1
|
Madern D, Pfister C, Zaccai G. Mutation at a Single Acidic Amino Acid Enhances the Halophilic Behaviour of Malate Dehydrogenase from Haloarcula Marismortui in Physiological Salts. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.1088g.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Large A, Stamme C, Lange C, Duan Z, Allers T, Soppa J, Lund PA. Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene. Mol Microbiol 2007; 66:1092-106. [PMID: 17973910 DOI: 10.1111/j.1365-2958.2007.05980.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A system where archaeal gene expression could be controlled by simple manipulation of growth conditions would enable the construction of conditional lethal mutants in essential genes, and permit the controlled overproduction of proteins in their native host. As tools for the genetic manipulation of Haloferax volcanii are well developed, we set out to identify promoters with a wide dynamic range of expression in this organism. Tryptophan is the most costly amino acid for the cell to make, so we reasoned that tryptophan-regulated promoters might be good candidates. Microarray analysis of H. volcanii gene expression in the presence and absence of tryptophan identified a tryptophanase gene (tna) that showed strong induction in the presence of tryptophan. qRT-PCR revealed a very fast response and an up to 100-fold induction after tryptophan addition. This result has been confirmed using three independent reporter genes (cct1, pyrE2 and bgaH). Vectors containing this promoter will be very useful for investigating gene function in H. volcanii and potentially in other halophilic archaea. To demonstrate this, we used the promoter to follow the consequences of depletion of the essential chaperonin protein CCT1, and to determine the ability of heterologous CCT proteins to function in H. volcanii.
Collapse
Affiliation(s)
- Andrew Large
- School of Biosciences, The University of Birmingham, Edgbaston B15 2TT, UK
| | | | | | | | | | | | | |
Collapse
|
3
|
De Castro RE, Maupin-Furlow JA, Giménez MI, Herrera Seitz MK, Sánchez JJ. Haloarchaeal proteases and proteolytic systems. FEMS Microbiol Rev 2006; 30:17-35. [PMID: 16438678 DOI: 10.1111/j.1574-6976.2005.00003.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Proteases play key roles in many biological processes and have numerous applications in biotechnology and industry. Recent advances in the genetics, genomics and biochemistry of the halophilic Archaea provide a tremendous opportunity for understanding proteases and their function in the context of an archaeal cell. This review summarizes our current knowledge of haloarchaeal proteases and provides a reference for future research.
Collapse
Affiliation(s)
- Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|
4
|
Thoma R, Hennig M, Sterner R, Kirschner K. Structure and function of mutationally generated monomers of dimeric phosphoribosylanthranilate isomerase from Thermotoga maritima. Structure 2000; 8:265-76. [PMID: 10745009 DOI: 10.1016/s0969-2126(00)00106-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Oligomeric proteins may have been selected for in hyperthermophiles because subunit association provides extra stabilization. Phosphoribosylanthranilate isomerase (PRAI) is monomeric and labile in most mesophilic microorganisms, but dimeric and stable in the hyperthermophile Thermotoga maritima (tPRAI). The two subunits of tPRAI are associated back-to-back and are locked together by a hydrophobic loop. The hypothesis that dimerization is important for thermostability has been tested by rationally designing monomeric variants of tPRAI. RESULTS The comparison of tPRAI and PRAI from Escherichia coli (ePRAI) suggested that levelling the nonplanar dimer interface would weaken the association. The deletion of two residues in the loop loosened the dimer. Subsequent filling of the adjacent pocket and the exchange of polar for apolar residues yielded a weakly associating and a nonassociating monomeric variant. Both variants are as active as the parental dimer but far more thermolabile. The thermostability of the weakly associating monomer increased significantly with increasing protein concentration. The X-ray structure of the nonassociating monomer differed from that of the parental subunit only in the restructured interface. The orientation of the original subunits was maintained in a crystal contact between two monomers. CONCLUSIONS tPRAI is dimeric for reasons of stability. The clearly separated responsibilities of the betaalpha loops, which are involved in activity, and the alphabeta loops, which are involved in protein stability, has permitted the evolution of dimers without compromising their activity. The preserved interaction in the crystal contacts suggests the most likely model for dimer evolution.
