1
|
Dardelle F, Phelip C, Darabi M, Kondakova T, Warnet X, Combret E, Juranville E, Novikov A, Kerzerho J, Caroff M. Diversity, Complexity, and Specificity of Bacterial Lipopolysaccharide (LPS) Structures Impacting Their Detection and Quantification. Int J Mol Sci 2024; 25:3927. [PMID: 38612737 PMCID: PMC11011966 DOI: 10.3390/ijms25073927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.
Collapse
Affiliation(s)
- Flavien Dardelle
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Capucine Phelip
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Maryam Darabi
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Tatiana Kondakova
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Xavier Warnet
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Edyta Combret
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Eugenie Juranville
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Jerome Kerzerho
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| | - Martine Caroff
- LPS-BioSciences, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (F.D.); (M.D.); (E.J.)
- HEPHAISTOS-Pharma, Bâtiment 440, Université de Paris-Saclay, 91400 Orsay, France; (C.P.); (A.N.); (J.K.)
| |
Collapse
|
2
|
Micromethods for Isolation and Structural Characterization of Lipid A, and Polysaccharide Regions of Bacterial Lipopolysaccharides. Methods Mol Biol 2017; 1600:167-186. [PMID: 28478567 DOI: 10.1007/978-1-4939-6958-6_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Lipopolysaccharides (LPS) are major components of the external membrane of most Gram-negative bacteria, providing them with an effective permeability barrier. They are essentially composed of a hydrophilic polysaccharide region (PS) linked to a hydrophobic one, termed lipid A. The LPS polysaccharide moiety is divided into the core oligosaccharide (OS) and O-chain repetitive elements. Depending on their individual variable fine structures, LPS may be potent immunomodulators. The lipid A structure is a key determinant for LPS activity. However, the presence of the core region, or at least of the highly charged 3-deoxy-d-manno-oct-2-ulosonic acid molecules, is also important for preserving the native lipid A conformation within individual LPS molecules. We describe herein four rapid and practical micromethods for LPS, lipid A, and core OS structural analyses. The first method allows the direct isolation of lipid A from whole bacteria cell mass; the second describes conditions for the sequential release of fatty acids enabling the characterization of their substitution position in the lipid A backbone, to be determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The third one is a microscale procedure for the mass spectra screening of LPS, lipid A, and PS using triethylamine and citric acid. The fourth method is a chromatography procedure for Rough-type LPS on thin-layer-chromatography. These methods were developed to be coupled to mass-spectrometry (e.g., MALDI-MS) but can also be used with other analytical techniques (e.g., chromatography). Examples are given with reference to two major human pathogens: Bordetella pertussis and Pseudomonas aeruginosa; to one porcine pathogen: Actinobacillus pleuropneumoniae; and to commercial samples of Salmonella Minnesota Re595 LPS.
Collapse
|
3
|
Caroff M, Aussel L, Zarrouk H, Perry M, Karibian D. Contribution of 252Cf-plasma desorption mass spectrometry to structural analysis of lipids A: examples of non-conservatism in lipid A structure. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519990050010801] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The great majority of lipids A studied so far have the enterobacterial lipid A-type skeleton: a bisphosphorylated glucosamine disaccharide, with fatty acids amidating the 2 amino groups and esterifying the C3 and C3′ positions. Differences between these lipids A occur in the nature and localization of the fatty acids. Such differences have been put forward as a possible taxonomic tool. It is now relatively easy to determine these differences using plasma desorption mass spectrometry (PDMS) if one knows the overall composition of the pure, native lipids A. We have used this technique to compare the lipids A of 2 or more species of several bacterial genera and found considerable conservatism within genera and sometimes between closely related genera ( Salmonella and Escherichia ). An exception was Bordetella of which different species varied in the nature and/or the localization of their fatty acids. B. parapertussis , like B. pertussis, had a single C10OH but at a different location, and quite unusually had a non-hydroxylated fatty acid (C16 ) directly esterifying glucosamine I. On the other hand, 2 strains of B. bronchiseptica had a C12OH in place of the C 10OH of B. pertussis, whereas a third strain replaced the C 12OH by a C12, again a primary non-hydroxylated fatty acid. PDMS has allowed us to conclude that the combined pattern of fatty acids in lipids A is not a reliable taxonomic tool.
Collapse
Affiliation(s)
- M. Caroff
- Equipe `Endotoxines', Centre National de la Recherche Scientifique, Biochimie, Université de Paris-Sud, Orsay, France
| | - L. Aussel
- Equipe `Endotoxines', Centre National de la Recherche Scientifique, Biochimie, Université de Paris-Sud, Orsay, France
| | - H. Zarrouk
- Equipe `Endotoxines', Centre National de la Recherche Scientifique, Biochimie, Université de Paris-Sud, Orsay, France
| | - M.B. Perry
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada
| | - D. Karibian
- Equipe `Endotoxines', Centre National de la Recherche Scientifique, Biochimie, Université de Paris-Sud, Orsay, France
| |
Collapse
|
4
|
Kilár A, Dörnyei Á, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques. MASS SPECTROMETRY REVIEWS 2013; 32:90-117. [PMID: 23165926 DOI: 10.1002/mas.21352] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 06/01/2023]
Abstract
The focus of this review is the application of mass spectrometry to the structural characterization of bacterial lipopolysaccharides (LPSs), also referred to as "endotoxins," because they elicit the strong immune response in infected organisms. Recently, a wide variety of MS-based applications have been implemented to the structure elucidation of LPS. Methodological improvements, as well as on- and off-line separation procedures, proved the versatility of mass spectrometry to study complex LPS mixtures. Special attention is given in the review to the tandem mass spectrometric methods and protocols for the analyses of lipid A, the endotoxic principle of LPS. We compare and evaluate the different ionization techniques (MALDI, ESI) in view of their use in intact R- and S-type LPS and lipid A studies. Methods for sample preparation of LPS prior to mass spectrometric analysis are also described. The direct identification of intrinsic heterogeneities of most intact LPS and lipid A preparations is a particular challenge, for which separation techniques (e.g., TLC, slab-PAGE, CE, GC, HPLC) combined with mass spectrometry are often necessary. A brief summary of these combined methodologies to profile LPS molecular species is provided.
