1
|
Virus-Host Interaction Gets Curiouser and Curiouser. PART II: Functional Transcriptomics of the E. coli DksA-Deficient Cell upon Phage P1 vir Infection. Int J Mol Sci 2021; 22:ijms22116159. [PMID: 34200430 PMCID: PMC8201110 DOI: 10.3390/ijms22116159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
The virus–host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage–host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA− hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.
Collapse
|
2
|
Cech GM, Kloska A, Krause K, Potrykus K, Cashel M, Szalewska-Pałasz A. Virus-Host Interaction Gets Curiouser and Curiouser. PART I: Phage P1 vir Enhanced Development in an E. coli DksA-Deficient Cell. Int J Mol Sci 2021; 22:ijms22115890. [PMID: 34072628 PMCID: PMC8198154 DOI: 10.3390/ijms22115890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteriophage P1 is among the best described bacterial viruses used in molecular biology. Here, we report that deficiency in the host cell DksA protein, an E. coli global transcription regulator, improves P1 lytic development. Using genetic and microbiological approaches, we investigated several aspects of P1vir biology in an attempt to understand the basis of this phenomenon. We found several minor improvements in phage development in the dksA mutant host, including more efficient adsorption to bacterial cell and phage DNA replication. In addition, gene expression of the main repressor of lysogeny C1, the late promoter activator Lpa, and lysozyme are downregulated in the dksA mutant. We also found nucleotide substitutions located in the phage immunity region immI, which may be responsible for permanent virulence of phage P1vir. We suggest that downregulation of C1 may lead to a less effective repression of lysogeny maintaining genes and that P1vir may be balancing between lysis and lysogeny, although finally it is able to enter the lytic pathway only. The mentioned improvements, such as more efficient replication and more “gentle” cell lysis, while considered minor individually, together may account for the phenomenon of a more efficient P1 phage development in a DksA-deficient host.
Collapse
Affiliation(s)
- Grzegorz M. Cech
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (K.K.); (K.P.); (A.S.-P.)
- Correspondence: ; Tel.: +48-58-523-60-25
| | - Anna Kloska
- Department of Medical Biology and Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland;
| | - Klaudyna Krause
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (K.K.); (K.P.); (A.S.-P.)
| | - Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (K.K.); (K.P.); (A.S.-P.)
| | - Michael Cashel
- Intramural Program, Eunice Kennedy Shriver Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Agnieszka Szalewska-Pałasz
- Department of Bacterial Molecular Genetics, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (K.K.); (K.P.); (A.S.-P.)
| |
Collapse
|
3
|
Das A, Mandal S, Hemmadi V, Ratre V, Biswas M. Studies on the gene regulation involved in the lytic-lysogenic switch in Staphylococcus aureus temperate bacteriophage Phi11. J Biochem 2020; 168:659-668. [PMID: 32702081 DOI: 10.1093/jb/mvaa080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 07/13/2020] [Indexed: 01/28/2023] Open
Abstract
Antirepressor proteins of bacteriophages are chiefly involved in interfering with the function of the repressor protein and forcing the bacteriophage to adopt the lytic cycle. The genome of Staphylococcus aureus phage, Phi11 has already been sequenced; from the genome sequence, we amplified gp07 gene and analysed its involvement in the developmental pathway of Phi11. Our results indicate that Gp07 functions as a novel antirepressor and regulates the developmental pathway of Phi11 by enhancing the binding of the Cro repressor protein to its cognate operator. We also report our finding that the CI repressor protein of Phi11 binds to the putative operator of Gp07 and regulates its expression. We further report that S.aureus transcriptional repressor LexA and coprotease RecA play a crucial role in the lytic-lysogenic switching in Phi11. We also identified that the N-terminal domain (Bro-N) of Gp07 is actually responsible for enhancing the binding of Cro repressor to its cognate operator. Our results suggest that Phi11 prophage induction is different from other bacteriophages. This study furnishes a first-hand report regarding the regulation involved in the developmental pathway of Phi11.