Collapse
Affiliation(s)
- R Thoma
- Abteilung für Biophysikalische Chemie, Biozentrum der Universität Basel, Basel, CH-4056, Switzerland
| | | | | | | |
Collapse
|
5
|
Gelfand MS, Koonin EV, Mironov AA. Prediction of transcription regulatory sites in Archaea by a comparative genomic approach. Nucleic Acids Res 2000; 28:695-705. [PMID: 10637320 PMCID: PMC102549 DOI: 10.1093/nar/28.3.695] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intragenomic and intergenomic comparisons of upstream nucleotide sequences of archaeal genes were performed with the goal of predicting transcription regulatory sites (operators) and identifying likely regulons. Learning sets for the detection of regulatory sites were constructed using the available experimental data on archaeal transcription regulation or by analogy with known bacterial regulons, and further analysis was performed using iterative profile searches. The information content of the candidate signals detected by this method is insufficient for reliable predictions to be made. Therefore, this approach has to be complemented by examination of evolutionary conservation in different archaeal genomes. This combined strategy resulted in the prediction of a conserved heat shock regulon in all euryarchaea, a nitrogen fixation regulon in the methanogens Methanococcus jannaschii and Methanobacterium thermoautotrophicum and an aromatic amino acid regulon in M.thermoautotrophicum. Unexpectedly, the heat shock regulatory site was detected not only for genes that encode known chaperone proteins but also for archaeal histone genes. This suggests a possible function for archaeal histones in stress-related changes in DNA condensation. In addition, comparative analysis of the genomes of three Pyrococcus species resulted in the prediction of their purine metabolism and transport regulon. The results demonstrate the feasibility of prediction of at least some transcription regulatory sites by comparing poorly characterized prokaryotic genomes, particularly when several closely related genome sequences are available.
Collapse
Affiliation(s)
- M S Gelfand
- State Scientific Center for Biotechnology NIIGenetika, Moscow 113545, Russia.
| | | | | |
Collapse
|
6
|
Abstract
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
7
|
Gast DA, Wasserfallen A, Pfister P, Ragettli S, Leisinger T. Characterization of Methanobacterium thermoautotrophicum Marburg mutants defective in regulation of L-tryptophan biosynthesis. J Bacteriol 1997; 179:3664-9. [PMID: 9171414 PMCID: PMC179162 DOI: 10.1128/jb.179.11.3664-3669.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Three nitrosoguanidine-induced mutants of the archaeon Methanobacterium thermoautotrophicum Marburg resistant to 5-methyltryptophan were isolated and characterized. They were found to take up L-tryptophan, as wild-type cells, via an energy-dependent, low-affinity transport system specific for L-tryptophan, with a Km of 300 microM and a Vmax of 7 nmol/mg (dry weight)/min. Resistance to 5-methyltryptophan was not due to feedback-resistant anthranilate synthase but to constitutive expression of the trp genes, as measured by the specific activities of anthranilate synthase and tryptophan synthase, the enzymes encoded by trpEG and trpB, respectively, of the trpEGCFBAD gene cluster. Estimation of trpE mRNA obtained from mutant cells grown in minimal medium with or without L-tryptophan suggested that constitutive expression resulted from deficient transcriptional regulation. The enhanced expression of the trp genes in the mutants was found to result in intracellular L-tryptophan pools that were two- to fourfold higher than in the wild type. Sequencing of the region upstream of trpE revealed in two mutants point mutations mapping on the 5'-side of the archaeal box A, whereas in the third mutant this region did not differ from that of the wild type. These results suggest that (i) in M. thermoautotrophicum the 5-methyltryptophan-resistant phenotype arises from lesions in components of a regulatory system controlling transcription of the trp genes and (ii) cis-acting sequence elements in front of the trpE promoter may form part of this system.
