock because nearly all bioresources can be converted into methanol through syngas. Synthetic methylotrophy can be exploited to produce fuels and chemicals using methanol as a feedstock that integrates natural or artificial methanol assimilation pathways in platform microorganisms. In the methanol utilization in methylotrophy, methanol dehydrogenase (Mdh) is a primary enzyme that converts methanol to formaldehyde. The discovery of new Mdhs and engineering of present Mdhs have been attempted to develop synthetic methylotrophic bacteria. In this review, we describe Mdhs, including in terms of their enzyme properties and engineering for desired activity. In addition, we specifically focus on the application of various Mdhs for synthetic methylotrophy.
Collapse
Affiliation(s)
- Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Yu-Jin Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea.,School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju, South Korea
| | - Gui Hwan Han
- Center for Industrialization of Agricultural and Livestock Microorganisms (CIALM), Jeollabuk-do, South Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea.,School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
6
|
Zhan C, Li X, Yang Y, Nielsen J, Bai Z, Chen Y. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol Bioeng 2021; 118:3655-3668. [PMID: 34133022 DOI: 10.1002/bit.27862] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
As alternatives to traditional fermentation substrates, methanol (CH3 OH), carbon dioxide (CO2 ) and methane (CH4 ) represent promising one-carbon (C1) sources that are readily available at low-cost and share similar metabolic pathway. Of these C1 compounds, methanol is used as a carbon and energy source by native methylotrophs, and can be obtained from CO2 and CH4 by chemical catalysis. Therefore, constructing and rewiring methanol utilization pathways may enable the use of one-carbon sources for microbial fermentations. Recent bioengineering efforts have shown that both native and nonnative methylotrophic organisms can be engineered to convert methanol, together with other carbon sources, into biofuels and other commodity chemicals. However, many challenges remain and must be overcome before industrial-scale bioprocessing can be established using these engineered cell refineries. Here, we provide a comprehensive summary and comparison of methanol metabolic pathways from different methylotrophs, followed by a review of recent progress in engineering methanol metabolic pathways in vitro and in vivo to produce chemicals. We discuss the major challenges associated with establishing efficient methanol metabolic pathways in microbial cells, and propose improved designs for future engineering.
Collapse
Affiliation(s)
- Chunjun Zhan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Xiaowei Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Yankun Yang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.,BioInnovation Institute, Copenhagen N, Denmark
| | - Zhonghu Bai
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yun Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Zhang L, Jiang D, Li Y, Wu L, Liu Q, Dong K, Oger P. Characterization of a novel type III alcohol dehydrogenase from Thermococcus barophilus Ch5. Int J Biol Macromol 2021; 171:491-501. [PMID: 33428959 DOI: 10.1016/j.ijbiomac.2020.12.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/27/2022]
Abstract
The genome of the hyperthermophilic and piezophilic euryarchaeaon Thermococcus barophilus Ch5 encodes three putative alcohol dehydrogenases (Tba ADHs). Herein, we characterized Tba ADH547 biochemically and probed its catalytic mechanism by mutational studies. Our data demonstrate that Tba ADH547 can oxidize ethanol and reduce acetaldehyde at high temperature with the same optimal temperature (75 °C) and exhibit similar thermostability for oxidization and reduction reactions. However, Tba ADH547 has different optimal pH for oxidation and reduction: 8.5 for oxidation and 7.0 for reduction. Tba ADH547 is dependent on a divalent ion for its oxidation activity, among which Mn2+ is optimal. However, Tba ADH547 displays about 20% reduction activity without a divalent ion, and the maximal activity with Fe2+. Furthermore, Tba ADH547 showcases a strong substrate preference for 1-butanol and 1-hexanol over ethanol and other alcohols. Similarly, Tba ADH547 prefers butylaldehyde to acetaldehyde as its reduction substrate. Mutational studies showed that the mutations of residues D195, H199, H262 and H274 to Ala result in the significant activity loss of Tba ADH547, suggesting that residues D195, H199, H262 and H274 are responsible for catalysis. Overall, Tba ADH547 is a thermoactive ADH with novel biochemical characteristics, thereby allowing this enzyme to be a potential biocatalyst.
Collapse
Affiliation(s)
- Likui Zhang
- Guangling College, Yangzhou University, China; College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China.
| | - Donghao Jiang
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Yuting Li
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Leilei Wu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Qing Liu
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Kunming Dong
- College of Environmental Science and Engineering, Marine Science & Technology Institute, Yangzhou University, China
| | - Philippe Oger
- Univ Lyon, INSA de Lyon, CNRS UMR 5240, Villeurbanne, France.
| |
Collapse
|
8
|
Hakvåg S, Nærdal I, Heggeset TMB, Kristiansen KA, Aasen IM, Brautaset T. Production of Value-Added Chemicals by Bacillus methanolicus Strains Cultivated on Mannitol and Extracts of Seaweed Saccharina latissima at 50°C. Front Microbiol 2020; 11:680. [PMID: 32328058 PMCID: PMC7161427 DOI: 10.3389/fmicb.2020.00680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
The facultative methylotroph Bacillus methanolicus MGA3 has previously been genetically engineered to overproduce the amino acids L-lysine and L-glutamate and their derivatives cadaverine and γ-aminobutyric acid (GABA) from methanol at 50°C. We here explored the potential of utilizing the sugar alcohol mannitol and seaweed extract (SWE) containing mannitol, as alternative feedstocks for production of chemicals by fermentation using B. methanolicus. Extracts of the brown algae Saccharina latissima harvested in the Trondheim Fjord in Norway were prepared and found to contain 12–13 g/l of mannitol, with conductivities corresponding to a salt content of ∼2% NaCl. Initially, 12 B. methanolicus wild type strains were tested for tolerance to various SWE concentrations, and some strains including MGA3 could grow on 50% SWE medium. Non-methylotrophic and methylotrophic growth of B. methanolicus rely on differences in regulation of metabolic pathways, and we compared production titers of GABA and cadaverine under such growth conditions. Shake flask experiments showed that recombinant MGA3 strains could produce similar and higher titers of cadaverine during growth on 50% SWE and mannitol, compared to on methanol. GABA production levels under these conditions were however low compared to growth on methanol. We present the first fed-batch mannitol fermentation of B. methanolicus and production of 6.3 g/l cadaverine. Finally, we constructed a recombinant MGA3 strain synthesizing the C30 terpenoids 4,4′-diaponeurosporene and 4,4′-diapolycopene, experimentally confirming that B. methanolicus has a functional methylerythritol phosphate (MEP) pathway. Together, our results contribute to extending the range of both the feedstocks for growth and products that can be synthesized by B. methanolicus.
Collapse
Affiliation(s)
- Sigrid Hakvåg
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ingemar Nærdal
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Tonje M B Heggeset
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Kåre A Kristiansen
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Inga M Aasen
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology and Food Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
9
|
Takeya T, Yamakita M, Hayashi D, Fujisawa K, Sakai Y, Yurimoto H. Methanol production by reversed methylotrophy constructed in Escherichia coli. Biosci Biotechnol Biochem 2020; 84:1062-1068. [PMID: 31942827 DOI: 10.1080/09168451.2020.1715202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We constructed a reversed methylotrophic pathway that produces methanol, a promising feedstock for production of useful compounds, from fructose 6-phosphate (F6P), which can be supplied by catabolism of biomass-derived sugars including glucose, by a synthetic biology approach. Using Escherichia coli as an expression host, we heterologously expressed genes encoding methanol utilization enzymes from methylotrophic bacteria, i.e. the NAD+-dependent methanol dehydrogenase (MDH) from Bacillus methanolicus S1 and an artificial fusion enzyme of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase from Mycobacterium gastri MB19 (HPS-PHI). We confirmed that these enzymes can catalyze reverse reactions of methanol oxidation and formaldehyde fixation. The engineered E. coli strain co-expressing MDH and HPS-PHI genes produced methanol in resting cell reactions not only from F6P but also from glucose. We successfully conferred reversed methylotrophy to E. coli and our results provide a proof-of-concept for biological methanol production from biomass-derived sugar compounds.
Collapse
Affiliation(s)
- Tomoyuki Takeya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Miyabi Yamakita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Daisuke Hayashi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kento Fujisawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
C1 Compound Biosensors: Design, Functional Study, and Applications. Int J Mol Sci 2019; 20:ijms20092253. [PMID: 31067766 PMCID: PMC6540204 DOI: 10.3390/ijms20092253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 01/25/2023] Open
Abstract
The microbial assimilation of one-carbon (C1) gases is a topic of interest, given that products developed using this pathway have the potential to act as promising substrates for the synthesis of valuable chemicals via enzymatic oxidation or C–C bonding. Despite extensive studies on C1 gas assimilation pathways, their key enzymes have yet to be subjected to high-throughput evolution studies on account of the lack of an efficient analytical tool for C1 metabolites. To address this challenging issue, we attempted to establish a fine-tuned single-cell–level biosensor system constituting a combination of transcription factors (TFs) and several C1-converting enzymes that convert target compounds to the ligand of a TF. This enzymatic conversion broadens the detection range of ligands by the genetic biosensor systems. In this study, we presented new genetic enzyme screening systems (GESSs) to detect formate, formaldehyde, and methanol from specific enzyme activities and pathways, named FA-GESS, Frm-GESS, and MeOH-GESS, respectively. All the biosensors displayed linear responses to their respective C1 molecules, namely, formate (1.0–250 mM), formaldehyde (1.0–50 μM), and methanol (5–400 mM), and they did so with high specificity. Consequently, the helper enzymes, including formaldehyde dehydrogenase and methanol dehydrogenase, were successfully combined to constitute new versatile combinations of the C1-biosensors.