Collapse
Affiliation(s)
- Avijit Das
- Department of Biological Sciences, BITS Pilani K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India
| | - Sukhendu Mandal
- Department of Biochemistry, Bose Institute, Kolkata 700054, India
| | - Vijay Hemmadi
- Department of Biological Sciences, BITS Pilani K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India
| | - Vivek Ratre
- Department of Biological Sciences, BITS Pilani K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, BITS Pilani K K Birla Goa Campus, NH17B, Zuarinagar, Goa 403726, India
| |
Collapse
|
4
|
Das A, Biswas S, Biswas M. Expression of Phi11 Gp07 Causes Filamentation in Escherichia coli. Open Microbiol J 2018; 12:107-115. [PMID: 29785217 PMCID: PMC5944126 DOI: 10.2174/1874285801812010107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/07/2018] [Accepted: 04/08/2018] [Indexed: 11/25/2022] Open
Abstract
Background: The Gp07 protein of aureophage Phi11 exhibits growth inhibitory effects when overexpressed in E. coli .The protein harbors two domains- an amino terminal Bro-like domain and a carboxy terminal Ant superfamily like KilA domain, of which the KilA domain retains the growth inhibitory effect of Gp07. Methods: We studied the effects exerted by the overexpression of Gp07 and its separate domains upon the growth rate as well as the morphology of the E. coli cells. Additionally, we generated a mutant of Gp07 (designated as ΔGp07) by deleting the first eleven amino acid residues from the amino-terminal region of Gp07, and studied its growth inhibitory effects upon E. coli. Results: Our results indicate that Gp07, ΔGp07 as well as the Carboxy-terminal region of Gp07 upon overexpression, retards the growth rate of the E. coli cells and also induces filamentation in the cells. Surprisingly, our data clearly suggests that the growth inhibition and filamentation induced by the the amino-terminal domain of Gp07 is temporal in nature. Conclusion: The carboxy-terminal of domain of gp07 is essential for its activity.
Collapse
Affiliation(s)
- Avijit Das
- BITS Pilani, K.K.Birla Goa Campus, Zuarinagar, Goa-403726, India
| | - Sumit Biswas
- BITS Pilani, K.K.Birla Goa Campus, Zuarinagar, Goa-403726, India
| | - Malabika Biswas
- BITS Pilani, K.K.Birla Goa Campus, Zuarinagar, Goa-403726, India
| |
Collapse
|
5
|
Roberts F, Allison GE, Verma NK. Transcription-termination-mediated immunity and its prevention in bacteriophage SfV of Shigella flexneri. J Gen Virol 2007; 88:3187-3197. [PMID: 17947546 DOI: 10.1099/vir.0.83062-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The temperate phage SfV encodes the genes responsible for the serotype conversion of Shigella flexneri strains from serotype Y to 5a. Bacteriophages often encode proteins that prevent subsequent infection by homologous phages; the mechanism by which this is accomplished is referred to as superinfection immunity. The serotype conversion mediated following lysogenization of SfV is one such mechanism. Another mechanism is the putative lambda-like CI protein within SfV. This study reports the characterization of a third superinfection mechanism, transcription termination, in SfV. The presence of a small immunity-mediating RNA molecule, called CI RNA, and its essential role in the establishment of immunity, is shown. The novel role of the gene orf77, located immediately downstream from the transcription termination region, in inhibiting the establishment of CI RNA-mediated immunity is also presented.
Collapse
Affiliation(s)
- Fleur Roberts
- School of Biochemistry and Molecular Biology, College of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Gwen E Allison
- Australian National University Medical School, The Australian National University, Canberra, ACT 0200, Australia.,School of Biochemistry and Molecular Biology, College of Science, The Australian National University, Canberra, ACT 0200, Australia
| | - Naresh K Verma
- School of Biochemistry and Molecular Biology, College of Science, The Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
6
|
Łobocka MB, Rose DJ, Plunkett G, Rusin M, Samojedny A, Lehnherr H, Yarmolinsky MB, Blattner FR. Genome of bacteriophage P1. J Bacteriol 2004; 186:7032-68. [PMID: 15489417 PMCID: PMC523184 DOI: 10.1128/jb.186.21.7032-7068.2004] [Citation(s) in RCA: 203] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
P1 is a bacteriophage of Escherichia coli and other enteric bacteria. It lysogenizes its hosts as a circular, low-copy-number plasmid. We have determined the complete nucleotide sequences of two strains of a P1 thermoinducible mutant, P1 c1-100. The P1 genome (93,601 bp) contains at least 117 genes, of which almost two-thirds had not been sequenced previously and 49 have no homologs in other organisms. Protein-coding genes occupy 92% of the genome and are organized in 45 operons, of which four are decisive for the choice between lysis and lysogeny. Four others ensure plasmid maintenance. The majority of the remaining 37 operons are involved in lytic development. Seventeen operons are transcribed from sigma(70) promoters directly controlled by the master phage repressor C1. Late operons are transcribed from promoters recognized by the E. coli RNA polymerase holoenzyme in the presence of the Lpa protein, the product of a C1-controlled P1 gene. Three species of P1-encoded tRNAs provide differential controls of translation, and a P1-encoded DNA methyltransferase with putative bifunctionality influences transcription, replication, and DNA packaging. The genome is particularly rich in Chi recombinogenic sites. The base content and distribution in P1 DNA indicate that replication of P1 from its plasmid origin had more impact on the base compositional asymmetries of the P1 genome than replication from the lytic origin of replication.