Collapse
Affiliation(s)
- D A Gast
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
8
|
Brinkmann H, Martin W. Higher-plant chloroplast and cytosolic 3-phosphoglycerate kinases: a case of endosymbiotic gene replacement. PLANT MOLECULAR BIOLOGY 1996; 30:65-75. [PMID: 8616244 DOI: 10.1007/bf00017803] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Previous studies indicated that plant nuclear genes for chloroplast and cytosolic isoenzymes of 3-phosphoglycerate kinase (PGK) arose through recombination between a preexisting gene of the eukaryotic host nucleus for the cytosolic enzyme and an endosymbiont-derived gene for the chloroplast enzyme. We readdressed the evolution of eukaryotic pgk genes through isolation and characterisation of a pgk gene from the extreme halophilic, photosynthetic archaebacterium Haloarcula vallismortis and analysis of PGK sequences from the three urkingdoms. A very high calculated net negative charge of 63 for PGK from H. vallismortis was found which is suggested to result from selection for enzyme solubility in this extremely halophilic cytosol. We refute the recombination hypothesis proposed for the origin of plant PGK isoenzymes. The data indicate that the ancestral gene from which contemporary homologues for the Calvin cycle/glycolytic isoenzymes in higher plants derive was acquired by the nucleus from (endosymbiotic) eubacteria. Gene duplication subsequent to separation of Chlamydomonas and land plant lineages gave rise to the contemporary genes for chloroplast and cytosolic PGK isoenzymes in higher plants, and resulted in replacement of the preexisting gene for PGK of the eukaryotic cytosol. Evidence suggesting a eubacterial origin of plant genes for PGK via endosymbiotic gene replacement indicates that plant nuclear genomes are more highly chimaeric, i.e. contain more genes of eubacterial origin, than is generally assumed.
Collapse
Affiliation(s)
- H Brinkmann
- Institut für Botanik, Technische Universität Braunschweig, Germany
| | | |
Collapse
|
9
|
Madern D, Pfister C, Zaccai G. Mutation at a single acidic amino acid enhances the halophilic behaviour of malate dehydrogenase from Haloarcula marismortui in physiological salts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 230:1088-95. [PMID: 7601139 DOI: 10.1111/j.1432-1033.1995.tb20659.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In a statistical analysis of the amino acid compositions of 26 halophilic proteins, 24 showed an increase in acidic amino acids and a decrease in basic ones when compared to their non-halophilic homologues. The role of acidic residues in halophilic adaptation was investigated by site-directed mutagenesis of malate dehydrogenase (MalDH) from Haloarcula marismortui. In all of 40 non-halophilic homologous proteins, the position aligned with E243 in halophilic MalDH is occupied by a non-acidic amino acid, most frequently by arginine. The E243R mutant of halophilic MalDH was constructed, over-expressed in Escherichia coli, renatured and purified. Its salt-dependent catalytic activity was not affected compared to the wild-type enzyme and both proteins have the same Km values for their substrates. The resistance to denaturation of the mutant was compared to that of the wild-type protein in different physiological salt (NaCl or KCl) and temperature conditions and interpreted in terms of classical quasi-thermodynamic parameters. The mutant is more halophilic than the wild-type protein; it is more sensitive to temperature and requires significantly higher concentrations of NaCl or KCl for equivalent stability. These results highlight the role of acidic amino acids in halophilic behaviour and are in agreement with a model in which these amino acids act cooperatively to organise hydrated ion binding to the protein.
Collapse
Affiliation(s)
- D Madern
- Institut de Biologie Structurale, Grenoble, France
| | | | | |
Collapse
|
10
|
López-García P, St Jean A, Amils R, Charlebois RL. Genomic stability in the archaeae Haloferax volcanii and Haloferax mediterranei. J Bacteriol 1995; 177:1405-8. [PMID: 7868620 PMCID: PMC176752 DOI: 10.1128/jb.177.5.1405-1408.1995] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Through hybridization of available probes, we have added nine genes to the macrorestriction map of the Haloferax mediterranei chromosome and five genes to the contig map of Haloferax volcanii. Additionally, we hybridized 17 of the mapped cosmid clones from H. volcanii to the H. mediterranei genome. The resulting 35-point chromosomal comparison revealed only two inversions and a few translocations. Forces known to promote rearrangement, common in the haloarchaea, have been ineffective in changing global gene order throughout the nearly 10(7) years of these species' divergent evolution.