Collapse
|
11
|
Yi J, Lee J, Sung BH, Kang DK, Lim G, Bae JH, Lee SG, Kim SC, Sohn JH. Development of Bacillus methanolicus methanol dehydrogenase with improved formaldehyde reduction activity. Sci Rep 2018; 8:12483. [PMID: 30127388 PMCID: PMC6102214 DOI: 10.1038/s41598-018-31001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/09/2018] [Indexed: 11/09/2022] Open
Abstract
Methanol dehydrogenase (MDH), an NAD+-dependent oxidoreductase, reversibly converts formaldehyde to methanol. This activity is a key step for both toxic formaldehyde elimination and methanol production in bacterial methylotrophy. We mutated decameric Bacillus methanolicus MDH by directed evolution and screened mutants for increased formaldehyde reduction activity in Escherichia coli. The mutant with the highest formaldehyde reduction activity had three amino acid substitutions: F213V, F289L, and F356S. To identify the individual contributions of these residues to the increased reduction activity, the activities of mutant variants were evaluated. F213V/F289L and F213V/F289L/F356S showed 25.3- and 52.8-fold higher catalytic efficiency (kcat/Km) than wild type MDH, respectively. In addition, they converted 5.9- and 6.4-fold more formaldehyde to methanol in vitro than the wild type enzyme. Computational modelling revealed that the three substituted residues were located at MDH oligomerization interfaces, and may influence oligomerization stability: F213V aids in dimer formation, and F289L and F356S in decamer formation. The substitutions may stabilise oligomerization, thereby increasing the formaldehyde reduction activity of MDH.
Collapse
Affiliation(s)
- Jiyeun Yi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.,Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Jinhyuk Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - Bong Hyun Sung
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - Du-Kyeong Kang
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - GyuTae Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea.,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea
| | - Jung-Hoon Bae
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Seung-Goo Lee
- School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea.,Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
| | - Jung-Hoon Sohn
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea. .,School of Biotechnology, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
12
|
Thulasi K, Jayakumar A, Balakrishna Pillai A, Gopalakrishnapillai Sankaramangalam VK, Kumarapillai H. Efficient methanol-degrading aerobic bacteria isolated from a wetland ecosystem. Arch Microbiol 2018; 200:829-833. [PMID: 29637291 DOI: 10.1007/s00203-018-1509-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Methylotrophs present in the soil play an important role in the regulation of one carbon compounds in the environment, and thereby aid in mitigating global warming. The study envisages the isolation and characterization of methanol-degrading bacteria from Kuttanad wetland ecosystem, India. Three methylotrophs, viz. Achromobacter spanius KUT14, Acinetobacter sp. KUT26 and Methylobacterium radiotolerans KUT39 were isolated and their phylogenetic positions were determined by constructing a phylogenetic tree based on 16S rDNA sequences. In vitro activity of methanol dehydrogenase enzyme, responsible for methanol oxidation was evaluated and the genes involved in methanol metabolism, mxaF and xoxF were partially amplified and sequenced. The specific activity of methanol dehydrogenase (451.9 nmol min-1 mg-1) observed in KUT39 is the highest, reported ever to our knowledge from a soil bacterium. KUT14 recorded the least activity of 50.15 nmol min-1 mg-1 and is the first report on methylotrophy in A. spanius.
Collapse
Affiliation(s)
- Kavitha Thulasi
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, Kerala, India
| | - Arjun Jayakumar
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, Kerala, India
| | - Aneesh Balakrishna Pillai
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, Kerala, India
| | | | - Harikrishnan Kumarapillai
- Environmental Biology Laboratory, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
13
|
Del Rocío Bustillos-Cristales M, Corona-Gutierrez I, Castañeda-Lucio M, Águila-Zempoaltécatl C, Seynos-García E, Hernández-Lucas I, Muñoz-Rojas J, Medina-Aparicio L, Fuentes-Ramírez LE. Culturable Facultative Methylotrophic Bacteria from the Cactus Neobuxbaumia macrocephala Possess the Locus xoxF and Consume Methanol in the Presence of Ce 3+ and Ca 2. Microbes Environ 2017; 32:244-251. [PMID: 28855445 PMCID: PMC5606694 DOI: 10.1264/jsme2.me17070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Methanol-consuming culturable bacteria were isolated from the plant surface, rhizosphere, and inside the stem of Neobuxbaumia macrocephala. All 38 isolates were facultative methylotrophic microorganisms. Their classification included the Classes Actinobacteria, Sphingobacteriia, Alpha-, Beta-, and Gammaproteobacteria. The deduced amino acid sequences of methanol dehydrogenase obtained by PCR belonging to Actinobacteria, Alpha-, Beta-, and Gammaproteobacteria showed high similarity to rare-earth element (REE)-dependent XoxF methanol dehydrogenases, particularly the group XoxF5. The sequences included Asp301, the REE-coordinating amino acid, present in all known XoxF dehydrogenases and absent in MxaF methanol dehydrogenases. The quantity of the isolates showed positive hybridization with a xoxF probe, but not with a mxaF probe. Isolates of all taxonomic groups showed methylotrophic growth in the presence of Ce3+ or Ca2+. The presence of xoxF-like sequences in methylotrophic bacteria from N. macrocephala and its potential relationship with their adaptability to xerophytic plants are discussed.
Collapse
|
14
|
Gaona-López C, Julián-Sánchez A, Riveros-Rosas H. Diversity and Evolutionary Analysis of Iron-Containing (Type-III) Alcohol Dehydrogenases in Eukaryotes. PLoS One 2016; 11:e0166851. [PMID: 27893862 PMCID: PMC5125639 DOI: 10.1371/journal.pone.0166851] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/05/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alcohol dehydrogenase (ADH) activity is widely distributed in the three domains of life. Currently, there are three non-homologous NAD(P)+-dependent ADH families reported: Type I ADH comprises Zn-dependent ADHs; type II ADH comprises short-chain ADHs described first in Drosophila; and, type III ADH comprises iron-containing ADHs (FeADHs). These three families arose independently throughout evolution and possess different structures and mechanisms of reaction. While types I and II ADHs have been extensively studied, analyses about the evolution and diversity of (type III) FeADHs have not been published yet. Therefore in this work, a phylogenetic analysis of FeADHs was performed to get insights into the evolution of this protein family, as well as explore the diversity of FeADHs in eukaryotes. PRINCIPAL FINDINGS Results showed that FeADHs from eukaryotes are distributed in thirteen protein subfamilies, eight of them possessing protein sequences distributed in the three domains of life. Interestingly, none of these protein subfamilies possess protein sequences found simultaneously in animals, plants and fungi. Many FeADHs are activated by or contain Fe2+, but many others bind to a variety of metals, or even lack of metal cofactor. Animal FeADHs are found in just one protein subfamily, the hydroxyacid-oxoacid transhydrogenase (HOT) subfamily, which includes protein sequences widely distributed in fungi, but not in plants), and in several taxa from lower eukaryotes, bacteria and archaea. Fungi FeADHs are found mainly in two subfamilies: HOT and maleylacetate reductase (MAR), but some can be found also in other three different protein subfamilies. Plant FeADHs are found only in chlorophyta but not in higher plants, and are distributed in three different protein subfamilies. CONCLUSIONS/SIGNIFICANCE FeADHs are a diverse and ancient protein family that shares a common 3D scaffold with a patchy distribution in eukaryotes. The majority of sequenced FeADHs from eukaryotes are distributed in just two subfamilies, HOT and MAR (found mainly in animals and fungi). These two subfamilies comprise almost 85% of all sequenced FeADHs in eukaryotes.
Collapse
Affiliation(s)
- Carlos Gaona-López
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Adriana Julián-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
| | - Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM). Cd. Universitaria, Ciudad de México, México
- * E-mail:
| |
Collapse
|
15
|
Wu TY, Chen CT, Liu JTJ, Bogorad IW, Damoiseaux R, Liao JC. Characterization and evolution of an activator-independent methanol dehydrogenase from Cupriavidus necator N-1. Appl Microbiol Biotechnol 2016; 100:4969-83. [PMID: 26846745 DOI: 10.1007/s00253-016-7320-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/15/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
Methanol utilization by methylotrophic or non-methylotrophic organisms is the first step toward methanol bioconversion to higher carbon-chain chemicals. Methanol oxidation using NAD-dependent methanol dehydrogenase (Mdh) is of particular interest because it uses NAD(+) as the electron carrier. To our knowledge, only a limited number of NAD-dependent Mdhs have been reported. The most studied is the Bacillus methanolicus Mdh, which exhibits low enzyme specificity to methanol and is dependent on an endogenous activator protein (ACT). In this work, we characterized and engineered a group III NAD-dependent alcohol dehydrogenase (Mdh2) from Cupriavidus necator N-1 (previously designated as Ralstonia eutropha). This enzyme is the first NAD-dependent Mdh characterized from a Gram-negative, mesophilic, non-methylotrophic organism with a significant activity towards methanol. Interestingly, unlike previously reported Mdhs, Mdh2 does not require activation by known activators such as B. methanolicus ACT and Escherichia coli Nudix hydrolase NudF, or putative native C. necator activators in the Nudix family under mesophilic conditions. This enzyme exhibited higher or comparable activity and affinity toward methanol relative to the B. methanolicus Mdh with or without ACT in a wide range of temperatures. Furthermore, using directed molecular evolution, we engineered a variant (CT4-1) of Mdh2 that showed a 6-fold higher K cat/K m for methanol and 10-fold lower K cat/K m for n-butanol. Thus, CT4-1 represents an NAD-dependent Mdh with much improved catalytic efficiency and specificity toward methanol compared with the existing NAD-dependent Mdhs with or without ACT activation.
Collapse
Affiliation(s)
- Tung-Yun Wu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Chang-Ting Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Jessica Tse-Jin Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Igor W Bogorad
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - James C Liao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
16
|
Genomics of Methylotrophy in Gram-Positive Methylamine-Utilizing Bacteria. Microorganisms 2015; 3:94-112. [PMID: 27682081 PMCID: PMC5023230 DOI: 10.3390/microorganisms3010094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 02/27/2015] [Accepted: 03/06/2015] [Indexed: 11/18/2022] Open
Abstract
Gram-positive methylotrophic bacteria have been known for a long period of time, some serving as model organisms for characterizing the specific details of methylotrophy pathways/enzymes within this group. However, genome-based knowledge of methylotrophy within this group has been so far limited to a single species, Bacillus methanolicus (Firmicutes). The paucity of whole-genome data for Gram-positive methylotrophs limits our global understanding of methylotrophy within this group, including their roles in specific biogeochemical cycles, as well as their biotechnological potential. Here, we describe the isolation of seven novel strains of Gram-positive methylotrophs that include two strains of Bacillus and five representatives of Actinobacteria classified within two genera, Arthrobacter and Mycobacterium. We report whole-genome sequences for these isolates and present comparative analysis of the methylotrophy functional modules within these genomes. The genomic sequences of these seven novel organisms, all capable of growth on methylated amines, present an important reference dataset for understanding the genomic basis of methylotrophy in Gram-positive methylotrophic bacteria. This study is a major contribution to the field of methylotrophy, aimed at closing the gap in the genomic knowledge of methylotrophy within this diverse group of bacteria.