Collapse
Affiliation(s)
- Anikó Kilár
- Department of Analytical and Environmental Chemistry, Institute of Chemistry, Faculty of Sciences, University of Pécs, Pécs, Hungary.
| | | | | |
Collapse
|
5
|
Makszin L, Kilár A, Felső P, Péterfi Z, Kocsis B, Kilár F. Quantitative microfluidic analysis ofS- andR-type endotoxin components with chip capillary electrophoresis. Electrophoresis 2012. [DOI: 10.1002/elps.201200167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lilla Makszin
- Institute of Bioanalysis, Faculty of Medicine; University of Pécs; Pécs; Hungary
| | - Anikó Kilár
- Department of Analytical and Environmental Chemistry, Faculty of Sciences; University of Pécs; Pécs; Hungary
| | - Péter Felső
- Institute of Bioanalysis, Faculty of Medicine; University of Pécs; Pécs; Hungary
| | - Zoltán Péterfi
- Department of Medical Microbiology and Immunology, Faculty of Medicine; University of Pécs; Pécs; Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine; University of Pécs; Pécs; Hungary
| | | |
Collapse
|
6
|
Glucosamine found as a substituent of both phosphate groups in Bordetella lipid A backbones: role of a BvgAS-activated ArnT ortholog. J Bacteriol 2008; 190:4281-90. [PMID: 18424515 DOI: 10.1128/jb.01875-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endotoxins are amphipathic lipopolysaccharides (LPSs), major constituents of the outer membrane of gram-negative bacteria. They consist of a lipid region, covalently linked to a core oligosaccharide, to which may be linked a repetitive glycosidic chain carrying antigenic determinants. Most of the biological activities of endotoxins have been associated with the lipid moiety of the molecule: unique to gram-negative bacteria, LPS is a ligand of the mammalian TLR4-MD2-CD14 pathogen recognition receptor complex. Lipid A preparations are often heterogeneous with respect to both the numbers and the lengths of fatty acids and the natures of substituents on the phosphate groups when present. The variants can significantly affect host immune responses. Nine species in the Bordetella genus have been described, and the fine LPS structures of seven of them have been published. In this report, lipids A from Bordetella pertussis Tohama I and B. bronchiseptica strain 4650 were further characterized and revealed to have a glucosamine substituting both lipid A phosphate groups of the diglucosamine backbone. These substitutions have not been previously described for bordetellae. Moreover, a B. pertussis transposon mutation that maps within a gene encoding a Bordetella ArnT (formerly PmrK) glycosyl transferase ortholog does not carry this substitution, thus providing a genetic basis for the modification. Reverse transcriptase PCR of this locus showed that it is Bvg regulated, suggesting that the ability of Bordetella to modify lipid A via this glucosamine modification is a potential virulence trait.
Collapse
|
7
|
El Hamidi A, Tirsoaga A, Novikov A, Hussein A, Caroff M. Microextraction of bacterial lipid A: easy and rapid method for mass spectrometric characterization. J Lipid Res 2005; 46:1773-8. [PMID: 15930524 DOI: 10.1194/jlr.d500014-jlr200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endotoxins (lipopolysaccharides) are the main components of Gram-negative bacterial outer membranes. A quick and simple way to isolate their lipid region (lipid A) directly from whole bacterial cells was devised. This method using hot ammonium-isobutyrate solvent was applied to small quantities of cells and proved to be indispensable when a rapid characterization of lipid A structure by mass spectrometry was required. Biological activities of endotoxins are directly related to the lipid A structures, which vary greatly with cell growth conditions. This method is suitable for rough- and smooth-type bacteria and very efficient for screening variations in lipid A structures. Data are acquired in a few hours and avoid the use of phenol in extraction.
Collapse
Affiliation(s)
- Asmaa El Hamidi
- Equipe Endotoxines, Unité Mixte de Recherche 8619 du Centre National de la Recherche Scientifique, Institut de Biochimie, Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, 91405 Orsay, France
| | | | | | | | | |
Collapse
|
8
|
Abstract
Bacterial lipopolysaccharides are the major components of the outer surface of Gram-negative bacteria They are often of interest in medicine for their immunomodulatory properties. In small amounts they can be beneficial, but in larger amounts they may cause endotoxic shock. Although they share a common architecture, their structural details exert a strong influence on their activity. These molecules comprise: a lipid moiety, called lipid A, which is considered to be the endotoxic component, a glycosidic part consisting of a core of approximately 10 monosaccharides and, in "smooth-type" lipopolysaccharides, a third region, named O-chain, consisting of repetitive subunits of one to eight monosaccharides responsible for much of the immunospecificity of the bacterial cell.
Collapse
Affiliation(s)
- Martine Caroff
- Equipe Endotoxines, UMR 8619 du Centre National de la Recherche Scientifique, IBBMC, Université de Paris-Sud, F-91405 Orsay, France.
| | | |
Collapse
|
9
|
Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 2003; 4:478-84. [PMID: 12692550 DOI: 10.1038/ni922] [Citation(s) in RCA: 436] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Accepted: 03/17/2003] [Indexed: 11/09/2022]
Abstract
The Drosophila immune system discriminates between different classes of infectious microbes and responds with pathogen-specific defense reactions through selective activation of the Toll and the immune deficiency (Imd) signaling pathways. The Toll pathway mediates most defenses against Gram-positive bacteria and fungi, whereas the Imd pathway is required to resist infection by Gram-negative bacteria. The bacterial components recognized by these pathways remain to be defined. Here we report that Gram-negative diaminopimelic acid-type peptidoglycan is the most potent inducer of the Imd pathway and that the Toll pathway is predominantly activated by Gram-positive lysine-type peptidoglycan. Thus, the ability of Drosophila to discriminate between Gram-positive and Gram-negative bacteria relies on the recognition of specific forms of peptidoglycan.
Collapse
Affiliation(s)
- François Leulier
- Centre de Génétique Moléculaire du CNRS, F-91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Caroff M, Karibian D, Cavaillon JM, Haeffner-Cavaillon N. Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect 2002; 4:915-26. [PMID: 12106784 DOI: 10.1016/s1286-4579(02)01612-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bacterial lipopolysaccharides (LPSs) are powerful immunomodulators in infected hosts, and may cause endotoxic shock. Most of them share a common architecture but vary considerably in structural motifs from one genus, species, and strain to another. Cells of the innate immune response recognize evolutionarily conserved LPS molecular patterns of endotoxins and structural details thereby greatly influencing their response.