Collapse
Affiliation(s)
- Małgorzata B Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Ul. Pawinskiego 5A, 02-106 Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ravin V, Ravin N, Casjens S, Ford ME, Hatfull GF, Hendrix RW. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J Mol Biol 2000; 299:53-73. [PMID: 10860722 DOI: 10.1006/jmbi.2000.3731] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
N15 is a temperate bacteriophage that forms stable lysogens in Escherichia coli. While its virion is morphologically very similar to phage lambda and its close relatives, it is unusual in that the prophage form replicates autonomously as a linear DNA molecule with closed hairpin telomeres. Here, we describe the genomic architecture of N15, and its global pattern of gene expression, which reveal that N15 contains several plasmid-derived genes that are expressed in N15 lysogens. The tel site, at which processing occurs to form the prophage ends is close to the center of the genome in a similar location to that occupied by the attachment site, attP, in lambda and its relatives and defines the boundary between the left and right arms. The left arm contains a long cluster of structural genes that are closely related to those of the lambda-like phages, but also includes homologs of umuD', which encodes a DNA polymerase accessory protein, and the plasmid partition genes, sopA and sopB. The right arm likewise contains a mixture of apparently phage- and plasmid-derived genes including genes encoding plasmid replication functions, a phage repressor, a transcription antitermination system, as well as phage host cell lysis genes and two putative DNA methylases. The unique structure of the N15 genome suggests that the large global population of bacteriophages may exhibit a much greater diversity of genomic architectures than was previously recognized.
Collapse
MESH Headings
- Bacteriolysis
- Bacteriophage lambda/genetics
- Bacteriophages/enzymology
- Bacteriophages/genetics
- Bacteriophages/ultrastructure
- Base Composition
- Base Sequence
- Escherichia coli/physiology
- Escherichia coli/virology
- Gene Expression Regulation, Bacterial
- Genes, Viral/genetics
- Genome, Viral
- Lysogeny/genetics
- Microscopy, Electron
- Plasmids/genetics
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Response Elements/genetics
- Sequence Analysis, DNA
- Terminator Regions, Genetic/genetics
- Transcription, Genetic/genetics
- Viral Proteins/genetics
Collapse
Affiliation(s)
- V Ravin
- Center for Bioengineering, Russian Academy of Science, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
8
|
Ravin NV, Svarchevsky AN, Dehò G. The anti-immunity system of phage-plasmid N15: identification of the antirepressor gene and its control by a small processed RNA. Mol Microbiol 1999; 34:980-94. [PMID: 10594823 DOI: 10.1046/j.1365-2958.1999.01658.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N15 is a temperate virus of Escherichia coli related to lambdoid phages. However, unlike all other known phages, the N15 prophage is maintained as a low copy number linear DNA molecule with covalently closed ends. The primary immunity system at the immB locus is structurally and functionally comparable to that of lambdoid phages, and encodes the immunity repressor CB. We have characterized a second locus, immA, in which clear plaque mutations were mapped, and found that it encodes an anti-immunity system involved in the choice between the lytic and the lysogenic cycle. Three open reading frames at the immA locus encode an inhibitor of cell division (icd ), an antirepressor (antA) and a gene that may play an ancillary role in anti-immunity (antB ). These genes may be transcribed from two promoters: the upstream promoter Pa is repressed by the immunity repressor CB, whereas the downstream promoter Pb is constitutive. Full repression of the anti-immunity system is achieved by premature transcription termination elicited by a small RNA (CA RNA) produced by processing of the leader transcript of the anti-immunity operon. The N15 anti-immunity system is structurally and functionally similar to the anti-immunity system of bacteriophage P1 and to the immunity system of satellite phage P4.
