1
|
Sarkhel R, Priyadarsini S, Mahawar M. Nutrient limitation and oxidative stress induce the promoter of acetate operon in Salmonella Typhimurium. Arch Microbiol 2024; 206:126. [PMID: 38411730 DOI: 10.1007/s00203-024-03863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Glyoxylate shunt is an important pathway for microorganisms to survive under multiple stresses. One of its enzymes, malate synthase (encoded by aceB gene), has been widely speculated for its contribution to both the pathogenesis and virulence of various microorganisms. We have previously demonstrated that malate synthase (MS) is required for the growth of Salmonella Typhimurium (S. Typhimurium) under carbon starvation and survival under oxidative stress conditions. The aceB gene is encoded by the acetate operon in S. Typhimurium. We attempted to study the activity of acetate promoter under both the starvation and oxidative stress conditions in a heterologous system. The lac promoter of the pUC19 plasmid was substituted with the putative promoter sequence of the acetate operon of S. Typhimurium upstream to the lacZ gene and transformed the vector construct into E. coli NEBα cells. The transformed cells were subjected to the stress conditions mentioned above. We observed a fourfold increase in the β-galactosidase activity in these cells resulting from the upregulation of the lacZ gene in the stationary phase of cell growth (nutrient deprived) as compared to the mid-log phase. Following exposure of stationary phase cells to hypochlorite-induced oxidative stress, we further observed a 1.6-fold increase in β galactosidase activity. These data suggest the induction of promoter activity of the acetate operon under carbon starvation and oxidative stress conditions. Thus, these observations corroborate our previous findings regarding the upregulation of aceB expression under stressful environments.
Collapse
Affiliation(s)
- Ratanti Sarkhel
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Swagatika Priyadarsini
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
- Indian Council of Agricultural Research- National Research Centre on Camel, Bikaner, Rajasthan, India.
| | - Manish Mahawar
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
2
|
Grillo-Puertas M, Villegas JM, Pankievicz VCS, Tadra-Sfeir MZ, Teles Mota FJ, Hebert EM, Brusamarello-Santos L, Pedraza RO, Pedrosa FO, Rapisarda VA, Souza EM. Transcriptional Responses of Herbaspirillum seropedicae to Environmental Phosphate Concentration. Front Microbiol 2021; 12:666277. [PMID: 34177845 PMCID: PMC8222739 DOI: 10.3389/fmicb.2021.666277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/29/2021] [Indexed: 12/02/2022] Open
Abstract
Herbaspirillum seropedicae is a nitrogen-fixing endophytic bacterium associated with important cereal crops, which promotes plant growth, increasing their productivity. The understanding of the physiological responses of this bacterium to different concentrations of prevailing nutrients as phosphate (Pi) is scarce. In some bacteria, culture media Pi concentration modulates the levels of intracellular polyphosphate (polyP), modifying their cellular fitness. Here, global changes of H. seropedicae SmR1 were evaluated in response to environmental Pi concentrations, based on differential intracellular polyP levels. Cells grown in high-Pi medium (50 mM) maintained high polyP levels in stationary phase, while those grown in sufficient Pi medium (5 mM) degraded it. Through a RNA-seq approach, comparison of transcriptional profiles of H. seropedicae cultures revealed that 670 genes were differentially expressed between both Pi growth conditions, with 57% repressed and 43% induced in the high Pi condition. Molecular and physiological analyses revealed that aspects related to Pi metabolism, biosynthesis of flagella and chemotaxis, energy production, and polyhydroxybutyrate metabolism were induced in the high-Pi condition, while those involved in adhesion and stress response were repressed. The present study demonstrated that variations in environmental Pi concentration affect H. seropedicae traits related to survival and other important physiological characteristics. Since environmental conditions can influence the effectiveness of the plant growth-promoting bacteria, enhancement of bacterial robustness to withstand different stressful situations is an interesting challenge. The obtained data could serve not only to understand the bacterial behavior in respect to changes in rhizospheric Pi gradients but also as a base to design strategies to improve different bacterial features focusing on biotechnological and/or agricultural purposes.