Collapse
Affiliation(s)
- Martine Caroff
- Equipe Endotoxines, UMR 8619 du Centre National de la Recherche Scientifique, Biochimie, Université de Paris-Sud, Orsay, France.
| | | | | | | |
Collapse
|
11
|
Hirakura Y, Kobayashi S, Matsuzaki K. Specific interactions of the antimicrobial peptide cyclic beta-sheet tachyplesin I with lipopolysaccharides. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1562:32-6. [PMID: 11988219 DOI: 10.1016/s0005-2736(02)00358-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cyclic beta-sheet antimicrobial peptide tachyplesin I (T-SS) was found to show 280-fold higher affinity for lipopolysaccharides (LPS) compared with acidic phospholipids, whereas the linear alpha-helical peptide F5W-magainin 2 (MG2) could not discriminate between LPS and acidic phospholipids. The recognition site was the lipid A moiety and the cyclic structure was crucial to this specific binding. The cyclic structure also endowed the peptide with very rapid outer membrane (OM) permeabilization.
Collapse
Affiliation(s)
- Yutaka Hirakura
- Advanced Research Center for Human Sciences, Waseda University, Nishi-Tokyo, Tokyo 202-0021, Japan
| | | | | |
Collapse
|
12
|
Hussein A, Skultéty L, Toman R. Structural analyses of the lipopolysaccharides from Chlamydophila psittaci strain 6BC and Chlamydophila pneumoniae strain Kajaani 6. Carbohydr Res 2001; 336:213-23. [PMID: 11705470 DOI: 10.1016/s0008-6215(01)00263-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lipopolysaccharides (LPSs) of Chlamydophila psittaci 6BC and Chlamydophila pneumoniae Kajaani 6 contain 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), GlcN, organic bound phosphate, and fatty acids in the molar ratios of approximately 3:2:2.2:4.8 and approximately 2.9:2:2.1:4.9, respectively. The LPSs were immunoreactive with a monoclonal antibody against a family-specific epitope of chlamydial LPS. This finding, together with methylation analyses of both LPSs and MALDI-TOF MS experiments on de-O-, and de-O,N-acylated LPSs, indicate the presence of a Kdo trisaccharide proximal to lipid A having a structure alpha-Kdo-(2-->8)-alpha-Kdo-(2-->4)-alpha-Kdo, which appears to be the main component of the core region in the native chlamydial LPSs. In the de-O-acylated LPSs from Chl. psittaci 6BC and Chl. pneumoniae Kajaani 6, two major molecular species are present that differ in distribution of amide-bound hydroxy fatty acids over both GlcN. It appears that either two (R)-3-hydroxy-18-methylicosanoic acids or one (R)-3-hydroxy-18-methylicosanoic acid and one (R)-3-hydroxyicosanoic acid are attached to the GlcN residues. In contrast, the de-O-acylated LPS of Chl. psittaci PK 5082 contains one major molecular species that has two (R)-3-hydroxyicosanoic acid residues attached to two GlcN residues.
Collapse
Affiliation(s)
- A Hussein
- Department of Rickettsiology and Chlamydiology, Institute of Virology, Slovak Academy of Sciences, Dúbravská cesta 9, 842 45 Bratislava, Slovak Republic
| | | | | |
Collapse
|
13
|
Trent MS, Pabich W, Raetz CR, Miller SI. A PhoP/PhoQ-induced Lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium. J Biol Chem 2001; 276:9083-92. [PMID: 11108722 DOI: 10.1074/jbc.m010730200] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenic bacteria modify the structure of the lipid A portion of their lipopolysaccharide in response to environmental changes. Some lipid A modifications are important for virulence and resistance to cationic antimicrobial peptides. The two-component system PhoP/PhoQ plays a central role in regulating lipid A modification. We now report the discovery of a PhoP/PhoQ-activated gene (pagL) in Salmonella typhimurium, encoding a deacylase that removes the R-3-hydroxymyristate moiety attached at position 3 of certain lipid A precursors. The deacylase gene (pagL) was identified by assaying for loss of deacylase activity in extracts of 14 random TnphoA::pag insertion mutants. The pagL gene encodes a protein of 185 amino acid residues unique to S. typhimurium and closely related organisms such as Salmonella typhi. Heterologous expression of pagL in Escherichia coli on plasmid pWLP21 results in loss of the R-3-hydroxymyristate moiety at position 3 in approximately 90% of the lipid A molecules but does not inhibit cell growth. PagL is synthesized with a 20-amino acid N-terminal signal peptide and is localized mainly in the outer membrane, as judged by assays of separated S. typhimurium membranes and by SDS-polyacrylamide gel analysis of membranes from E. coli cells that overexpress PagL. The function of PagL is unknown, given that S. typhimurium mutants lacking pagL display no obvious phenotypes, but PagL might nevertheless play a role in pathogenesis if it serves to modulate the cytokine response of an infected animal host.
Collapse
Affiliation(s)
- M S Trent
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
14
|
Aussel L, Thérisod H, Karibian D, Perry MB, Bruneteau M, Caroff M. Novel variation of lipid A structures in strains of different Yersinia species. FEBS Lett 2000; 465:87-92. [PMID: 10620712 DOI: 10.1016/s0014-5793(99)01722-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The Yersinia genus includes human and animal pathogens (plague, enterocolitis). The fine structures of the endotoxin lipids A of seven strains of Yersinia enterocolitica, Yersinia ruckeri and Yersinia pestis were determined and compared using mass spectrometry. These lipids differed in secondary acylation at C-2': this was dodecanoic acid (C(12)) for two strains of Y. enterocolitica and Y. ruckeri, tetradecanoic acid (C(14)) in two other Y. enterocolitica and hexadecenoic acid (C(16:1)) in Y. pestis. The enterocolitica lipids having a mass identical to that of Escherichia coli were found to be structurally different. The results supported the idea of a relation between membrane fluidity and environmental adaptability in Yersinia.