Collapse
Affiliation(s)
- P López-García
- Centro de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Gast DA, Jenal U, Wasserfallen A, Leisinger T. Regulation of tryptophan biosynthesis in Methanobacterium thermoautotrophicum Marburg. J Bacteriol 1994; 176:4590-6. [PMID: 8045889 PMCID: PMC196279 DOI: 10.1128/jb.176.15.4590-4596.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A tryptophan-auxotrophic mutant of the archaeon Methanobacterium thermoautotrophicum Marburg was grown with growth-promoting and growth-limiting concentrations of tryptophan. The specific activities of anthranilate synthase (TrpEG) and tryptophan synthase (TrpB) increased 30- to 40-fold in tryptophan-starved cells. Levels of trpE-specific and trpD-specific mRNAs (transcripts of the first and the last genes, respectively, of the M. thermoautotrophicum Marburg trp gene cluster) increased about 10-fold upon starvation for tryptophan. Thus, the expression of the trp genes appears to be regulated primarily at the level of transcription. These data support transcription of trp genes as an operon and support a regulatory model involving a repressor. Anthranilate synthase was feedback inhibited by L-tryptophan, with a Ki of 3.0 microM. In a leucine-auxotrophic mutant starved for L-leucine, the level of alpha-isopropylmalate synthase (LeuA) was 10-fold higher than in cells grown with L-leucine. In addition to the finding of specific regulation of gene expression by the end products of their respective pathways, it was found that the levels of anthranilate synthase and alpha-isopropylmalate synthase were reduced upon growth in the presence of amino acids of other families, such as L-alanine, L-proline, or L-arginine. Conversely, starvation for tryptophan caused a slight elevation of alpha-isopropylmalate synthase and starvation for leucine caused a significant increase of anthranilate synthase and tryptophan synthase specific activities. The latter effect was also observed at the level of trp-specific mRNA and is reminiscent of general amino acid control.
Collapse
Affiliation(s)
- D A Gast
- Mikrobiologisches Institut, Swiss Federal Institute of Technology, ETH-Zentrum, Zürich
| | | | | | | |
Collapse
|
12
|
Soppa J. Compilation of Halobacterial Protein Coding Genes, the Halobacterial Codon Usage Table and its Use. Syst Appl Microbiol 1993. [DOI: 10.1016/s0723-2020(11)80346-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Chapter 15 Halobacterial genes and genomes. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
New nucleotide sequence data on the EMBL File Server. Nucleic Acids Res 1992; 20:2905-27. [PMID: 1614890 PMCID: PMC336956 DOI: 10.1093/nar/20.11.2905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
15
|
Forterre P, Benachenhou-Lahfa N, Confalonieri F, Duguet M, Elie C, Labedan B. The nature of the last universal ancestor and the root of the tree of life, still open questions. Biosystems 1992; 28:15-32. [PMID: 1337989 DOI: 10.1016/0303-2647(92)90004-i] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nature of the last universal ancestor to all extent cellular organisms and the rooting of the universal tree of life are fundamental questions which can now be addressed by molecular evolutionists. Several scenarios have been proposed during the last years, based on the phylogenies of ribosomal RNA and of duplicated proteins, which suggest that the last universal ancestor was either an RNA progenote or an hyperthermophilic prokaryote. We discuss these hypotheses in the light of new data on the evolution of DNA metabolizing enzymes and of contradictions between different protein phylogenies. We conclude that the last universal ancestor was a member of the DNA world already containing several DNA polymerases and DNA topoisomerases. Furthermore, we criticize current data which suggest that the rooting of the universal tree of life is located in the eubacterial branch and we conclude that both rooting the universal tree and the nature of the last universal ancestor are still open questions.
Collapse
Affiliation(s)
- P Forterre
- Laboratoire des archaebactéries, URA 1354 CNRS, Université Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|