1
|
Abstract
The majority of viruses within the gut are obligate bacterial viruses known as bacteriophages (phages). Their bacteriotropism underscores the study of phage ecology in the gut, where they modulate and coevolve with gut bacterial communities. Traditionally, these ecological and evolutionary questions were investigated empirically via in vitro experimental evolution and, more recently, in vivo models were adopted to account for physiologically relevant conditions of the gut. Here, we probed beyond conventional phage-bacteria coevolution to investigate potential tripartite evolutionary interactions between phages, their bacterial hosts, and the mammalian gut mucosa. To capture the role of the mammalian gut, we recapitulated a life-like gut mucosal layer using in vitro lab-on-a-chip devices (to wit, the gut-on-a-chip) and showed that the mucosal environment supports stable phage-bacteria coexistence. Next, we experimentally coevolved lytic phage populations within the gut-on-a-chip devices alongside their bacterial hosts. We found that while phages adapt to the mucosal environment via de novo mutations, genetic recombination was the key evolutionary force in driving mutational fitness. A single mutation in the phage capsid protein Hoc-known to facilitate phage adherence to mucus-caused altered phage binding to fucosylated mucin glycans. We demonstrated that the altered glycan-binding phenotype provided the evolved mutant phage a competitive fitness advantage over its ancestral wild-type phage in the gut-on-a-chip mucosal environment. Collectively, our findings revealed that phages-in addition to their evolutionary relationship with bacteria-are able to evolve in response to a mammalian-derived mucosal environment.
Collapse
|
2
|
Bacteriophage T4 polynucleotide kinase triggers degradation of mRNAs. Proc Natl Acad Sci U S A 2012; 109:7073-8. [PMID: 22499790 DOI: 10.1073/pnas.1119802109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The bacteriophage T4-encoded RegB endoribonuclease is produced during the early stage of phage development and targets mostly (but not exclusively) the Shine-Dalgarno sequences of early genes. In this work, we show that the degradation of RegB-cleaved mRNAs depends on a functional T4 polynucleotide kinase/phosphatase (PNK). The 5'-OH produced by RegB cleavage is phosphorylated by the kinase activity of PNK. This modification allows host RNases G and E, with activity that is strongly stimulated by 5'-monophosphate termini, to attack mRNAs from the 5'-end, causing their destabilization. The PNK-dependent pathway of degradation becomes effective 5 min postinfection, consistent with our finding that several minutes are required for PNK to accumulate after infection. Our work emphasizes the importance of the nature of the 5' terminus for mRNA stability and depicts a pathway of mRNA degradation with 5'- to 3'-polarity in cells devoid of 5'-3' exonucleases. It also ascribes a role for T4 PNK during normal phage development.
Collapse
|
3
|
Ang D, Georgopoulos C. An ORFan no more: the bacteriophage T4 39.2 gene product, NwgI, modulates GroEL chaperone function. Genetics 2012; 190:989-1000. [PMID: 22234860 PMCID: PMC3296260 DOI: 10.1534/genetics.111.135640] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 11/07/2011] [Indexed: 11/18/2022] Open
Abstract
Bacteriophages are the most abundant biological entities in our biosphere, characterized by their hyperplasticity, mosaic composition, and the many unknown functions (ORFans) encoded by their immense genetic repertoire. These genes are potentially maintained by the bacteriophage to allow efficient propagation on hosts encountered in nature. To test this hypothesis, we devised a selection to identify bacteriophage-encoded gene(s) that modulate the host Escherichia coli GroEL/GroES chaperone machine, which is essential for the folding of certain host and bacteriophage proteins. As a result, we identified the bacteriophage RB69 gene 39.2, of previously unknown function and showed that homologs of 39.2 in bacteriophages T4, RB43, and RB49 similarly modulate GroEL/GroES. Production of wild-type bacteriophage T4 Gp39.2, a 58-amino-acid protein, (a) enables diverse bacteriophages to plaque on the otherwise nonpermissive groES or groEL mutant hosts in an allele-specific manner, (b) suppresses the temperature-sensitive phenotype of both groES and groEL mutants, (c) suppresses the defective UV-induced PolV function (UmuCD) of the groEL44 mutant, and (d) is lethal to the host when overproduced. Finally, as proof of principle that Gp39.2 is essential for bacteriophage growth on certain bacterial hosts, we constructed a T4 39.2 deletion strain and showed that, unlike the isogenic wild-type parent, it is incapable of propagating on certain groEL mutant hosts. We propose a model of how Gp39.2 modulates GroES/GroEL function.