Collapse
Affiliation(s)
- L Aussel
- Equipe 'Endotoxines', UMR 8619 du Centre National de la Recherche Scientifique, Biochimie, Université de Paris-Sud, F-91405, Orsay, France
| | | | | | | | | | | |
Collapse
|
15
|
Aussel L, Brisson JR, Perry MB, Caroff M. Structure of the lipid A of Bordetella hinzii ATCC 51730. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2000; 14:595-599. [PMID: 10775094 DOI: 10.1002/(sici)1097-0231(20000415)14:7<595::aid-rcm919>3.0.co;2-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bordetella hinzii has recently been isolated from immunocompromised human hosts. The structure of the lipid A of its endotoxin was investigated using chemical analyses, nuclear magnetic resonnance (NMR), gas liquid chromatography/mass spectrometry (GC/MS), plasma desorption mass spectrometry (PDMS) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The lipid A contains the classical bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid (C14OH) in amide linkages. The lipid A components of B. pertussis, B. bronchiseptica, and B. parapertussis all differ in their acylation pattern but share a residue of tetradecanoyl-3-hydroxytetradecanoic acid in amide linkage at the C-2' position. However, in the B. hinzii species, the tetradecanoic acid (C14) is stoichiometrically replaced by a 2-hydroxytetradecanoic acid (2-C14OH). In the few reported examples of a hydroxylated fatty acid in this position, the substitutions were only partial. The B. hinzii lipid A differs from that of B. pertussis also by replacement of the hydroxydecanoic acid (C10OH) by hydroxydodecanoic acid (C12OH) and by the presence of a hexadecanoic acid (C16) to give a sixth fatty acid. The lipid A was heterogeneous, being composed of three major molecular species: tetra-, penta- and hexaacylated. The fatty acids in ester linkage were localized by PDMS of the native and alkali-treated lipid A. The lipid A components isolated from the O-chain-linked lipopolysaccharides (LPSs) were shown to be more acylated than those from the O-chain-free LPSs.
Collapse
Affiliation(s)
- L Aussel
- Equipe 'Endotoxines', UMR 8619 du Centre National de la Recherche Scientifique, Biochimie, Université de Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
16
|
Walker SG, Xu X, Altman E, Davis KJ, Ebersole JL, Holt SC. Isolation and chemical analysis of a lipopolysaccharide from the outer membrane of the oral anaerobic spirochete Treponema pectinovorum. ORAL MICROBIOLOGY AND IMMUNOLOGY 1999; 14:304-8. [PMID: 10551157 DOI: 10.1034/j.1399-302x.1999.140506.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Isolation of a putative lipopolysaccharide from the surface of the oral treponeme, Treponema pectinovorum, revealed it to contain larger amounts of 3-deoxy-D-manno-octulosonic acid compared with other oral Treponema species. This molecule was isolated from the outer membrane of T. pectinovorum and had chemical characteristics of a putative lipopolysaccharide. The yield of lipopolysaccharide was between 0.6% and to 1.1% of the bacterial dry weight. The purified molecule was resistant to the action of proteinases and consisted of both sugars and lipids. 3-Deoxy-D-manno-octulosonic acid and hexoses accounted for 6.1-8.7% and 17.6-20.2%, respectively of the dry weight. Carbohydrate compositional analysis revealed the presence of glucose, galactose, 2-acetamido-2-deoxy-glucose, rhamnose and 6-deoxy-talose in the molar ratio of 1.00:0.96:0.19:0.88:0.98, respectively. No heptose was detected. The fatty acid analysis determined the presence of straight chain, C13:00, C14:00, C15:00 and C17:00 acids, as well as branched chain, C13:00, C14:00 and two species of C15:00, acids. Electrophoretic analysis indicated that the lipopolysaccharide was present as two major species.
Collapse
Affiliation(s)
- S G Walker
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284-7758, USA
| | | | | | | | | | | |
Collapse
|
17
|
Zhou Z, Lin S, Cotter RJ, Raetz CR. Lipid A modifications characteristic of Salmonella typhimurium are induced by NH4VO3 in Escherichia coli K12. Detection of 4-amino-4-deoxy-L-arabinose, phosphoethanolamine and palmitate. J Biol Chem 1999; 274:18503-14. [PMID: 10373459 DOI: 10.1074/jbc.274.26.18503] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two-thirds of the lipid A in wild-type Escherichia coli K12 is a hexa-acylated disaccharide of glucosamine in which monophosphate groups are attached at positions 1 and 4'. The remaining lipid A contains a monophosphate substituent at position 4' and a pyrophosphate moiety at position 1. The biosynthesis of the 1-pyrophosphate unit is unknown. Its presence is associated with lipid A translocation to the outer membrane (Zhou, Z., White, K. A., Polissi, A., Georgopoulos, C., and Raetz, C. R. H. (1998) J. Biol. Chem. 273, 12466-12475). To determine if a phosphatase regulates the amount of the lipid A 1-pyrophosphate, we grew cells in broth containing nonspecific phosphatase inhibitors. Na2WO4 and sodium fluoride increased the relative amount of the 1-pyrophosphate slightly. Remarkably, NH4VO3-treated cells generated almost no 1-pyrophosphate, but made six major new lipid A derivatives (EV1 to EV6). Matrix-assisted laser desorption ionization/time of flight mass spectrometry of purified EV1 to EV6 indicated that these compounds were lipid A species substituted singly or in combination with palmitoyl, phosphoethanolamine, and/or aminodeoxypentose residues. The aminodeoxypentose residue was released by incubation in chloroform/methanol (4:1, v/v) at 25 degrees C, and was characterized by 1H NMR spectroscopy. The chemical shifts and vicinal coupling constants of the two anomers of the aminodeoxypentose released from EV3 closely resembled those of synthetic 4-amino-4-deoxy-L-arabinose. NH4VO3-induced lipid A modification did not require the PhoP/PhoQ two-component regulatory system, and also occurred in E. coli msbB or htrB mutants. The lipid A variants that accumulate in NH4VO3-treated E. coli K12 are the same as many of those normally found in untreated Salmonella typhimurium and Salmonella minnesota, demonstrating that E. coli K12 has latent enzyme systems for synthesizing these important derivatives.