Collapse
|
17
|
Building carbon-carbon bonds using a biocatalytic methanol condensation cycle. Proc Natl Acad Sci U S A 2014; 111:15928-33. [PMID: 25355907 DOI: 10.1073/pnas.1413470111] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.
Collapse
|
18
|
Müller JEN, Litsanov B, Bortfeld-Miller M, Trachsel C, Grossmann J, Brautaset T, Vorholt JA. Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3. Proteomics 2014; 14:725-37. [PMID: 24452867 DOI: 10.1002/pmic.201300515] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/21/2013] [Accepted: 12/27/2013] [Indexed: 11/08/2022]
Abstract
Bacillus methanolicus MGA3 is a facultative methylotroph of industrial relevance that is able to grow on methanol as its sole source of carbon and energy. The Gram-positive bacterium possesses a soluble NAD(+) -dependent methanol dehydrogenase and assimilates formaldehyde via the ribulose monophosphate (RuMP) cycle. We used label-free quantitative proteomics to generate reference proteome data for this bacterium and compared the proteome of B. methanolicus MGA3 on two different carbon sources (methanol and mannitol) as well as two different growth temperatures (50°C and 37°C). From a total of approximately 1200 different detected proteins, approximately 1000 of these were used for quantification. While the levels of 213 proteins were significantly different at the two growth temperatures tested, the levels of 109 proteins changed significantly when cells were grown on different carbon sources. The carbon source strongly affected the synthesis of enzymes related to carbon metabolism, and in particular, both dissimilatory and assimilatory RuMP cycle enzyme levels were elevated during growth on methanol compared to mannitol. Our data also indicate that B. methanolicus has a functional tricarboxylic acid cycle, the proteins of which are differentially regulated on mannitol and methanol. Other proteins presumed to be involved in growth on methanol were constitutively expressed under the different growth conditions. All MS data have been deposited in the ProteomeXchange with the identifiers PXD000637 and PXD000638 (http://proteomecentral.proteomexchange.org/dataset/PXD000637, http://proteomecentral.proteomexchange.org/dataset/PXD000638).
Collapse
|
19
|
Markert B, Stolzenberger J, Brautaset T, Wendisch VF. Characterization of two transketolases encoded on the chromosome and the plasmid pBM19 of the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. BMC Microbiol 2014; 14:7. [PMID: 24405865 PMCID: PMC3905653 DOI: 10.1186/1471-2180-14-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022] Open
Abstract
Background Transketolase (TKT) is a key enzyme of the pentose phosphate pathway (PPP), the Calvin cycle and the ribulose monophosphate (RuMP) cycle. Bacillus methanolicus is a facultative RuMP pathway methylotroph. B. methanolicus MGA3 harbors two genes putatively coding for TKTs; one located on the chromosome (tktC) and one located on the natural occurring plasmid pBM19 (tktP). Results Both enzymes were produced in recombinant Escherichia coli, purified and shown to share similar biochemical parameters in vitro. They were found to be active as homotetramers and require thiamine pyrophosphate for catalytic activity. The inactive apoform of the TKTs, yielded by dialysis against buffer containing 10 mM EDTA, could be reconstituted most efficiently with Mn2+ and Mg2+. Both TKTs were thermo stable at physiological temperature (up to 65°C) with the highest activity at neutral pH. Ni2+, ATP and ADP significantly inhibited activity of both TKTs. Unlike the recently characterized RuMP pathway enzymes fructose 1,6-bisphosphate aldolase (FBA) and fructose 1,6-bisphosphatase/sedoheptulose 1,7-bisphosphatase (FBPase/SBPase) from B. methanolicus MGA3, both TKTs exhibited similar kinetic parameters although they only share 76% identical amino acids. The kinetic parameters were determined for the reaction with the substrates xylulose 5-phosphate (TKTC: kcat/KM: 264 s-1 mM-1; TKTP: kcat/KM: 231 s-1 mM) and ribulose 5-phosphate (TKTC: kcat/KM: 109 s-1 mM; TKTP: kcat/KM: 84 s-1 mM) as well as for the reaction with the substrates glyceraldehyde 3-phosphate (TKTC: kcat/KM: 108 s-1 mM; TKTP: kcat/KM: 71 s-1 mM) and fructose 6-phosphate (TKTC kcat/KM: 115 s-1 mM; TKTP: kcat/KM: 448 s-1 mM). Conclusions Based on the kinetic parameters no major TKT of B. methanolicus could be determined. Increased expression of tktP, but not of tktC during growth with methanol [J Bacteriol 188:3063–3072, 2006] argues for TKTP being the major TKT relevant in the RuMP pathway. Neither TKT exhibited activity as dihydroxyacetone synthase, as found in methylotrophic yeast, or as the evolutionary related 1-deoxyxylulose-5-phosphate synthase. The biological significance of the two TKTs for B. methanolicus methylotrophy is discussed.
Collapse
Affiliation(s)
| | | | | | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Universitätsstr, 25, 33615 Bielefeld, Germany.
| |
Collapse
|
20
|
Characterization of fructose 1,6-bisphosphatase and sedoheptulose 1,7-bisphosphatase from the facultative ribulose monophosphate cycle methylotroph Bacillus methanolicus. J Bacteriol 2013; 195:5112-22. [PMID: 24013630 DOI: 10.1128/jb.00672-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The genome of the facultative ribulose monophosphate (RuMP) cycle methylotroph Bacillus methanolicus encodes two bisphosphatases (GlpX), one on the chromosome (GlpX(C)) and one on plasmid pBM19 (GlpX(P)), which is required for methylotrophy. Both enzymes were purified from recombinant Escherichia coli and were shown to be active as fructose 1,6-bisphosphatases (FBPases). The FBPase-negative Corynebacterium glutamicum Δfbp mutant could be phenotypically complemented with glpX(C) and glpX(P) from B. methanolicus. GlpX(P) and GlpX(C) share similar functional properties, as they were found here to be active as homotetramers in vitro, activated by Mn(2+) ions and inhibited by Li(+), but differed in terms of the kinetic parameters. GlpX(C) showed a much higher catalytic efficiency and a lower Km for fructose 1,6-bisphosphate (86.3 s(-1) mM(-1) and 14 ± 0.5 μM, respectively) than GlpX(P) (8.8 s(-1) mM(-1) and 440 ± 7.6 μM, respectively), indicating that GlpX(C) is the major FBPase of B. methanolicus. Both enzymes were tested for activity as sedoheptulose 1,7-bisphosphatase (SBPase), since a SBPase variant of the ribulose monophosphate cycle has been proposed for B. methanolicus. The substrate for the SBPase reaction, sedoheptulose 1,7-bisphosphate, could be synthesized in vitro by using both fructose 1,6-bisphosphate aldolase proteins from B. methanolicus. Evidence for activity as an SBPase could be obtained for GlpX(P) but not for GlpX(C). Based on these in vitro data, GlpX(P) is a promiscuous SBPase/FBPase and might function in the RuMP cycle of B. methanolicus.
Collapse
|
21
|
Kolb S, Stacheter A. Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment. Front Microbiol 2013; 4:268. [PMID: 24046766 PMCID: PMC3763247 DOI: 10.3389/fmicb.2013.00268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023] Open
Abstract
The commercial availability of next generation sequencing (NGS) technologies facilitated the assessment of functional groups of microorganisms in the environment with high coverage, resolution, and reproducibility. Soil methylotrophs were among the first microorganisms in the environment that were assessed with molecular tools, and nowadays, as well with NGS technologies. Studies in the past years re-attracted notice to the pivotal role of methylotrophs in global conversions of methanol, which mainly originates from plants, and is involved in oxidative reactions and ozone formation in the atmosphere. Aerobic methanol utilizers belong to Bacteria, yeasts, Ascomycota, and molds. Numerous bacterial methylotrophs are facultatively aerobic, and also contribute to anaerobic methanol oxidation in the environment, whereas strict anaerobic methanol utilizers belong to methanogens and acetogens. The diversity of enzymes catalyzing the initial oxidation of methanol is considerable, and comprises at least five different enzyme types in aerobes, and one in strict anaerobes. Only the gene of the large subunit of pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH; mxaF) has been analyzed by environmental pyrosequencing. To enable a comprehensive assessment of methanol utilizers in the environment, new primers targeting genes of the PQQ MDH in Methylibium (mdh2), of the nicotinamide adenine dinucleotide-dependent MDH (mdh), of the methanol oxidoreductase of Actinobacteria (mdo), of the fungal flavin adenine nucleotide-dependent alcohol oxidase (mod1, mod2, and homologs), and of the gene of the large subunit of the methanol:corrinoid methyltransferases (mtaC) in methanogens and acetogens need to be developed. Combined stable isotope probing of nucleic acids or proteins with amplicon-based NGS are straightforward approaches to reveal insights into functions of certain methylotrophic taxa in the global methanol cycle.