Collapse
Affiliation(s)
- Debbie Ang
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah, Salt Lake City, Utah 84112-5650
| |
Collapse
|
4
|
Hinton DM. Transcriptional control in the prereplicative phase of T4 development. Virol J 2010; 7:289. [PMID: 21029433 PMCID: PMC2988021 DOI: 10.1186/1743-422x-7-289] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 10/28/2010] [Indexed: 12/18/2022] Open
Abstract
Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ⁷⁰, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ⁷⁰, which then allows the T4 activator MotA to also interact with σ⁷⁰. In addition, AsiA restructuring of σ⁷⁰ prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity.
Collapse
Affiliation(s)
- Deborah M Hinton
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 2A-13, Bethesda, MD 20892-0830, USA.
| |
Collapse
|
5
|
Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156, table of contents. [PMID: 12626685 PMCID: PMC150520 DOI: 10.1128/mmbr.67.1.86-156.2003] [Citation(s) in RCA: 562] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phage T4 has provided countless contributions to the paradigms of genetics and biochemistry. Its complete genome sequence of 168,903 bp encodes about 300 gene products. T4 biology and its genomic sequence provide the best-understood model for modern functional genomics and proteomics. Variations on gene expression, including overlapping genes, internal translation initiation, spliced genes, translational bypassing, and RNA processing, alert us to the caveats of purely computational methods. The T4 transcriptional pattern reflects its dependence on the host RNA polymerase and the use of phage-encoded proteins that sequentially modify RNA polymerase; transcriptional activator proteins, a phage sigma factor, anti-sigma, and sigma decoy proteins also act to specify early, middle, and late promoter recognition. Posttranscriptional controls by T4 provide excellent systems for the study of RNA-dependent processes, particularly at the structural level. The redundancy of DNA replication and recombination systems of T4 reveals how phage and other genomes are stably replicated and repaired in different environments, providing insight into genome evolution and adaptations to new hosts and growth environments. Moreover, genomic sequence analysis has provided new insights into tail fiber variation, lysis, gene duplications, and membrane localization of proteins, while high-resolution structural determination of the "cell-puncturing device," combined with the three-dimensional image reconstruction of the baseplate, has revealed the mechanism of penetration during infection. Despite these advances, nearly 130 potential T4 genes remain uncharacterized. Current phage-sequencing initiatives are now revealing the similarities and differences among members of the T4 family, including those that infect bacteria other than Escherichia coli. T4 functional genomics will aid in the interpretation of these newly sequenced T4-related genomes and in broadening our understanding of the complex evolution and ecology of phages-the most abundant and among the most ancient biological entities on Earth.
Collapse
Affiliation(s)
- Eric S Miller
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27695-7615, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Pène C, Uzan M. The bacteriophage T4 anti-sigma factor AsiA is not necessary for the inhibition of early promoters in vivo. Mol Microbiol 2000; 35:1180-91. [PMID: 10712698 DOI: 10.1046/j.1365-2958.2000.01787.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteriophage T4 early promoters are utilized immediately after infection and are abruptly turned off 2-3 min later (at 30 degrees C) when the middle promoters are activated. The viral early protein AsiA has been suspected to bring about this transcriptional switch: not only does it activate transcription at middle promoters in vivo and in vitro but it also shows potent anti-sigma70 activity in vitro, suggesting that it is responsible for the shut-off of early transcription. We show here that after infection with a phage deleted for the asiA gene the inhibition of early transcription occurs to the same extent and with the same kinetics as in a wild-type infection. Thus, another AsiA-independent circuit efficiently turns off early transcription. The association of a mutation in asiA with a mutation in mod, rpbA, motA or motB has no effect on the inhibition of early promoters, showing that none of these phage-encoded transcriptional regulators is necessary for AsiA-independent shut-off. It is not known whether AsiA is able to inhibit early promoters in vivo, but host transcription is strongly inhibited in vivo upon induction of AsiA from a multicopy plasmid.