Collapse
Affiliation(s)
- Z Zhou
- Department of Biochemistry, Duke University Medical Center, Box 3711, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
18
|
Karibian D, Brunelle A, Aussel L, Caroff M. 252Cf-plasma desorption mass spectrometry of unmodified lipid A: fragmentation patterns and localization of fatty acids. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 1999; 13:2252-2259. [PMID: 10547633 DOI: 10.1002/(sici)1097-0231(19991130)13:22<2252::aid-rcm783>3.0.co;2-g] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The fragmentation patterns of synthetic Escherichia coli-type lipid A in plasma desorption mass spectrometry (PDMS) in both negative- and positive-ion modes were determined. Negative-ion spectra gave signals for the main diphosphorylated (intact) molecular species in their native proportions. Intact and alkaline-treated lipid A in this mode gave, for the glucosamine I moiety, easily identified signals that have not been previously reported in PDMS. These spectra gave enough information to localize the fatty acids. The procedure was verified with relatively homogeneous lipids A prepared from Salmonella minnesota R595 and Neisseria meningitidis lipopolysaccharides, and then applied to the previously unstudied Yersinia entercolitica O:11,24 lipid A to obtain the localization of its fatty acids. The possibility of obtaining this much information from two negative-ion spectra was attributed to the method, described earlier, of preparing the samples. In the positive-ion mode, about half of the E. coli ions containing diglucosamine appeared as monodephosphorylated species and/or as Na adducts. The intact glucosamine II moiety and its fragment ions gave signals none of which were Na adducts. With lipids A prepared from S. minnesota, N. meningitidis, and Y. enterocolitica, similar fragmentation patterns were observed. For lipid A structure determination, the positive-ion mode could play a confirmatory role. The above results and some of those reported by others were compared.
Collapse
Affiliation(s)
- D Karibian
- Equipe 'Endotoxines', UMR 8619 du Centre National de la Recherche Scientifique, Biochimie, Université de Paris-Sud, F-91405 Orsay, France.
| | | | | | | |
Collapse
|
19
|
Wyckoff TJ, Lin S, Cotter RJ, Dotson GD, Raetz CR. Hydrocarbon rulers in UDP-N-acetylglucosamine acyltransferases. J Biol Chem 1998; 273:32369-72. [PMID: 9829962 DOI: 10.1074/jbc.273.49.32369] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UDP-GlcNAc acyltransferase (LpxA), the first enzyme of lipid A biosynthesis, catalyzes the transfer of an acyl chain activated on acyl carrier protein (ACP) to UDP-GlcNAc. LpxAs are very selective for the lengths of their acyl donor substrates. Escherichia coli LpxA prefers R-3-hydroxymyristoyl-ACP to R-3-hydroxydecanoyl-ACP by a factor of approximately 1000, whereas Pseudomonas aeruginosa LpxA prefers the opposite. E. coli G173M LpxA and the reciprocal P. aeruginosa M169G LpxA show reversed substrate selectivity in vitro and in vivo, demonstrating the existence of precise hydrocarbon rulers in LpxAs.
Collapse
Affiliation(s)
- T J Wyckoff
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
20
|
Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CR. Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem 1998; 273:12466-75. [PMID: 9575204 DOI: 10.1074/jbc.273.20.12466] [Citation(s) in RCA: 279] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli msbA gene, first identified as a multicopy suppressor of htrB mutations, has been proposed to transport nascent core-lipid A molecules across the inner membrane (Polissi, A., and Georgopoulos, C. (1996) Mol. Microbiol. 20, 1221-1233). msbA is an essential E. coli gene with high sequence similarity to mammalian Mdr proteins and certain types of bacterial ABC transporters. htrB is required for growth above 32 degreesC and encodes the lauroyltransferase that acts after Kdo addition during lipid A biosynthesis (Clementz, T., Bednarski, J., and Raetz, C. R. H. (1996) J. Biol. Chem. 271, 12095-12102). By using a quantitative new 32Pi labeling technique, we demonstrate that hexa-acylated species of lipid A predominate in the outer membranes of wild type E. coli labeled for several generations at 42 degreesC. In contrast, in htrB mutants shifted to 42 degreesC for 3 h, tetra-acylated lipid A species and glycerophospholipids accumulate in the inner membrane. Extra copies of the cloned msbA gene restore the ability of htrB mutants to grow at 42 degreesC, but they do not increase the extent of lipid A acylation. However, a significant fraction of the tetra-acylated lipid A species that accumulate in htrB mutants are transported to the outer membrane in the presence of extra copies of msbA. E. coli strains in which msbA synthesis is selectively shut off at 42 degreesC accumulate hexa-acylated lipid A and glycerophospholipids in their inner membranes. Our results support the view that MsbA plays a role in lipid A and possibly glycerophospholipid transport. The tetra-acylated lipid A precursors that accumulate in htrB mutants may not be transported as efficiently by MsbA as are penta- or hexa-acylated lipid A species.
Collapse
Affiliation(s)
- Z Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
21
|
Synthesis of an analogue of the lipoglycopeptide membrane intermediate I of peptidoglycan biosynthesis. ACTA ACUST UNITED AC 1997. [DOI: 10.1007/bf02442902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Garrett TA, Kadrmas JL, Raetz CR. Identification of the gene encoding the Escherichia coli lipid A 4'-kinase. Facile phosphorylation of endotoxin analogs with recombinant LpxK. J Biol Chem 1997; 272:21855-64. [PMID: 9268317 DOI: 10.1074/jbc.272.35.21855] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genes for seven of nine enzymes needed for the biosynthesis of Kdo2-lipid A (Re endotoxin) in Escherichia coli have been reported. We have now identified a novel gene encoding the lipid A 4'-kinase (the sixth step of the pathway). The 4'-kinase transfers the gamma-phosphate of ATP to the 4'-position of a tetraacyldisaccharide 1-phosphate intermediate (termed DS-1-P) to form tetraacyldisaccharide 1,4'-bis-phosphate (lipid IVA). The 4'-phosphate is required for the action of distal enzymes, such as Kdo transferase and also renders lipid A substructures active as endotoxin antagonists or mimetics. Lysates of E. coli generated using individual lambda clones from the ordered Kohara library were assayed for overproduction of 4'-kinase. Only one clone, [218]E1D1, which directed 2-2.5-fold overproduction, was identified. This construct contains 20 kilobase pairs of E. coli DNA from the vicinity of minute 21. Two genes related to the lipid A system map in this region: msbA, encoding a putative translocator, and kdsB, the structural gene for CMP-Kdo synthase. msbA forms an operon with a downstream, essential open reading frame of unknown function, designated orfE. orfE was cloned into a T7 expression system. Washed membranes from cells overexpressing orfE display approximately 2000-fold higher specific activity of 4'-kinase than membranes from cells with vector alone. Membranes containing recombinant, overexpressed 4'-kinase (but not membranes with wild-type kinase levels) efficiently phosphorylate three DS-1-P analogs: 3-aza-DS-1-P, base-treated DS-1-P, and base-treated 3-aza-DS-1-P. A synthetic hexaacylated DS-1-P analog, compound 505, can also be phosphorylated by membranes from the overproducer, yielding [4'-32P] lipid A (endotoxin). The overexpressed lipid A 4'-kinase is very useful for making new 4'-phosphorylated lipid A analogs with potential utility as endotoxin mimetics or antagonists. We suggest that orfE is the structural gene for the 4'-kinase and that it be redesignated lpxK.