Collapse
Affiliation(s)
- Steffen Kolb
- Department of Ecological Microbiology, University of Bayreuth Bayreuth, Germany
| | | |
Collapse
|
22
|
Stolzenberger J, Lindner SN, Wendisch VF. The methylotrophic Bacillus methanolicus MGA3 possesses two distinct fructose 1,6-bisphosphate aldolases. MICROBIOLOGY-SGM 2013; 159:1770-1781. [PMID: 23760818 DOI: 10.1099/mic.0.067314-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The thermotolerant Gram-positive methylotroph Bacillus methanolicus is able to grow with methanol, glucose or mannitol as a sole carbon and energy source. Fructose 1,6-bisphosphate aldolase (FBA), a key enzyme of glycolysis and gluconeogenesis, is encoded in the genome of B. methanolicus by two putative fba genes, the chromosomally located fba(C) and fba(P) on the naturally occurring plasmid pBM19. Their amino acid sequences share 75 % identity and suggest a classification as class II aldolases. Both enzymes were purified from recombinant Escherichia coli and were found to be active as homotetramers. Both enzymes were activated by either manganese or cobalt ions, and inhibited by ADP, ATP and EDTA. The kinetic parameters allowed us to distinguish the chromosomally encoded FBA(C) from the plasmid encoded FBA(P), since FBA(C) showed higher affinity towards fructose 1,6-bisphosphate (Km of 0.16±0.01 mM as compared to 2±0.08 mM) as well as higher glycolytic catalytic efficiency (31.3 as compared to 0.8 s(-1) mM(-1)) than FBA(P). However, FBA(P) exhibited a higher catalytic efficiency in gluconeogenesis (50.4 as compared to 1.4 s(-1) mM(-1) with dihydroxyacetone phosphate and 4 as compared to 0.4 s(-1) mM(-1) with glyceraldehyde 3-phosphate as limiting substrate). The aldolase-negative Corynebacterium glutamicum mutant Δfda could be complemented with both FBA genes from B. methanolicus. Based on the kinetic data, we propose that FBA(C) acts as major aldolase in glycolysis, whereas FBA(P) acts as major aldolase in gluconeogenesis in B. methanolicus.
Collapse
Affiliation(s)
| | - Steffen N Lindner
- Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
23
|
Tan Y, Liu J, Liu Z, Li F. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528. J Basic Microbiol 2013; 54:996-1004. [PMID: 23720212 DOI: 10.1002/jobm.201300046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/24/2013] [Indexed: 11/06/2022]
Abstract
Syngas utilizing bacterium Clostridium ljungdahlii DSM 13528 is a promising platform organism for a whole variety of different biofuels and biochemicals production from syngas. During syngas fermentation, C. ljungdahlii DSM 13528 could convert butanol into butyrate, which significantly reduces productivity of butanol. However, there has been no any enzyme involved in the degradation of butanol characterized in C. ljungdahlii DSM 13528. In this study two genes, CLJU_c24880 and CLJU_c39950, encoding putative butanol dehydrogenase (designated as BDH1 and BDH2) were identified in the genome of C. ljungdahlii DSM 13528 and qRT-PCR analysis showed the expression of bdh1 and bdh2 was significantly upregulated in the presence of 0.25% butanol. And the deduced amino acid sequence for BDH1 and BDH2 showed 69.85 and 68.04% identity with Clostridium acetobutylicum ADH1, respectively. Both BDH1 and BDH2 were oxygen-sensitive and preferred NADP(+) as cofactor and butanol as optimal substrate. The optimal temperature and pH for BDH1 were at 55 °C and pH 7.5 and specific activity was 18.07 ± 0.01 µmol min(-1) mg(-1) . BDH2 was a thermoactive dehydrogenase with maximum activity at 65 °C and at pH 7.0. The specific activity for BDH2 was 11.21 ± 0.02 µmol min(-1) mg(-1) . This study provided important information for understanding the molecular mechanism of butanol degradation and determining the targets for gene knockout to improve the productivity of butanol from syngas in C. ljungdahlii DSM 13528 in future.
Collapse
Affiliation(s)
- Yang Tan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | | | | | | |
Collapse
|
24
|
Krog A, Heggeset TMB, Müller JEN, Kupper CE, Schneider O, Vorholt JA, Ellingsen TE, Brautaset T. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS One 2013; 8:e59188. [PMID: 23527128 PMCID: PMC3602061 DOI: 10.1371/journal.pone.0059188] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 02/12/2013] [Indexed: 11/18/2022] Open
Abstract
Bacillus methanolicus can utilize methanol as the sole carbon source for growth and it encodes an NAD+-dependent methanol dehydrogenase (Mdh), catalyzing the oxidation of methanol to formaldehyde. Recently, the genomes of the B. methanolicus strains MGA3 (ATCC53907) and PB1 (NCIMB13113) were sequenced and found to harbor three different putative Mdh encoding genes, each belonging to the type III Fe-NAD+-dependent alcohol dehydrogenases. In each strain, two of these genes are encoded on the chromosome and one on a plasmid; only one chromosomal act gene encoding the previously described activator protein ACT was found. The six Mdhs and the ACT proteins were produced recombinantly in Escherichia coli, purified, and characterized. All Mdhs required NAD+ as cosubstrate, were catalytically stimulated by ACT, exhibited a broad and different substrate specificity range and displayed both dehydrogenase and reductase activities. All Mdhs catalyzed the oxidation of methanol; however the catalytic activity for methanol was considerably lower than for most other alcohols tested, suggesting that these enzymes represent a novel class of alcohol dehydrogenases. The kinetic constants for the Mdhs were comparable when acting as pure enzymes, but together with ACT the differences were more pronounced. Quantitative PCR experiments revealed major differences with respect to transcriptional regulation of the paralogous genes. Taken together our data indicate that the repertoire of methanol oxidizing enzymes in thermotolerant bacilli is larger than expected with complex mechanisms involved in their regulation.
Collapse
Affiliation(s)
- Anne Krog
- SINTEF Materials and Chemistry, Department of Biotechnology, Trondheim, Norway
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | | | | | | | - Olha Schneider
- SINTEF Materials and Chemistry, Department of Biotechnology, Trondheim, Norway
| | | | - Trond E. Ellingsen
- SINTEF Materials and Chemistry, Department of Biotechnology, Trondheim, Norway
| | - Trygve Brautaset
- SINTEF Materials and Chemistry, Department of Biotechnology, Trondheim, Norway
- * E-mail:
| |
Collapse
|
25
|
Genome sequence of thermotolerant Bacillus methanolicus: features and regulation related to methylotrophy and production of L-lysine and L-glutamate from methanol. Appl Environ Microbiol 2012; 78:5170-81. [PMID: 22610424 DOI: 10.1128/aem.00703-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus methanolicus can utilize methanol as its sole carbon and energy source, and the scientific interest in this thermotolerant bacterium has focused largely on exploring its potential as a biocatalyst for the conversion of methanol into L-lysine and L-glutamate. We present here the genome sequences of the important B. methanolicus model strain MGA3 (ATCC 53907) and the alternative wild-type strain PB1 (NCIMB13113). The physiological diversity of these two strains was demonstrated by a comparative fed-batch methanol cultivation displaying highly different methanol consumption and respiration profiles, as well as major differences in their L-glutamate production levels (406 mmol liter(-1) and 11 mmol liter(-1), respectively). Both genomes are small (ca 3.4 Mbp) compared to those of other related bacilli, and MGA3 has two plasmids (pBM19 and pBM69), while PB1 has only one (pBM20). In particular, we focus here on genes representing biochemical pathways for methanol oxidation and concomitant formaldehyde assimilation and dissimilation, the important phosphoenol pyruvate/pyruvate anaplerotic node, the tricarboxylic acid cycle including the glyoxylate pathway, and the biosynthetic pathways for L-lysine and L-glutamate. Several unique findings were made, including the discovery of three different methanol dehydrogenase genes in each of the two B. methanolicus strains, and the genomic analyses were accompanied by gene expression studies. Our results provide new insight into a number of peculiar physiological and metabolic traits of B. methanolicus and open up possibilities for system-level metabolic engineering of this bacterium for the production of amino acids and other useful compounds from methanol.
Collapse
|
26
|
Nilasari D, Dover N, Rech S, Komives C. Expression of recombinant green fluorescent protein in Bacillus methanolicus. Biotechnol Prog 2012; 28:662-8. [PMID: 22275315 DOI: 10.1002/btpr.1522] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 01/07/2012] [Indexed: 01/09/2023]
Abstract
Microbial biocatalysts are used in a wide range of industries to produce large scale quantities of proteins, amino acids, and commodity chemicals. While the majority of these processes use glucose or other low-cost sugars as the substrate, Bacillus methanolicus is one example of a biocatalyst that has shown sustained growth on methanol as a carbon source at elevated temperature (50-53°C optimum) resulting in reduced feed and utility costs. Specifically, the complete chemical process enabled by this approach takes methane from natural gas, and following a low-cost conversion to methanol, can be used for the production of high value products. In this study, production of recombinant green fluorescent protein (GFPuv) by B. methanolicus is explored. A plasmid was constructed that incorporates the methanol dehydrogenase (mdh) promoter of B. methanolicus MGA3 together with the GFPuv gene. The plasmid, pNW33N, was shown to be effective for expression in other Bacillus strains, although not previously in B. methanolicus. A published electroporation protocol for transformation of B. methanolicus was modified to result in expression of GFP using plasmid pNW33N-mdh-GFPuv (pNmG). Transformation was confirmed by both agarose gel electrophoresis and by observation of green fluorescence under UV light exposure. The mass yield of cells and protein were measured in shake flask experiments. The optimum concentration of methanol for protein production was found to be at 200 mM. Higher concentrations than 200 mM resulted in slightly higher biomass production but lower amounts of recombinant protein.