Collapse
Affiliation(s)
- C Pène
- Institut Jacques Monod, UMR7592 of CNRS-Universités Paris 6 and Paris 7, 2 Place Jussieu, 75251 Paris cedex 05, France
| | | |
Collapse
|
7
|
Mosig G, Colowick NE, Pietz BC. Several new bacteriophage T4 genes, mapped by sequencing deletion endpoints between genes 56 (dCTPase) and dda (a DNA-dependent ATPase-helicase) modulate transcription. Gene 1998; 223:143-55. [PMID: 9858714 DOI: 10.1016/s0378-1119(98)00238-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We have analyzed DNA of wild-type T4 and of 13 independent large viable deletions isolated by Homyk and Weil (Virology 61 (1974) 505-523) and by Little (Virology 53 (1973) 47-59), by sequencing, cloning, and expression studies. The deletions can be explained by illegitimate recombination between short (4- to 15-bp) ectopic repeats. In four deletions, adjacent regions are partially homologous, and in at least one of them, the base adjacent to the overlap was deleted during recombination. The sequence 5'-GGGC, which has not been associated with T4 deletions in other map regions, occurs within three repeats, and near the repeats in four more of the 13 deletions. Five previously named genes, 69, soc, mrh, modA, and dda were mapped relative to the deletion endpoints. Nine additional ORFs were found interspersed between them. One of these shares some similarities with mrh (modulates rpoH; Frazier and Mosig, Gene 88 (1990) 7-14), and another one resembles modA (coding for an ADP-ribosyl-transferase that modifies RNA polymerase alpha subunits, Skórko et al., Eur. J. Biochem. 79 (1977) 55-66) respectively. We found that the host's heat shock sigma factor, sigma32, is phosphorylated, and that Mrh protein modulates this phosphorylation. The ORF dda.9 downstream of mrh has a patchy similarity with conserved C-terminal segments (motifs) of sigma32; therefore, we call it srh. Another ORF, dda.2 located between modA and dda, shares sequence similarity with sigma70, and we call it srd. We consider the possibility that Srh and Srd act as decoys for sigma32, or sigma70, respectively. Expression of several of the ORFs from cloned DNA appears to be toxic to the host bacteria. Mutant clones only could be constructed from gene 69 and from modA. Moreover, dda.2 (srd)-containing bacteria grow extremely slowly, and they form filaments in liquid cultures. Clones carrying mrh and srh show less severe filamentation. Our results highlight the importance of 'non-essential' genes for phage development and evolution.
Collapse
Affiliation(s)
- G Mosig
- Department of Molecular Biology, Vanderbilt University, Nasville, TN 37235,
| | | | | |
Collapse
|
8
|
Chiurazzi M, Pulitzer JF. Characterisation of the bacteriophage T4 comC alpha 55.6 and comCJ mutants. A possible role in an antitermination process. FEMS Microbiol Lett 1998; 166:187-95. [PMID: 9770273 DOI: 10.1111/j.1574-6968.1998.tb13889.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have performed a new screen for T4 mutants (comC) that overcome the phage growth restriction caused by the Escherichia coli rho/tabC mutants. We show that one such mutant (comCJ) identifies a different gene from that identified by canonical comC mutants. We compare the regulation of T4 prereplicative transcription in a rho/tabC mutant infected by T4 wild-type, by a canonical comC mutant (comC alpha 55.6) and by comCJ. The transcription rates of the two prereplicative genes 39 and 43 is depressed in a T4 wild-type infected tabC host mutant. When comC alpha 55.6 and/or comCJ single and double mutants are the infecting phages, transcription of genes 39 and 43 is resumed to different extents; in particular, in the double mutant infections there appears to be a synergistic effect on transcription. Furthermore, we find that the comC alpha 55.6 phage mutant affects the transcription rate of the gene rIIA in a wild-type host.
Collapse
Affiliation(s)
- M Chiurazzi
- International Institute of Genetics and Biophysics, Naples, Italy.
| | | |
Collapse
|
9
|
Sozhamannan S, Stitt BL. Effects on mRNA degradation by Escherichia coli transcription termination factor Rho and pBR322 copy number control protein Rop. J Mol Biol 1997; 268:689-703. [PMID: 9175854 DOI: 10.1006/jmbi.1997.1004] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutants in Escherichia coli transcription termination factor Rho, termed rho(nusD), were previously isolated based on their ability to block the growth of bacteriophage T4. Here we show that rho(nusD) strains have decreased average half-lives for bulk cellular mRNA. Decreased E. coli message lifetimes could be because of increased ribonuclease activity in the rho mutant cells: if a Rho-dependent terminator precedes a ribonuclease gene, weaker termination in the rho mutants could lead to nuclease overexpression. However, inactivation of ribonuclease genes in rho026 cells did not relieve the defective phage growth. Unexpectedly, expression of the pBR322 Rop protein, a structure-specific, sequence-independent RNA-binding protein, in rho(nusD) cells restored the ability of T4 to grow and prolonged cellular message half-life in both the wild-type and the rho026 mutant. These results suggest that it is the RNA-binding ability of Rho rather than its transcription termination function that is important for the inhibition of bacteriophage growth and the shorter bulk mRNA lifetime. We propose that altered interaction of the mutant Rho with mRNA could make the RNA more susceptible to degradation. The inability of the RNA-binding proteins SrmB and DeaD to reverse the rho mutant phenotype when each is overexpressed implies that the required RNA interactions are specific. The results show novel roles for Rho and Rop in mRNA stability.