Collapse
Affiliation(s)
- T A Garrett
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
23
|
Odegaard TJ, Kaltashov IA, Cotter RJ, Steeghs L, van der Ley P, Khan S, Maskell DJ, Raetz CR. Shortened hydroxyacyl chains on lipid A of Escherichia coli cells expressing a foreign UDP-N-acetylglucosamine O-acyltransferase. J Biol Chem 1997; 272:19688-96. [PMID: 9242624 DOI: 10.1074/jbc.272.32.19688] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The first reaction of lipid A biosynthesis in Gram-negative bacteria is catalyzed by UDP-N-acetylglucosamine (UDP-GlcNAc) O-acyltransferase, the product of the lpxA gene. The reaction involves the transfer of an acyl chain from hydroxyacyl-acyl carrier protein (ACP) to the glucosamine 3-OH position of UDP-GlcNAc. The lipid A isolated from Escherichia coli contains (R)-3-hydroxymyristate at the 3 and 3' positions. Accordingly, LpxA of E. coli is highly selective for (R)-3-hydroxymyristoyl-ACP over ACP thioesters of longer or shorter acyl chains. We now demonstrate that the lpxA gene from Neisseria meningitidis encodes a similar acyltransferase that selectively utilizes 3-hydroxylauroyl-ACP. Strains of E. coli harboring the temperature-sensitive lpxA2 mutation make very little lipid A and lose viability rapidly at 42 degrees C. We have created an E. coli strain in which the chromosomal lpxA2 mutation is complemented by the N. meningitidis lpxA gene introduced on a plasmid. This strain, RO138/pTO6, grows similarly to wild type cells at 42 degrees C and produces wild type levels of lipid A. However, the lipid A isolated from RO138/pTO6 contains mostly hydroxylaurate and hydroxydecanoate in the 3 and 3' positions. The strain RO138/pTO6 is more susceptible than wild type to certain antibiotics at 42 degrees C. This is the first report of an E. coli strain growing with shortened hydroxyacyl chains on its lipid A. The lpxA gene product appears to be a critical determinant of the length of the ester-linked hydroxyacyl chains found on lipid A in living cells.
Collapse
Affiliation(s)
- T J Odegaard
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zarrouk H, Karibian D, Bodie S, Perry MB, Richards JC, Caroff M. Structural characterization of the lipids A of three Bordetella bronchiseptica strains: variability of fatty acid substitution. J Bacteriol 1997; 179:3756-60. [PMID: 9171426 PMCID: PMC179174 DOI: 10.1128/jb.179.11.3756-3760.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species.
Collapse
Affiliation(s)
- H Zarrouk
- Equipe Endotoxines, URA 1116 du Centre National de la Recherche Scientifique, Université de Paris-Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
25
|
Clementz T, Zhou Z, Raetz CR. Function of the Escherichia coli msbB gene, a multicopy suppressor of htrB knockouts, in the acylation of lipid A. Acylation by MsbB follows laurate incorporation by HtrB. J Biol Chem 1997; 272:10353-60. [PMID: 9099672 DOI: 10.1074/jbc.272.16.10353] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Overexpression of the Escherichia coli msbB gene on high copy plasmids suppresses the temperature-sensitive growth associated with mutations in the htrB gene. htrB encodes the lauroyl transferase of lipid A biosynthesis that acylates the intermediate (Kdo)2-lipid IVA (Brozek, K. A., and Raetz, C. R. H. (1990) J. Biol. Chem. 265, 15410-15417). Since msbB displays 27.5% identity and 42.2% similarity to htrB, we explored the possibility that msbB encodes a related acyltransferase. In contrast to htrB, extracts of strains with insertion mutations in msbB are not defective in transferring laurate from lauroyl acyl carrier protein to (Kdo)2-lipid IVA. However, extracts of msbB mutants do not efficiently acylate the product formed by HtrB, designated (Kdo)2-(lauroyl)-lipid IVA. Extracts of strains harboring msbB+ bearing plasmids acylate (Kdo)2-(lauroyl)-lipid IVA very rapidly compared with wild type. We solubilized and partially purified MsbB from an overproducing strain, lacking HtrB. MsbB transfers myristate or laurate, activated on ACP, to (Kdo)2-(lauroyl)-lipid IVA. Decanoyl, palmitoyl, palmitoleoyl, and (R)-3-hydroxymyristoyl-ACP are poor acyl donors. MsbB acylates (Kdo)2-(lauroyl)-lipid IVA about 100 times faster than (Kdo)2-lipid IVA. The slow, but measurable, rate whereby MsbB acts on (Kdo)2-lipid IVA may explain why overexpression of MsbB suppresses the temperature-sensitive phenotype of htrB mutations. Presumably, the acyloxyacyl group generated by excess MsbB substitutes for the one normally formed by HtrB.
Collapse
Affiliation(s)
- T Clementz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
26
|
Brozek KA, Carlson RW, Raetz CR. A special acyl carrier protein for transferring long hydroxylated fatty acids to lipid A in Rhizobium. J Biol Chem 1996; 271:32126-36. [PMID: 8943266 DOI: 10.1074/jbc.271.50.32126] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Lipid A, the hydrophobic anchor of lipopolysaccharides in the outer membranes of Gram-negative bacteria, varies in structure among different Rhizobiaceae. The Rhizobium meliloti lipid A backbone, like that of Escherichia coli, is a beta1'-6-linked glucosamine disaccharide that is phosphorylated at positions 1 and 4'. Rhizobium leguminosarum lipid A lacks both phosphates, but contains aminogluconate in place of the proximal glucosamine 1-phosphate, and galacturonic acid instead of the 4'-phosphate. A peculiar feature of the lipid As of all Rhizobiaceae is acylation with 27-hydroxyoctacosanoic acid, a long hydroxylated fatty acid not found in E. coli. We now describe an in vitro system, consisting of a membrane enzyme and a cytosolic acyl donor from R. leguminosarum, that transfers 27-hydroxyoctacosanoic acid to (Kdo)2-lipid IVA, a key lipid A precursor common to both E. coli and R. leguminosarum. The 27-hydroxyoctacosanoic acid moiety was detected in the lipid product by mass spectrometry. The membrane enzyme required the presence of Kdo residues in the acceptor substrate for activity. The cytosolic acyl donor was purified from wild-type R. leguminosarum using the acylation of (Kdo)2-[4'-32P]-lipid IVA as the assay. Amino-terminal sequencing of the purified acyl donor revealed an exact 19-amino acid match with a partially sequenced gene (orf*) of R. leguminosarum. Orf* contains the consensus sequence, DSLD, for attachment of 4'-phosphopantetheine. When the entire orf* gene was sequenced, it was found to encode a protein of 92 amino acids. Orf* is a new kind of acyl carrier protein because it is only approximately 25% identical both to the constitutive acyl carrier protein (AcpP) and to the inducible acyl carrier protein (NodF) of R. leguminosarum. Mass spectrometry of purified active Orf* confirmed the presence of 4'-phosphopantetheine and 27-hydroxyoctacosanoic acid in the major species. Smaller mass peaks indicative of Orf* acylation with hydroxylated 20, 22, 24, and 26 carbon fatty acids were also observed. Given the specialized function of Orf* in lipid A acylation, we suggest the new designation AcpXL.