Collapse
Affiliation(s)
- Dewi Nilasari
- Chemical and Materials Engineering, San Jose State University, San Jose, CA 95192, USA
| | | | | | | |
Collapse
|
27
|
Sun J, Steindler L, Thrash JC, Halsey KH, Smith DP, Carter AE, Landry ZC, Giovannoni SJ. One carbon metabolism in SAR11 pelagic marine bacteria. PLoS One 2011; 6:e23973. [PMID: 21886845 PMCID: PMC3160333 DOI: 10.1371/journal.pone.0023973] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 07/28/2011] [Indexed: 12/13/2022] Open
Abstract
The SAR11 Alphaproteobacteria are the most abundant heterotrophs in the oceans and are believed to play a major role in mineralizing marine dissolved organic carbon. Their genomes are among the smallest known for free-living heterotrophic cells, raising questions about how they successfully utilize complex organic matter with a limited metabolic repertoire. Here we show that conserved genes in SAR11 subgroup Ia (Candidatus Pelagibacter ubique) genomes encode pathways for the oxidation of a variety of one-carbon compounds and methyl functional groups from methylated compounds. These pathways were predicted to produce energy by tetrahydrofolate (THF)-mediated oxidation, but not to support the net assimilation of biomass from C1 compounds. Measurements of cellular ATP content and the oxidation of 14C-labeled compounds to 14CO2 indicated that methanol, formaldehyde, methylamine, and methyl groups from glycine betaine (GBT), trimethylamine (TMA), trimethylamine N-oxide (TMAO), and dimethylsulfoniopropionate (DMSP) were oxidized by axenic cultures of the SAR11 strain Ca. P. ubique HTCC1062. Analyses of metagenomic data showed that genes for C1 metabolism occur at a high frequency in natural SAR11 populations. In short term incubations, natural communities of Sargasso Sea microbial plankton expressed a potential for the oxidation of 14C-labeled formate, formaldehyde, methanol and TMAO that was similar to cultured SAR11 cells and, like cultured SAR11 cells, incorporated a much larger percentage of pyruvate and glucose (27–35%) than of C1 compounds (2–6%) into biomass. Collectively, these genomic, cellular and environmental data show a surprising capacity for demethylation and C1 oxidation in SAR11 cultures and in natural microbial communities dominated by SAR11, and support the conclusion that C1 oxidation might be a significant conduit by which dissolved organic carbon is recycled to CO2 in the upper ocean.
Collapse
Affiliation(s)
- Jing Sun
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Laura Steindler
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - J. Cameron Thrash
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Kimberly H. Halsey
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Daniel P. Smith
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Amy E. Carter
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Zachary C. Landry
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephen J. Giovannoni
- Department of Microbiology, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
28
|
Park H, Lee H, Ro YT, Kim YM. Identification and functional characterization of a gene for the methanol : N,N'-dimethyl-4-nitrosoaniline oxidoreductase from Mycobacterium sp. strain JC1 (DSM 3803). MICROBIOLOGY-SGM 2009; 156:463-471. [PMID: 19875438 DOI: 10.1099/mic.0.034124-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycobacterium sp. strain JC1 is able to grow on methanol as a sole source of carbon and energy using methanol : N,N'-dimethyl-4-nitrosoaniline oxidoreductase (MDO) as a key enzyme for primary methanol oxidation. Purified MDO oxidizes ethanol and formaldehyde as well as methanol. The Mycobacterium sp. strain JC1 gene for MDO (mdo) was cloned, sequenced, and determined to have an open reading frame of 1272 bp. Northern blot and promoter analysis revealed that mdo transcription was induced in cells grown in the presence of methanol. Northern blotting together with RT-PCR also showed that the mdo gene was transcribed as monocistronic mRNA. Primer extension analysis revealed that the transcriptional start site of the mdo gene is located 21 bp upstream of the mdo start codon. An mdo-deficient mutant of Mycobacterium sp. strain JC1 did not grow with methanol as a sole source of carbon and energy.
Collapse
Affiliation(s)
- Hyuk Park
- Molecular Microbiology Laboratory, Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Hyunil Lee
- Laboratory of Biochemistry, Graduate School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young T Ro
- Laboratory of Biochemistry, Graduate School of Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| | - Young M Kim
- Molecular Microbiology Laboratory, Department of Biology, Yonsei University, Seoul 120-749, Republic of Korea
| |
Collapse
|
29
|
Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, Ren Y, Wang J, Galperin MY, Omelchenko MV, Wolf YI, Yutin N, Koonin EV, Stott MB, Mountain BW, Crowe MA, Smirnova AV, Dunfield PF, Feng L, Wang L, Alam M. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 2008; 3:26. [PMID: 18593465 PMCID: PMC2474590 DOI: 10.1186/1745-6150-3-26] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 07/01/2008] [Indexed: 12/31/2022] Open
Abstract
Background The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. Results We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum) is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely acidic conditions including a major upward shift in the isoelectric points of proteins. Conclusion The results of genome analysis of M. infernorum support the monophyly of the PVC superphylum. M. infernorum possesses a streamlined genome but seems to have acquired numerous genes including those for enzymes of methylotrophic pathways via horizontal gene transfer, in particular, from Proteobacteria. Reviewers This article was reviewed by John A. Fuerst, Ludmila Chistoserdova, and Radhey S. Gupta.
Collapse
Affiliation(s)
- Shaobin Hou
- Advance Studies in Genomics, Proteomics and Bioinformatics, College of Natural Sciences, University of Hawaii, Keller Hall #319, Honolulu, Hawaii, 96822, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production. Appl Environ Microbiol 2008; 74:4277-84. [PMID: 18515480 DOI: 10.1128/aem.02901-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Pelobacter species are closely related to Geobacter species, recent studies suggested that Pelobacter carbinolicus may reduce Fe(III) via a different mechanism because it lacks the outer-surface c-type cytochromes that are required for Fe(III) reduction by Geobacter sulfurreducens. Investigation into the mechanisms for Fe(III) reduction demonstrated that P. carbinolicus had growth yields on both soluble and insoluble Fe(III) consistent with those of other Fe(III)-reducing bacteria. Comparison of whole-genome transcript levels during growth on Fe(III) versus fermentative growth demonstrated that the greatest apparent change in gene expression was an increase in transcript levels for four contiguous genes. These genes encode two putative periplasmic thioredoxins; a putative outer-membrane transport protein; and a putative NAD(FAD)-dependent dehydrogenase with homology to disulfide oxidoreductases in the N terminus, rhodanese (sulfurtransferase) in the center, and uncharacterized conserved proteins in the C terminus. Unlike G. sulfurreducens, transcript levels for cytochrome genes did not increase in P. carbinolicus during growth on Fe(III). P. carbinolicus could use sulfate as the sole source of sulfur during fermentative growth, but required elemental sulfur or sulfide for growth on Fe(III). The increased expression of genes potentially involved in sulfur reduction, coupled with the requirement for sulfur or sulfide during growth on Fe(III), suggests that P. carbinolicus reduces Fe(III) via an indirect mechanism in which (i) elemental sulfur is reduced to sulfide and (ii) the sulfide reduces Fe(III) with the regeneration of elemental sulfur. This contrasts with the direct reduction of Fe(III) that has been proposed for Geobacter species.
Collapse
|
31
|
Ohhata N, Yoshida N, Egami H, Katsuragi T, Tani Y, Takagi H. An extremely oligotrophic bacterium, Rhodococcus erythropolis N9T-4, isolated from crude oil. J Bacteriol 2007; 189:6824-31. [PMID: 17675378 PMCID: PMC2045210 DOI: 10.1128/jb.00872-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Accepted: 07/25/2007] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus erythropolis N9T-4, which was isolated from crude oil, showed extremely oligotrophic growth and formed its colonies on a minimal salt medium solidified using agar or silica gel without any additional carbon source. N9T-4 did not grow under CO(2)-limiting conditions but could grow on a medium containing NaHCO(3) under the same conditions, suggesting that the oligotrophic growth of N9T-4 depends on CO(2). Proteomic analysis of N9T-4 revealed that two proteins, with molecular masses of 45 and 55 kDa, were highly induced under the oligotrophic conditions. The primary structures of these proteins exhibited striking similarities to those of methanol: N,N'-dimethyl-4-nitrosoaniline oxidoreductase and an aldehyde dehydrogenase from Rhodococcus sp. These enzyme activities were three times higher under oligotrophic conditions than under n-tetradecane-containing heterotrophic conditions, and gene disruption for the aldehyde dehydrogenase caused a lack of growth on the minimal salt medium. Furthermore, 3-hexulose 6-phosphate synthase and phospho-3-hexuloisomerase activities, which are key enzymes in the ribulose monophosphate pathway in methylotrophic bacteria, were detected specifically in the cell extract of oligotrophically grown N9T-4. These results suggest that CO(2) fixation involves methanol (formaldehyde) metabolism in the oligotrophic growth of R. erythropolis N9T-4.
Collapse
Affiliation(s)
- Naoko Ohhata
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Kim JY, Tillison KS, Zhou S, Lee JH, Smas CM. Differentiation-dependent expression of Adhfe1 in adipogenesis. Arch Biochem Biophys 2007; 464:100-11. [PMID: 17559793 PMCID: PMC2426734 DOI: 10.1016/j.abb.2007.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/22/2022]
Abstract
We have determined that adipocytes are a major site of expression of the transcript for the novel alcohol dehydrogenase (ADH), Adhfe1. Adhfe1 is unique in that the sequence of its encoded protein places it among the iron-activated ADHs. Western blot analysis reveals Adhfe1 encodes a 50 kDa protein and immunocytochemical staining indicates mitochondrial localization. Adhfe1 transcript exhibits differentiation-dependent expression during in vitro brown and white adipogenesis. Unlike many adipocyte-enriched genes, however, Adhfe1 transcript expression in adipocytes is refractory to TNFalpha-mediated downregulation. However, use of pharmacological inhibitors reveals PI 3-kinase-mediated signals maintain the basal level of Adhfe1 transcript in 3T3-L1 adipocytes. Tissue profiling studies show Adhfe1 transcript is restricted to white and brown adipose tissues, liver, and kidney. In comparison to C57BL/6 mice, Adhfe1 transcript is downregulated 40% in white adipose tissue of ob/ob obese mice. Further characterization of Adhfe1 should yield new insights into adipocyte function and energy metabolism.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Biochemistry and Cancer Biology, Medical University of Ohio, Toledo, OH 43614, USA
| | | | | | | | | |
Collapse
|
33
|
Brautaset T, Jakobsen ØM, Josefsen KD, Flickinger MC, Ellingsen TE. Bacillus methanolicus: a candidate for industrial production of amino acids from methanol at 50 degrees C. Appl Microbiol Biotechnol 2007; 74:22-34. [PMID: 17216461 DOI: 10.1007/s00253-006-0757-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
Amino acids are among the major products in biotechnology in both volume and value, and the global market is growing. Microbial fermentation is the dominant method used for industrial production, and today the most important microorganisms used are Corynebacteria utilizing sugars. For low-prize bulk amino acids, the possibility of using alternative substrates such as methanol has gained considerable interest. In this mini review, we highlight the unique genetics and favorable physiological traits of thermotolerant methylotroph Bacillus methanolicus, which makes it an interesting candidate for overproduction of amino acids from methanol. B. methanolicus genes involved in methanol consumption are plasmid-encoded and this bacterium has a high methanol conversion rate. Wild-type strains can secrete 58 g/l of L: -glutamate in fed-batch cultures at 50 degrees C and classical mutants secreting 37 g/l of L: -lysine have been selected. The relative high growth temperature is an advantage with respect to both reactor cooling requirements and low contamination risks. Key genes in L: -lysine and L: -glutamate production have been cloned, high-cell density methanol fermentation technology established, and recently a gene delivery method was developed for this organism. We discuss how this new knowledge and technology may lead to the construction of improved L: -lysine and L: -glutamate producing strains by metabolic engineering.