Collapse
Affiliation(s)
- N V Ravin
- Dipartimento di Genetica e di Biologia dei microrganismi, Università degli Studi di Milano, Milan, Italy.; Center 'Bioengineering', Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
9
|
Forti F, Polo S, Lane KB, Six EW, Sironi G, Dehò G, Ghisotti D. Translation of two nested genes in bacteriophage P4 controls immunity-specific transcription termination. J Bacteriol 1999; 181:5225-33. [PMID: 10464191 PMCID: PMC94026 DOI: 10.1128/jb.181.17.5225-5233.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In phage P4, transcription of the left operon may occur from both the constitutive PLE promoter and the regulated PLL promoter, about 400 nucleotides upstream of PLE. A strong Rho-dependent termination site, timm, is located downstream of both promoters. When P4 immunity is expressed, transcription starting at PLE is efficiently terminated at timm, whereas transcription from PLL is immunity insensitive and reads through timm. We report the identification of two nested genes, kil and eta, located in the P4 left operon. The P4 kil gene, which encodes a 65-amino-acid polypeptide, is the first translated gene downstream of the PLE promoter, and its expression is controlled by P4 immunity. Overexpression of kil causes cell killing. This gene is the terminal part of a longer open reading frame, eta, which begins upstream of PLE. The eta gene is expressed when transcription starts from the PLL promoter. Three likely start codons predict a size between 197 and 199 amino acids for the Eta gene product. Both kil and eta overlap the timm site. By cloning kil upstream of a tRNA reporter gene, we demonstrated that translation of the kil region prevents premature transcription termination at timm. This suggests that P4 immunity might negatively control kil translation, thus enabling transcription termination at timm. Transcription starting from PL proceeds through timm. Mutations that create nonsense codons in eta caused premature termination of transcription starting from PLL. Suppression of the nonsense mutation restored transcription readthrough at timm. Thus, termination of transcription from PLL is prevented by translation of eta.
Collapse
Affiliation(s)
- F Forti
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Ghisotti D, Briani F, Forti F, Piazza F, Polo S, Sabbattini P, Sturniolo T, Terzano S, Zangrossi S, Zappone M. Multiple regulatory mechanisms controlling phage-plasmid P4 propagation. FEMS Microbiol Rev 1995; 17:127-34. [PMID: 7669338 DOI: 10.1111/j.1574-6976.1995.tb00194.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bacteriophage P4 autonomous replication may result in the lytic cycle or in plasmid maintenance, depending, respectively, on the presence or absence of the helper phage P2 genome in the Escherichia coli host cell. Alternatively, P4 may lysogenize the bacterial host and be maintained in an immune-integrated condition. A key step in the choice between the lytic/plasmid vs. the lysogenic condition is the regulation of P4 alpha operon. This operon may be transcribed from two promoters, PLE and PLL, and encodes both immunity (promoter proximal) and replication (promoter distal) functions. PLE is a constitutive promoter and transcription of the downstream replication genes is regulated by transcription termination. The trans-acting immunity factor that controls premature transcription termination is a short RNA encoded in the PLE proximal part of the operon. Expression of the replication functions in the lytic/plasmid condition is achieved by activation of the PLL promoter. Transcription from PLL is insensitive to the termination mechanism that acts on transcription starting from PLE.PLL is also negatively regulated by P4 orf88, the first gene downstream of PLL. An additional control on P4 DNA replication is exerted by the P4 cnr gene product.
Collapse
Affiliation(s)
- D Ghisotti
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Prophages P1 and P7 exist as unit copy DNA plasmids in the bacterial cell. Maintenance of the prophage state requires the continuous expression of two repressors: (i) C1 is a protein which negatively regulates the expression of lytic genes including the C1 inactivator gene coi, and (ii) C4 is an antisense RNA which specifically inhibits the synthesis of an anti-repressor Ant. In addition, C1 repression is strengthened by lxc encoding an auxiliary repressor protein. The repressors C1, C4 and Lxc are components of a tripartite immunity system of the two phages. Here, the mode of action of these regulatory components including their antagonists Coi and Ant is described.