Collapse
Affiliation(s)
- K A Brozek
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | |
Collapse
|
27
|
|
28
|
Clementz T, Bednarski JJ, Raetz CR. Function of the htrB high temperature requirement gene of Escherichia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J Biol Chem 1996; 271:12095-102. [PMID: 8662613 DOI: 10.1074/jbc.271.20.12095] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
By assaying lysates of Escherichia coli generated with the hybrid lambda bacteriophages of an ordered library (Kohara, Y., Akiyama, K., and Isono, K. (1987) Cell 50, 495-508), we identified two clones (lambda232 and lambda233) capable of overexpressing the lauroyl transferase that functions after 3-deoxy-D-manno-octulosonic acid (Kdo) addition in lipid A biosynthesis (Brozek, K. A., and Raetz, C. R. H. (1990) J. Biol. Chem. 265, 15410-15417). The E. coli DNA inserts in lambda232 and lambda233 suggested that a known gene (htrB) required for rapid growth above 33 degrees C might encode the lauroyl transferase. Using the intermediate (Kdo)2-lipid IVA as the laurate acceptor, extracts of strains with transposon insertions in htrB were found to contain no lauroyl transferase activity. Cells harboring hybrid htrB+ plasmids overproduced transferase activity 100-200-fold. The overproduced transferase was solubilized with a non-ionic detergent and purified further by DEAE-Sepharose chromatography. With lauroyl acyl carrier protein as the donor, the purified enzyme rapidly incorporated one laurate residue into (Kdo)2-lipid IVA. The rate of laurate incorporation was reduced by several orders of magnitude when either one or both Kdos were absent in the acceptor. With a matched set of acyl-acyl carrier proteins, the enzyme incorporated laurate 3-8 times faster than decanoate or myristate, respectively. Transfer of palmitate, palmitoleate, or R-3-hydroxymyristate was very slow. Taken together with previous studies, our findings indicate that htrB encodes a key, late functioning acyltransferase of lipid A biosynthesis.
Collapse
Affiliation(s)
- T Clementz
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
29
|
Guard-Petter J, Lakshmi B, Carlson R, Ingram K. Characterization of lipopolysaccharide heterogeneity in Salmonella enteritidis by an improved gel electrophoresis method. Appl Environ Microbiol 1995; 61:2845-51. [PMID: 7487016 PMCID: PMC167560 DOI: 10.1128/aem.61.8.2845-2851.1995] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Salmonella enteritidis field isolates of different phage types and pathogenicities were assessed for changes in lipopolysaccharide (LPS) structure, using an improved method of polyacrylamide gel electrophoresis (PAGE) that revealed the same degree of structural detail as mass spectroscopy. The method allowed characterization of an LPS chemotype that may be associated, regardless of phage type, with increased virulence of S. enteritidis. The virulent variant SE6-E21, which efficiently contaminates eggs and yields high numbers of organisms from chick spleens, had an O-antigen/core ratio of 2.8, as determined from gels by densitometry, and 1.67 micrograms of mannose per microgram of 2-keto-3-deoxy-octulosonic acid (KDO), while the avirulent variant SE6-E5 had O-antigen/core ratios of 1.2 and 1.00. The association between O antigen and virulence was also seen on analysis of five new field isolates. One of the new field isolates generated a mixed population of smooth and semismooth variants in agreement with its mixed virulence in chicks. When LPS was purified from large-volume cultures, only the most virulent isolate yielded high amounts of O antigen (1.6 micrograms of mannose per microgram of KDO), while the other isolates had ratios characteristic of semismooth variants (< or = 1.0 microgram of mannose per microgram of KDO), including the isolate of mixed virulence. These results indicate that the improved PAGE method might provide a rapid, sensitive, in vitro assessment of field isolate virulence prior to the performance of definitive infectivity trials.
Collapse
Affiliation(s)
- J Guard-Petter
- Southeast Poultry Research Laboratory, U.S. Department of Agriculture, Athens, Georgia, USA
| | | | | | | |
Collapse
|
30
|
Nummila K, Kilpeläinen I, Zähringer U, Vaara M, Helander IM. Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol 1995; 16:271-8. [PMID: 7565089 DOI: 10.1111/j.1365-2958.1995.tb02299.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lipopolysaccharides (LPS) of two polymyxin-resistant (pmr) mutants and the corresponding parent strain of Escherichia coli were chemically analysed for composition and subjected to 31P-NMR (nuclear magnetic resonance) for assessment of phosphate substitution. Whereas the saccharide portions, fatty acids, and phosphate contents were similar in wild-type and pmr LPS, the latter contained two- to threefold higher amounts of 2-aminoethanol. The pmr LPS also contained 4-amino-4-deoxy-L-arabinopyranose (L-Arap4N), which is normally not a component of E. coli LPS. This aminopentose has been assigned to be linked to the 4'-phosphate of lipid A. Comparative 31P-NMR analysis of the de-O-acylated LPS of the wild-type and pmr strains revealed that phosphate groups of the pmr LPS were mainly (71-79%) diphosphate diesters, which accounted for only 20% in the wild-type LPS. Diphosphate monoesters were virtually nonexistent in the pmr LPS, whereas they accounted for 42% of all phosphates in wild-type LPS. In the lipid A of the pmr strains, the 4'-phosphate was to a significant degree (35%) substituted by L-Arap4N, whereas in the wild-type LPS the L-ArapN was absent. In the pmr lipid A, 2-aminoethanol was completely substituting the glycosidic pyrophosphate but not the glycosidic monophosphate, forming a diphosphate diester linkage at this position in 40% of lipid A molecules. In the wild-type LPS the glycosidic position of lipid A carried mostly unsubstituted monophosphate and pyrophosphate. Thus the polymyxin resistance was shown to be associated, along with the esterification of the lipid A 4'-monophosphate by aminoarabinose, with extensive esterification of diphosphates in LPS by 2-aminoethanol.