Collapse
Affiliation(s)
- Trygve Brautaset
- Department of Biotechnology, SINTEF Materials and Chemistry, SINTEF, Sem Selandsvei 2, 7465, Trondheim, Norway.
| | | | | | | | | |
Collapse
|
34
|
Jakobsen ØM, Benichou A, Flickinger MC, Valla S, Ellingsen TE, Brautaset T. Upregulated transcription of plasmid and chromosomal ribulose monophosphate pathway genes is critical for methanol assimilation rate and methanol tolerance in the methylotrophic bacterium Bacillus methanolicus. J Bacteriol 2006; 188:3063-72. [PMID: 16585766 PMCID: PMC1446977 DOI: 10.1128/jb.188.8.3063-3072.2006] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 01/29/2006] [Indexed: 11/20/2022] Open
Abstract
The natural plasmid pBM19 carries the key mdh gene needed for the oxidation of methanol into formaldehyde by Bacillus methanolicus. Five more genes, glpX, fba, tkt, pfk, and rpe, with deduced roles in the cell primary metabolism, are also located on this plasmid. By using real-time PCR, we show that they are transcriptionally upregulated (6- to 40-fold) in cells utilizing methanol; a similar induction was shown for two chromosomal genes, hps and phi. These seven genes are involved in the fructose bisphosphate aldolase/sedoheptulose bisphosphatase variant of the ribulose monophosphate (RuMP) pathway for formaldehyde assimilation. Curing of pBM19 causes higher methanol tolerance and reduced formaldehyde tolerance, and the methanol tolerance is reversed to wild-type levels by reintroducing mdh. Thus, the RuMP pathway is needed to detoxify the formaldehyde produced by the methanol dehydrogenase-mediated conversion of methanol, and the in vivo transcription levels of mdh and the RuMP pathway genes reflect the methanol tolerance level of the cells. The transcriptional inducer of hps and phi genes is formaldehyde, and not methanol, and introduction of multiple copies of these two genes into B. methanolicus made the cells more tolerant of growth on high methanol concentrations. The recombinant strain also had a significantly higher specific growth rate on methanol than the wild type. While pBM19 is critical for growth on methanol and important for formaldehyde detoxification, the maintenance of this plasmid represents a burden for B. methanolicus when growing on mannitol. Our data contribute to a new and fundamental understanding of the regulation of B. methanolicus methylotrophy.
Collapse
Affiliation(s)
- Øyvind M Jakobsen
- SINTEF Materials and Chemistry, Department of Biotechnology, SINTEF, Sem Selands vei 2, 7465 Trondheim, Norway
| | | | | | | | | | | |
Collapse
|
35
|
Komives CF, Cheung LYY, Pluschkell SB, Flickinger MC. Growth of Bacillus methanolicus in seawater-based media. J Ind Microbiol Biotechnol 2005; 32:61-6. [PMID: 15726441 DOI: 10.1007/s10295-004-0195-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2004] [Accepted: 11/20/2004] [Indexed: 10/25/2022]
Abstract
Bacillus methanolicus has been proposed as a biocatalyst for the low cost production of commodity chemicals. The organism can use methanol as sole carbon and energy source, and it grows aerobically at elevated temperatures. Methanol can be made available from off-shore conversion of natural gas to methanol, through gas-to-liquid technology. Growth of the organism in seawater-based medium would further reduce the costs of chemical production performed near an off-shore natural gas source. The growth of strain PB1 (ATCC 51375) in shake flask experiments with trypticase soy broth medium showed minimal salt-inhibition at the concentration of NaCl in seawater. The ability of B. methanolicus PB1 to grow in Pacific Ocean water using methanol as a carbon and energy source was also tested. Following a simple adaptation procedure, PB1 was able to grow on methanol in semi-defined medium with 100% seawater with good growth yields and similar growth rates compared with those achieved on media prepared in deionized water.
Collapse
Affiliation(s)
- Claire F Komives
- Department of Chemical and Materials Engineering, San Jose State University, 1 Washington Sq. San Jose, CA 95192-0082, USA.
| | | | | | | |
Collapse
|
36
|
Brautaset T, Jakobsen M ØM, Flickinger MC, Valla S, Ellingsen TE. Plasmid-dependent methylotrophy in thermotolerant Bacillus methanolicus. J Bacteriol 2004; 186:1229-38. [PMID: 14973041 PMCID: PMC344432 DOI: 10.1128/jb.186.5.1229-1238.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus methanolicus can efficiently utilize methanol as a sole carbon source and has an optimum growth temperature of 50 degrees C. With the exception of mannitol, no sugars have been reported to support rapid growth of this organism, which is classified as a restrictive methylotroph. Here we describe the DNA sequence and characterization of a 19,167-bp circular plasmid, designated pBM19, isolated from B. methanolicus MGA3. Sequence analysis of pBM19 demonstrated the presence of the methanol dehydrogenase gene, mdh, which is crucial for methanol consumption in this bacterium. In addition, five genes (pfk, encoding phosphofructokinase; rpe, encoding ribulose-5-phosphate 3-epimerase; tkt, encoding transketolase; glpX, encoding fructose-1,6-bisphosphatase; and fba, encoding fructose-1,6-bisphosphate aldolase) with deduced roles in methanol assimilation via the ribulose monophosphate pathway are encoded by pBM19. A shuttle vector, pTB1.9, harboring the pBM19 minimal replicon (repB and ori) was constructed and used to transform MGA3. Analysis of the resulting recombinant strain demonstrated that it was cured of pBM19 and was not able to grow on methanol. A pTB1.9 derivative harboring the complete mdh gene could not restore growth on methanol when it was introduced into the pBM19-cured strain, suggesting that additional pBM19 genes are required for consumption of this carbon source. Screening of 13 thermotolerant B. methanolicus wild-type strains showed that they all harbor plasmids similar to pBM19, and this is the first report describing plasmid-linked methylotrophy in any microorganism. Our findings should have an effect on future genetic manipulations of this organism, and they contribute to a new understanding of the biology of methylotrophs.
Collapse
Affiliation(s)
- Trygve Brautaset
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim. SINTEF Applied Chemistry, SINTEF, N-7043 Trondheim, Norway.
| | | | | | | | | |
Collapse
|
37
|
Pacheco CC, Passos JF, Moradas-Ferreira P, De Marco P. Strain PM2, a novel methylotrophic fluorescent Pseudomonas sp. FEMS Microbiol Lett 2004; 227:279-85. [PMID: 14592720 DOI: 10.1016/s0378-1097(03)00692-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
A novel bacterial strain, PM2, capable of growing on methanol, was isolated in alkaline conditions from a soil inoculum. This bacterium was characterized at the physiological, biochemical and molecular level. Based on biochemical and molecular data strain PM2 was classified as a novel member of the group of fluorescent pseudomonads. Evidence for the presence of a pyrroloquinoline quinone (PQQ)-linked alcohol dehydrogenase in this organism is presented. Strain PM2 is, to our knowledge, the first example of a methylotrophic Pseudomonas to be characterized in detail. This novel type of metabolism in Pseudomonas broadens even further the metabolic versatility for which this genus is renowned.
Collapse
Affiliation(s)
- Catarina C Pacheco
- Cellular and Applied Microbiology group, IBMC, University of Porto, R. do Campo Alegre, 823, 4150-180, Porto, Portugal
| | | | | | | |
Collapse
|
38
|
Brautaset T, Williams MD, Dillingham RD, Kaufmann C, Bennaars A, Crabbe E, Flickinger MC. Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants. Appl Environ Microbiol 2003; 69:3986-95. [PMID: 12839772 PMCID: PMC165195 DOI: 10.1128/aem.69.7.3986-3995.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Accepted: 04/08/2003] [Indexed: 11/20/2022] Open
Abstract
The thermotolerant, restrictive methylotroph Bacillus methanolicus MGA3 (ATCC 53907) can secrete 55 g of glutamate per liter (maximum yield, 0.36 g/g) at 50 degrees C with methanol as a carbon source and a source of ammonia in fed-batch bioreactors. A homoserine dehydrogenase mutant, 13A52-8A66, secreting up to 35 g of L-lysine per liter in fed-batch fermentations had minimal 2-oxoglutarate dehydrogenase activity [7.3 nmol min(-1) (mg of protein)(-1)], threefold-increased pyruvate carboxylase activity [535 nmol min(-1) (mg of protein)(-1)], and elevated citrate synthase (CS) activity [292 nmol min(-1) (mg of protein)(-1)] and simultaneously secreted glutamate (20 to 30 g per liter) and L-lysine. The flow of carbon from oxaloacetate is split between transamination to aspartate and formation of citrate. To investigate the regulation of this branch point, the B. methanolicus gene citY encoding a CSII protein with activity at 50 degrees C was cloned from 13A52-8A66 into a CS-deficient Escherichia coli K2-1-4 strain. A citY-deficient B. methanolicus mutant, NCS-L-7, was also isolated from the parent strain of 13A52-8A66 by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, followed by selection with monofluoroacetate disks on glutamate plates. Characterization of these strains confirmed that citY in strain 13A52-8A66 was not altered and that B. methanolicus possessed several forms of CS. Analysis of citY cloned from NCS-L-7 showed that the reduced CS activity resulted from a frameshift mutation. The level of glutamate secreted by NCS-L-7 was reduced sevenfold and the ratio of L-lysine to glutamate secreted was increased 4.5-fold compared to the wild type in fed-batch cultures with glutamate feeding. This indicates that glutamate secretion in L-lysine-overproducing mutants can be altered in favor of increased L-lysine secretion by regulating in vivo CS activity.