Collapse
Affiliation(s)
- S Sozhamannan
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
10
|
Abstract
A growing number of genetic systems have been shown to be controlled at the level of premature termination of transcription. Genes in this class contain transcription termination signals in the region upstream of the coding sequence. The activity of these regulatory termination signals is controlled through a variety of mechanisms. These include modification of RNA polymerase to a terminator-resistant, or terminator-prone form, and alterations in the structure of the nascent transcript, to determine whether the stem-loop structure of an intrinsic terminator or an alternate antiterminator is formed. Structural alterations in the transcript can be controlled by the kinetics of translation of the RNA, by binding of specific regulatory proteins, and by mRNA-tRNA interactions. This review describes a number of variations on the termination control theme that have been uncovered in prokaryotes.
Collapse
Affiliation(s)
- T M Henkin
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
11
|
Sanson B, Uzan M. Post-transcriptional controls in bacteriophage T4: roles of the sequence-specific endoribonuclease RegB. FEMS Microbiol Rev 1995; 17:141-50. [PMID: 7669340 DOI: 10.1111/j.1574-6976.1995.tb00196.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Gene regB of bacteriophage T4 encodes a sequence-specific endoribonuclease which introduces cuts in early phage messenger RNAs. In most cases, cutting takes place in the middle of the tetranucleotide GGAG. Efficient cleavages occur in the motifs located in intergenic regions, some of them being Shine-Dalgarno sequences. When located in a coding sequence, this tetranucleotide is poorly recognized or not at all. In this article, we have reviewed the properties of the RegB endoribonuclease, with emphasis on its possible roles in T4 development. We show that the nuclease RegB plays at least two roles: (i) it inactivates a sub-class of early mRNA by cleaving Shine-Dalgarno sequences, and (ii) it is necessary for the degradation of early mRNAs, but not of middle and late mRNAs. Accordingly, we found that middle and late mRNAs avoid processing by RegB, probably for different reasons. Most of the middle mRNAs (mRNAs initiated at MotA-dependent promoters) do not contain the motif GGAG in their intergenic regions, whereas about one-third of the late genes have this motif as Shine-Dalgarno sequence. It is not yet known whether the RNase is inactivated early in the phage cycle, or whether it remains active but cannot recognize late mRNAs as substrates.
Collapse
Affiliation(s)
- B Sanson
- CNRS URA1139, Institut de Biologie Physico-chimique, Paris, France
| | | |
Collapse
|
12
|
Vanet A, Plumbridge JA, Guérin MF, Alix JH. Ribosomal protein methylation in Escherichia coli: the gene prmA, encoding the ribosomal protein L11 methyltransferase, is dispensable. Mol Microbiol 1994; 14:947-58. [PMID: 7715456 DOI: 10.1111/j.1365-2958.1994.tb01330.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The prmA gene, located at 72 min on the Escherichia coli chromosome, is the genetic determinant of ribosomal protein L11-methyltransferase activity. Mutations at this locus, prmA1 and prmA3, result in a severely undermethylated form of L11. No effect, other than the lack of methyl groups on L11, has been ascribed to these mutations. DNA sequence analysis of the mutant alleles prmA1 and prmA3 detected point mutations near the C-terminus of the protein and plasmids overproducing the wild-type and the two mutant proteins have been constructed. The wild-type PrmA protein could be crosslinked to its radiolabelled substrate, S-adenosyl-L-methionine (SAM), by u.v. irradiation indicating that it is the gene for the methyltransferase rather than a regulatory protein. One of the mutant proteins, PrmA3, was also weakly crosslinked to SAM. Both mutant enzymes when expressed from the overproducing plasmids were capable of catalysing the incorporation of 3H-labelled methyl groups from SAM to L11 in vitro. This confirmed the observation that the mutant proteins possess significant residual activity which could account for their lack of growth phenotype. However, a strain carrying an in vitro-constructed null mutation of the prmA gene, transferred to the E. coli chromosome by homologous recombination, was perfectly viable.
Collapse
Affiliation(s)
- A Vanet
- Institut de Biologie Physico-Chimique, URA1139 CNRS, Paris, France
| | | | | | | |
Collapse
|