Collapse
Affiliation(s)
- K Nummila
- Department of Bacterial Vaccine Research and Molecular Biology, National Public Health Institute, Helsinki, Finland
| | | | | | | | | |
Collapse
|
31
|
Lebbar S, Haeffner-Cavaillon N, Karibian D, Le Beyec Y, Caroff M. 252Cf-plasma desorption mass spectrometry analysis of lipids A obtained by an elimination reaction under mild conditions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 1995; 9:693-696. [PMID: 7647366 DOI: 10.1002/rcm.1290090812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lipids A are the hydrophobic domains of bacterial endotoxic lipopolysaccharides. Since they are responsible for most of the biological activities (both pathogenic and beneficial) of endotoxins, the characterization of their structure is crucial to the understanding of their mode of action. However, the inadequacy of existing methods for preparing certain lipids A has prompted us to devise a new, mild procedure which gives intact products. Use was made of the special features of 252Cf-plasma desorption mass spectrometry for forming molecular ions from these species and giving qualitative and quantitative information from the primary mass spectrum.
Collapse
Affiliation(s)
- S Lebbar
- Equipe 'Endotoxines', URA 1116 du Centre National de la Recherche Scientifique, Biochimie, Université de Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
32
|
Chapter 12 Mass Spectrometry of Carbohydrates and Glycoconjugates. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s0301-4770(08)60517-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Caroff M, Deprun C, Richards JC, Karibian D. Structural characterization of the lipid A of Bordetella pertussis 1414 endotoxin. J Bacteriol 1994; 176:5156-9. [PMID: 8051033 PMCID: PMC196360 DOI: 10.1128/jb.176.16.5156-5159.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The structure of Bordetella pertussis 1414 lipid A was investigated by classical methods of chemical analysis as well as plasma desorption mass spectrometry and fast atom bombardment mass spectrometry. Previous analysis showed that it contained a bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkage. The presence of two main molecular species as seen by thin-layer chromatography was confirmed by plasma desorption mass spectrometry, in which the larger signal was attributable to a molecular ion containing two glucosamine, two phosphate, one tetradecanoic acid, one hydroxydecanoic acid, and three hydroxytetradecanoic acid residues. The ion of the smaller signal was lighter by the mass of one hydroxytetradecanoic acid residue (226 Da). The fatty acids in ester linkage were localized by chemical and fast atom bombardment mass spectrometry analysis. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site for Kdo (3-deoxy-D-manno-octulosonic acid).
Collapse
Affiliation(s)
- M Caroff
- Equipe Endotoxines, URA 1116 du Centre National de la Recherche Scientifique, Institut de Biochimie, Université de Paris-Sud, Orsay, France
| | | | | | | |
Collapse
|
34
|
Masoud H, Perry MB, Richards JC. Characterization of the lipopolysaccharide of Moraxella catarrhalis. Structural analysis of the lipid A from M. catarrhalis serotype A lipopolysaccharide. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 220:209-16. [PMID: 8119289 DOI: 10.1111/j.1432-1033.1994.tb18616.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The lipopolysaccharide of Moraxella catarrhalis serotype A (ATCC 25238) was found to consist of a short-chain oligosaccharide attached to a lipid A moiety. Composition and NMR analyses showed the oligosaccharide component in O-deacylated LPS to be composed of D-glucose, D-galactose, 2-acetamido-2-deoxy-D-glucose and 3-deoxy-D-manno-octulosonic acid in the molar ratio of 5:2:1:2. In addition, the lipid A region contained phosphate, D-glucosamine, 3-hydroxydodecanoic acid, dodecanoic acid and decanoic acid. The lipid A was examined in detail by high-field NMR spectroscopy and mass spectrometry. It was found to consist of a beta-1,6-D-glucosamine disaccharide backbone esterified at C4' by a phosphomonoester and glycosidically at C1 by diphosphoethanolamine or phosphomonoester. The amide group of the reducing and nonreducing glucosamine residues were acylated by 3-dodecanoyloxydodecanoic acid and 3-decanoyl-oxydodecanoic acid, respectively. The hydroxyl group at C3 and C3' were acylated by 3-decanoyl-oxydodecanoic acid and 3-hydroxydodecanoic acid respectively, while the hydroxyl groups at C4 and C6' were unsubstituted.
Collapse
Affiliation(s)
- H Masoud
- Institute for Biological Sciences, National Research Council of Canada, Ottawa
| | | | | |
Collapse
|
35
|
Helander IM, Kilpeläinen I, Vaara M. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol 1994; 11:481-7. [PMID: 8152372 DOI: 10.1111/j.1365-2958.1994.tb00329.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
De-O-acylated lipopolysaccharides (LPS) of three polymyxin-resistant Salmonella typhimurium pmrA mutants and their parent strains were analysed by 31P-NMR (nuclear magnetic resonance) in order to assess, in relation to polymyxin resistance, the types and degree of substitution of phosphates of the LPS and lipid A. In the pmrA mutant LPS phosphate diesters predominated over phosphate monoesters, whereas the latter were more abundant in the parent wild-type LPS. The increase in the proportion of phosphate diesters was traced to both the core oligosaccharide and the lipid A part. In the latter, the ester-linked phosphate at position 4' was to a large extent (79-88%) substituted with 4-amino-4-deoxy-L-arabinose, whereas in the wild-type LPS the 4'-phosphate was mainly present as monoester. In each LPS, regardless of the pmrA mutation, the glycosidically linked phosphate of lipid A was largely unsubstituted.
Collapse
Affiliation(s)
- I M Helander
- Department of Molecular Bacteriology, National Public Health Institute, Helsinki, Finland
| | | | | |
Collapse
|