Collapse
Affiliation(s)
- Trygve Brautaset
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | | | | | |
Collapse
|
39
|
Raynaud C, Sarçabal P, Meynial-Salles I, Croux C, Soucaille P. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum. Proc Natl Acad Sci U S A 2003; 100:5010-5. [PMID: 12704244 PMCID: PMC154289 DOI: 10.1073/pnas.0734105100] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genes encoding the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum VPI1718 were characterized from a molecular and a biochemical point of view. This operon is composed of three genes, dhaB1, dhaB2, and dhaT. When grown in a vitamin B12-free mineral medium with glycerol as carbon source, Escherichia coli expressing dhaB1, dhaB2, and dhaT produces 1,3-PD and high glycerol dehydratase and 1,3-PD dehydrogenase activities. dhaB1 and dhaB2 encode, respectively, a new type of glycerol dehydratase and its activator protein. The deduced proteins DhaB1 and DhaB2, with calculated molecular masses of 88,074 and 34,149 Da, respectively, showed no homology with the known glycerol dehydratases that are all B12 dependent but significant similarity with the pyruvate formate lyases and pyruvate formate lyases activating enzymes and their homologues. The 1,158-bp dhaT gene codes for a 1,3-PD dehydrogenase with a calculated molecular mass of 41,558 Da, revealing a high level of identity with other DhaT proteins from natural 1,3-PD producers. The expression of the 1,3-PD operon in C. butyricum is regulated at the transcriptional level, and this regulation seems to involve a two-component signal transduction system DhaASDhaA, which may have a similar function to DhaR, a transcriptional regulator found in other natural 1,3-PD producers. The discovery of a glycerol dehydratase, coenzyme B12 independent, should significantly influence the development of an economical vitamin B12-free biological process for the production of 1,3-PD from renewable resources.
Collapse
Affiliation(s)
- Céline Raynaud
- Laboratoire de Biotechnologies-Bioprocédés, UMR-CNRS 5504, Unité de Recherche Institut National de la Recherche Agronomique 792, Centre de Bioingénierie Gilbert Durand, Institut National des Sciences Appliquées, Toulouse, France
| | | | | | | | | |
Collapse
|
40
|
Hektor HJ, Kloosterman H, Dijkhuizen L. Identification of a magnesium-dependent NAD(P)(H)-binding domain in the nicotinoprotein methanol dehydrogenase from Bacillus methanolicus. J Biol Chem 2002; 277:46966-73. [PMID: 12351635 DOI: 10.1074/jbc.m207547200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bacillus methanolicus methanol dehydrogenase (MDH) is a decameric nicotinoprotein alcohol dehydrogenase (family III) with one Zn(2+) ion, one or two Mg(2+) ions, and a tightly bound cofactor NAD(H) per subunit. The Mg(2+) ions are essential for binding of cofactor NAD(H) in MDH. A B. methanolicus activator protein strongly stimulates the relatively low coenzyme NAD(+)-dependent MDH activity, involving hydrolytic removal of the NMN(H) moiety of cofactor NAD(H) (Kloosterman, H., Vrijbloed, J. W., and Dijkhuizen, L. (2002) J. Biol. Chem. 277, 34785-34792). Members of family III of NAD(P)-dependent alcohol dehydrogenases contain three unique, conserved sequence motifs (domains A, B, and C). Domain C is thought to be involved in metal binding, whereas the functions of domains A and B are still unknown. This paper provides evidence that domain A constitutes (part of) a new magnesium-dependent NAD(P)(H)-binding domain. Site-directed mutants D100N and K103R lacked (most of the) bound cofactor NAD(H) and had lost all coenzyme NAD(+)-dependent MDH activity. Also mutants G95A and S97G were both impaired in cofactor NAD(H) binding but retained coenzyme NAD(+)-dependent MDH activity. Mutant G95A displayed a rather low MDH activity, whereas mutant S97G was insensitive to activator protein but displayed "fully activated" MDH reaction rates. The various roles of these amino acid residues in coenzyme and/or cofactor NAD(H) binding in MDH are discussed.
Collapse
Affiliation(s)
- Harm J Hektor
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
41
|
Daiyasu H, Hiroike T, Koga Y, Toh H. Analysis of membrane stereochemistry with homology modeling of sn-glycerol-1-phosphate dehydrogenase. Protein Eng Des Sel 2002; 15:987-95. [PMID: 12601138 DOI: 10.1093/protein/15.12.987] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Different enantiomeric isomers, sn-glycerol-1-phosphate and sn-glycerol-3-phosphate, are used as the glycerophosphate backbones of phospholipids in the cellular membranes of Archaea and the remaining two kingdoms, respectively. In Archaea, sn-glycerol-1-phosphate dehydrogenase is involved in the generation of sn-glycerol-1-phosphate, while sn-glycerol-3-phosphate dehydrogenase synthesizes the enantiomer in Eukarya and Bacteria. The coordinates of sn-glycerol-3-phosphate dehydrogenase are available, although neither the tertiary structure nor the reaction mechanism of sn-glycerol-1-phosphate dehydrogenase is known. Database searching revealed that the archaeal enzyme shows sequence similarity to glycerol dehydrogenase, dehydroquinate synthase and alcohol dehydrogenase IV. The glycerol dehydrogenase, with coordinates that are available today, is closely related to the archaeal enzyme. Using the structure of glycerol dehydrogenase as the template, we built a model structure of the Methanothermobacter thermautotrophicus sn-glycerol-1-phosphate dehydrogenase, which could explain the chirality of the product. Based on the model structure, we determined the following: (1) the enzyme requires a Zn(2+) ion for its activity; (2) the enzyme selectively uses the pro-R hydrogen of the NAD(P)H; (3) the putative active site and the reaction mechanism were predicted; and (4) the archaeal enzyme does not share its evolutionary origin with sn-glycerol-3-phosphate dehydrogenase.
Collapse
Affiliation(s)
- Hiromi Daiyasu
- Department of Computational Biology, Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.
| | | | | | | |
Collapse
|
42
|
Pluschkell SB, Flickinger MC. Dissimilation of [(13)C]methanol by continuous cultures of Bacillus methanolicus MGA3 at 50 degrees C studied by (13)C NMR and isotope-ratio mass spectrometry. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3223-3233. [PMID: 12368456 DOI: 10.1099/00221287-148-10-3223] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using a continuous culture of Bacillus methanolicus MGA3 limited by 100 mM methanol in the feed and growing at a dilution rate D=0.25 h(-1), transients in dissolved methanol were studied to determine the effects of methanol toxicity and the pathway of methanol dissimilation to CO(2). Steady-state cultures were disturbed by pulses of methanol resulting in a rapid change in concentration of 6.4-12.8 mM. B. methanolicus MGA3 responded to a sudden increase in available methanol by a transient decline in the biomass concentration in the reactor. In most cases the culture returned to steady state between 4 and 12 h after pulse addition. However, at a methanol pulse of 12.8 mM, complete biomass washout occurred and the culture did not return to steady state. Integrating the response curves of the dry biomass concentration over a 12 h time period showed that a methanol pulse can cause an average transient decline in the biomass yield of up to 22%. (13)C NMR experiments using labelled methanol indicated that the transient partial or complete biomass washout was probably caused by toxic accumulation of formaldehyde in the culture. These experiments also showed accumulation of formate, indicating that B. methanolicus possesses formaldehyde dehydrogenase and formate dehydrogenase activity resulting in a methanol dissimilation pathway via formate to CO(2). Studies using isotope-ratio mass spectrometry provided further evidence of a methanol dissimilation pathway via formate. B. methanolicus MGA3, growing continuously under methanol limitation, consumed added formate at a rate of approximately 0.85 mmol l(-1) h(-1). Furthermore, significant accumulation of (13)CO(2) in the reactor exhaust gas was measured in response to a pulse addition of [(13)C]formic acid to the bioreactor. This indicates that B. methanolicus dissimilates methanol carbon to CO(2) in order to detoxify formaldehyde by both a linear pathway to formate and a cyclic mechanism as part of the RuMP pathway.
Collapse
Affiliation(s)
- Stefanie B Pluschkell
- BioTechnology Institute and Department of Chemical Engineering and Materials Science1, and BioTechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics2, University of Minnesota, Saint Paul, MN 55108, USA
| | - Michael C Flickinger
- BioTechnology Institute and Department of Chemical Engineering and Materials Science1, and BioTechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics2, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
43
|
Kloosterman H, Vrijbloed JW, Dijkhuizen L. Molecular, biochemical, and functional characterization of a Nudix hydrolase protein that stimulates the activity of a nicotinoprotein alcohol dehydrogenase. J Biol Chem 2002; 277:34785-92. [PMID: 12089158 DOI: 10.1074/jbc.m205617200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cytoplasmic coenzyme NAD(+)-dependent alcohol (methanol) dehydrogenase (MDH) employed by Bacillus methanolicus during growth on C(1)-C(4) primary alcohols is a decameric protein with 1 Zn(2+)-ion and 1-2 Mg(2+)-ions plus a tightly bound NAD(H) cofactor per subunit (a nicotinoprotein). Mg(2+)-ions are essential for binding of NAD(H) cofactor in MDH protein expressed in Escherichia coli. The low coenzyme NAD(+)-dependent activity of MDH with C(1)-C(4) primary alcohols is strongly stimulated by a second B. methanolicus protein (ACT), provided that MDH contains NAD(H) cofactor and Mg(2+)-ions are present in the assay mixture. Characterization of the act gene revealed the presence of the highly conserved amino acid sequence motif typical of Nudix hydrolase proteins in the deduced ACT amino acid sequence. The act gene was successfully expressed in E. coli allowing purification and characterization of active ACT protein. MDH activation by ACT involved hydrolytic removal of the nicotinamide mononucleotide NMN(H) moiety of the NAD(H) cofactor of MDH, changing its Ping-Pong type of reaction mechanism into a ternary complex reaction mechanism. Increased cellular NADH/NAD(+) ratios may reduce the ACT-mediated activation of MDH, thus preventing accumulation of toxic aldehydes. This represents a novel mechanism for alcohol dehydrogenase activity regulation.