Collapse
Affiliation(s)
- J Heinrich
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | |
Collapse
|
12
|
Sabbattini P, Forti F, Ghisotti D, Dehò G. Control of transcription termination by an RNA factor in bacteriophage P4 immunity: identification of the target sites. J Bacteriol 1995; 177:1425-34. [PMID: 7883698 PMCID: PMC176756 DOI: 10.1128/jb.177.6.1425-1434.1995] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Prophage P4 immunity is elicited by a short, 69-nucleotide RNA (CI RNA) coded for within the untranslated leader region of the same operon it controls. CI RNA causes termination of transcription that starts at the promoter PLE and prevents the expression of the distal part of the operon that codes for P4 replication functions (alpha operon). In this work, we identify two sequences in the untranslated leader region of the alpha operon, seqA and seqC, that are the targets of the P4 immunity factor. seqA and seqC exhibit complementarity to a sequence internal to the CI RNA (seqB). Mutations in either seqA or seqC that alter its complementarity to seqB abolished or reduced P4 lysogenization proficiency and delayed the shutoff of the long transcripts originating from PLE that cover the entire operon. Both seqA and seqC single mutants were still sensitive to P4 prophage immunity, whereas P4 seqA seqC double mutants showed a virulent phenotype. Thus, both functional sites are necessary to establish immunity upon infection, whereas a single site appears to be sufficient to prevent lytic gene expression when immunity is established. A mutation in seqB that restored complementarity to both seqA and seqC mutations also restored premature termination of PLE transcripts, thus suggesting an important role for RNA-RNA interactions between seqB and seqA or seqC in P4 immunity.
Collapse
Affiliation(s)
- P Sabbattini
- Dipartimento di Genetica e di Biologia dei Microrganismi, Università di Milano, Italy
| | | | | | | |
Collapse
|
13
|
Heinrich J, Citron M, Günther A, Schuster H. Second-site suppressors of the bacteriophage P1 virs mutant reveal the interdependence of the c4, icd, and ant genes in the P1 immI operon. J Bacteriol 1994; 176:4931-6. [PMID: 8051007 PMCID: PMC196329 DOI: 10.1128/jb.176.16.4931-4936.1994] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The immI operon of phage P1 contains the genes c4, icd, and ant, which are transcribed in that order from the same constitutive promoter, P51b. The gene c4 encodes an antisense RNA which inhibits the synthesis of an antirepressor by acting on a target ant mRNA. Interaction depends on the complementarity of two pairs of short sequences encompassing virs+ and the ribosome-binding site involved in ant expression. Accordingly, in a P1 virs mutant phage, antirepressor is synthesized constitutively. We have isolated lysogen-proficient, second-site suppressors of P1 virs in order to evaluate the interdependence of the immI-specific genes. From a total of 17 suppressors analyzed, 15 were found to be located in the icd gene. They were identified as frameshift mutations, containing base insertions or deletions in tandem repeats of a single base pair. One suppressor was identified as a P51b promoter-down mutation; the second site of another suppressor was found to be located in the c4 gene. Furthermore, it was shown that virs cannot be suppressed by ant (icd+) suppressors. The results confirm the model that the immI operon is transcribed as a unit, that the icd and ant genes are translationally coupled, and that the constitutive synthesis of Icd protein alone is lethal to the bacterial cell. The existence of a c4 suppressor of virs, whose effect is not yet known, points to a still more complex regulation of antirepressor synthesis than was anticipated from the model.
Collapse
Affiliation(s)
- J Heinrich
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Riedel HD, Heinrich J, Heisig A, Choli T, Schuster H. The antirepressor of phage P1. Isolation and interaction with the C1 repressor of P1 and P7. FEBS Lett 1993; 334:165-9. [PMID: 8224242 DOI: 10.1016/0014-5793(93)81705-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two antirepressor proteins, Ant1 and Ant2, of molecular weight 42 and 32 kDa, respectively, are encoded by P1 as a single open reading frame, with the smaller protein initiating at an in-frame start codon. Another open reading frame, icd, 5' upstream of and overlapping ant1 is required for ant1 expression. Using appropriate ant gene-carrying plasmids we have overproduced and purified Ant1/2 in the form of a protein complex and Ant2 as a single protein. Sequence analysis confirmed the N-terminal amino acids predicted from the DNA sequence of ant1/ant2, except that the N-terminal methionine is missing in the Ant2 protein. Under appropriate conditions the C1 repressors of phages P1 and P7 specifically co-precipitate with the Ant1/2 complex but not with Ant2 protein alone. The results suggest that the antirepressor may exert its C1-inactivating function by a direct protein-protein interaction.
Collapse
Affiliation(s)
- H D Riedel
- Max-Planck-Institut für Molekulare Genetik, Berlin, Germany
| | | | | | | | | |
Collapse
|