Collapse
Affiliation(s)
- Harm Kloosterman
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
44
|
Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P. Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 2002; 184:821-30. [PMID: 11790753 PMCID: PMC139506 DOI: 10.1128/jb.184.3.821-830.2002] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adhE2 gene of Clostridium acetobutylicum ATCC 824, coding for an aldehyde/alcohol dehydrogenase (AADH), was characterized from molecular and biochemical points of view. The 2,577-bp adhE2 codes for a 94.4-kDa protein. adhE2 is expressed, as a monocistronic operon, in alcohologenic cultures and not in solventogenic cultures. Primer extension analysis identified two transcriptional start sites 160 and 215 bp upstream of the adhE2 start codon. The expression of adhE2 from a plasmid in the DG1 mutant of C. acetobutylicum, a mutant cured of the pSOL1 megaplasmid, restored butanol production and provided elevated activities of NADH-dependent butyraldehyde and butanol dehydrogenases. The recombinant AdhE2 protein expressed in E. coli as a Strep-tag fusion protein and purified to homogeneity also demonstrated NADH-dependent butyraldehyde and butanol dehydrogenase activities. This is the second AADH identified in C. acetobutylicum ATCC 824, and to our knowledge this is the first example of a bacterium with two AADHs. It is noteworthy that the two corresponding genes, adhE and adhE2, are carried by the pSOL1 megaplasmid of C. acetobutylicum ATCC 824.
Collapse
Affiliation(s)
- Lisa Fontaine
- Centre de Bioingénierie Gilbert Durand, Laboratoire de Biotechnologies-Bioprocédés, UMR CNRS 5504, UR INRA 792, INSA, 31077 Toulouse cedex 4, France
| | | | | | | | | | | |
Collapse
|
45
|
Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, Muir NM, Gore MG, Rice DW. Glycerol dehydrogenase. structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure 2001; 9:789-802. [PMID: 11566129 DOI: 10.1016/s0969-2126(01)00645-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bacillus stearothermophilus glycerol dehydrogenase (GlyDH) (glycerol:NAD(+) 2-oxidoreductase, EC 1.1.1.6) catalyzes the oxidation of glycerol to dihydroxyacetone (1,3-dihydroxypropanone) with concomitant reduction of NAD(+) to NADH. Analysis of the sequence of this enzyme indicates that it is a member of the so-called iron-containing alcohol dehydrogenase family. Despite this sequence similarity, GlyDH shows a strict dependence on zinc for activity. On the basis of this, we propose to rename this group the family III metal-dependent polyol dehydrogenases. To date, no structural data have been reported for any enzyme in this group. RESULTS The crystal structure of B. stearothermophilus glycerol dehydrogenase has been determined at 1.7 A resolution to provide structural insights into the mechanistic features of this family. The enzyme has 370 amino acid residues, has a molecular mass of 39.5 kDa, and is a homooctamer in solution. CONCLUSIONS Analysis of the crystal structures of the free enzyme and of the binary complexes with NAD(+) and glycerol show that the active site of GlyDH lies in the cleft between the enzyme's two domains, with the catalytic zinc ion playing a role in stabilizing an alkoxide intermediate. In addition, the specificity of this enzyme for a range of diols can be understood, as both hydroxyls of the glycerol form ligands to the enzyme-bound Zn(2+) ion at the active site. The structure further reveals a previously unsuspected similarity to dehydroquinate synthase, an enzyme whose more complex chemistry shares a common chemical step with that catalyzed by glycerol dehydrogenase, providing a striking example of divergent evolution. Finally, the structure suggests that the NAD(+) binding domain of GlyDH may be related to that of the classical Rossmann fold by switching the sequence order of the two mononucleotide binding folds that make up this domain.
Collapse
Affiliation(s)
- S N Ruzheinikov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- D Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | |
Collapse
|
47
|
Laue H, Cook AM. Biochemical and molecular characterization of taurine:pyruvate aminotransferase from the anaerobe Bilophila wadsworthia. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:6841-8. [PMID: 11082195 DOI: 10.1046/j.1432-1033.2000.01782.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bilophila wadsworthia RZATAU is a Gram-negative bacterium which converts the sulfonate taurine (2-aminoethanesulfonate) to ammonia, acetate and sulfide in an anaerobic respiration. Taurine:pyruvate aminotransferase (Tpa) catalyses the initial metabolic reaction yielding alanine and sulfoacetaldehyde. We purified Tpa 72-fold to apparent homogeneity with an overall yield of 89%. The purified enzyme did not require addition of pyridoxal 5'-phosphate, but highly active enzyme was only obtained by addition of pyridoxal 5'-phosphate to all buffers during purification. SDS/PAGE revealed a single protein band with a molecular mass of 51 kDa. The apparent molecular mass of the native enzyme was 197 kDa as determined by gel filtration, which indicates a homotetrameric structure. The kinetic constants for taurine were: Km = 7.1 mM, Vmax = 1.20 nmol.s-1, and for pyruvate: Km = 0.82 mM, Vmax = 0.17 nmol.s-1. The purified enzyme was able to transaminate hypotaurine (2-aminosulfinate), taurine, beta-alanine and with low activity cysteine and 3-aminopropanesulfonate. In addition to pyruvate, 2-ketobutyrate and oxaloacetate were utilized as amino group acceptors. We have sequenced the encoding gene (tpa). It encoded a 50-kDa peptide, which revealed 33% identity to diaminopelargonate aminotransferase from Bacillus subtilis.
Collapse
Affiliation(s)
- H Laue
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany.
| | | |
Collapse
|
48
|
Hektor HJ, Kloosterman H, Dijkhuizen L. Nicotinoprotein methanol dehydrogenase enzymes in Gram-positive methylotrophic bacteria. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1381-1177(99)00073-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Yasueda H, Kawahara Y, Sugimoto S. Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol 1999; 181:7154-60. [PMID: 10572115 PMCID: PMC103674 DOI: 10.1128/jb.181.23.7154-7160.1999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ribulose monophosphate (RuMP) pathway is one of the metabolic pathways for the synthesis of compounds containing carbon-carbon bonds from one-carbon units and is found in many methane- and methanol-utilizing bacteria, which are known as methylotrophs. The characteristic enzymes of this pathway are 3-hexulose-6-phosphate synthase (HPS) and 6-phospho-3-hexuloisomerase (PHI), neither of which was thought to exist outside methylotrophs. However, the presumed yckG gene product (YckG) of Bacillus subtilis shows a primary structure similar to that of methylotroph HPS (F. Kunst et al., Nature 390:249-256, 1997). We have also investigated the sequence similarity between the yckF gene product (YckF) and methylotroph PHI (Y. Sakai, R. Mitsui, Y. Katayama, H. Yanase, and N. Kato, FEMS Microbiol. Lett. 176:125-130, 1999) and found that the yckG and yckF genes of B. subtilis express enzymatic activities of HPS and PHI, respectively. Both of these activities were concomitantly induced in B. subtilis by formaldehyde, with induction showing dependence on the yckH gene, but were not induced by methanol, formate, or methylamine. Disruption of either gene caused moderate sensitivity to formaldehyde, suggesting that these enzymes may act as a detoxification system for formaldehyde in B. subtilis. In conclusion, we found an active yckG (for HPS)-yckF (for PHI) gene structure (now named hxlA-hxlB) in a nonmethylotroph, B. subtilis, which inherently preserves the RuMP pathway.
Collapse
Affiliation(s)
- H Yasueda
- Fermentation and Biotechnology Laboratories, Ajinomoto Co., Inc., Kawasaki-ku, Kawasaki-shi, 210-0801, Japan.
| | | | | |
Collapse
|
50
|
Antoine E, Rolland JL, Raffin JP, Dietrich J. Cloning and over-expression in Escherichia coli of the gene encoding NADPH group III alcohol dehydrogenase from Thermococcus hydrothermalis. Characterization and comparison of the native and the recombinant enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:880-9. [PMID: 10491136 DOI: 10.1046/j.1432-1327.1999.00685.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A NADP-dependent group III alcohol dehydrogenase (ADH) was purified from the hyperthermophilic strictly anaerobic archaeon Thermococcus hydrothermalis, which grows at an optimum temperature of 85 degrees C and an optimum pH of 6. The gene encoding this enzyme was cloned, sequenced, and over-expressed in Escherichia coli. The recombinant enzyme was purified, characterized and compared with the native form of the enzyme. The enzyme structure is pH-dependent, being a 197-kDa tetramer (subunit of 45 kDa) at pH 10.5, the pH optimum for alcohol oxidation, and a 80.5-kDa dimer at pH 7.5, the pH optimum for aldehyde reduction. The kinetic parameters of the enzyme show that the affinity of the enzyme is greater for the aldehyde substrate and NADPH cofactor, suggesting that the dimeric form of the enzyme is probably the active form in vivo. The ADH of T. hydrothermalis oxidizes a series of primary aliphatic and aromatic alcohols preferentially from C2 to C8 but is also active towards methanol and glycerol and stereospecific for monoterpenes. T. hydrothermalis ADH is the first Thermococcale ADH to be cloned and overproduced in a mesophilic heterologous expression system, and the recombinant and the native forms have identical main characteristics.
Collapse
Affiliation(s)
- E Antoine
- Laboratoire de Biotechnologie des Microorganisms Hydrothermaux, Centre IFREMER de Brest, France.
| | | | | | | |
Collapse
|