Collapse
Affiliation(s)
- Mariana Grillo-Puertas
- Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT) and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Josefina M. Villegas
- Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT) and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Vânia C. S. Pankievicz
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Michelle Z. Tadra-Sfeir
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Francisco J. Teles Mota
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Elvira M. Hebert
- Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | | | - Raul O. Pedraza
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán (UNT), San Miguel de Tucumán, Argentina
| | - Fabio O. Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviana A. Rapisarda
- Instituto de Química Biológica, “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán (UNT) and Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, San Miguel de Tucumán, Argentina
| | - Emanuel M. Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
3
|
Madikonda AK, Shaikh A, Khanra S, Yakkala H, Yellaboina S, Lin-Chao S, Siddavattam D. Metabolic remodeling in Escherichia coli MG1655. A prophage e14-encoded small RNA, co293, post-transcriptionally regulates transcription factors HcaR and FadR. FEBS J 2020; 287:4767-4782. [PMID: 32061118 DOI: 10.1111/febs.15247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/10/2019] [Accepted: 02/12/2020] [Indexed: 11/26/2022]
Abstract
In previous studies, we have shown the existence of metabolic remodeling in glucose-grown Escherichia coli MG1655 cells expressing the esterase Orf306 from the opd island of Sphingobium fuliginis. We now show that Orf306-dependent metabolic remodeling is due to regulation of a novel small RNA (sRNA). Endogenous propionate, produced due to the esterase/lipase activity of Orf306, repressed expression of a novel E. coli sRNA, co293. This sRNA post-transcriptionally regulates expression of the transcription factors HcaR and FadR either by inhibiting translation or by destabilizing their transcripts. Hence, repression of co293 expression elevates the levels of HcaR and FadR with consequent activation of alternative carbon catabolic pathways. HcaR activates the hca and MHP operons leading to upregulation of the phenyl propionate and hydroxy phenyl propionate (HPP) degradation pathways. Similarly, FadR stimulates the expression of the transcription factor IclR which negatively regulates the glyoxylate bypass pathway genes, aceBAK.
Collapse
Affiliation(s)
- Ashok Kumar Madikonda
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Akbarpasha Shaikh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sonali Khanra
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Harshita Yakkala
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sailu Yellaboina
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Nangang, Taiwan
| | - Dayananda Siddavattam
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, India
| |
Collapse
|
4
|
Mustoe AM, Busan S, Rice GM, Hajdin CE, Peterson BK, Ruda VM, Kubica N, Nutiu R, Baryza JL, Weeks KM. Pervasive Regulatory Functions of mRNA Structure Revealed by High-Resolution SHAPE Probing. Cell 2018; 173:181-195.e18. [PMID: 29551268 DOI: 10.1016/j.cell.2018.02.034] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
mRNAs can fold into complex structures that regulate gene expression. Resolving such structures de novo has remained challenging and has limited our understanding of the prevalence and functions of mRNA structure. We use SHAPE-MaP experiments in living E. coli cells to derive quantitative, nucleotide-resolution structure models for 194 endogenous transcripts encompassing approximately 400 genes. Individual mRNAs have exceptionally diverse architectures, and most contain well-defined structures. Active translation destabilizes mRNA structure in cells. Nevertheless, mRNA structure remains similar between in-cell and cell-free environments, indicating broad potential for structure-mediated gene regulation. We find that the translation efficiency of endogenous genes is regulated by unfolding kinetics of structures overlapping the ribosome binding site. We discover conserved structured elements in 35% of UTRs, several of which we validate as novel protein binding motifs. RNA structure regulates every gene studied here in a meaningful way, implying that most functional structures remain to be discovered.
Collapse
Affiliation(s)
- Anthony M Mustoe
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| | - Steven Busan
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Greggory M Rice
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA; Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | | | - Brant K Peterson
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Vera M Ruda
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Neil Kubica
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Razvan Nutiu
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Jeremy L Baryza
- Novartis Institutes for Biomedical Research, Inc., Cambridge, MA, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Kim S, Jeong H, Kim EY, Kim JF, Lee SY, Yoon SH. Genomic and transcriptomic landscape of Escherichia coli BL21(DE3). Nucleic Acids Res 2017; 45:5285-5293. [PMID: 28379538 PMCID: PMC5435950 DOI: 10.1093/nar/gkx228] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/26/2017] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli BL21(DE3) has long served as a model organism for scientific research, as well as a workhorse for biotechnology. Here we present the most current genome annotation of E. coli BL21(DE3) based on the transcriptome structure of the strain that was determined for the first time. The genome was annotated using multiple automated pipelines and compared to the current genome annotation of the closely related strain, E. coli K-12. High-resolution tiling array data of E. coli BL21(DE3) from several different stages of cell growth in rich and minimal media were analyzed to characterize the transcriptome structure and to provide supporting evidence for open reading frames. This new integrated analysis of the genomic and transcriptomic structure of E. coli BL21(DE3) has led to the correction of translation initiation sites for 88 coding DNA sequences and provided updated information for most genes. Additionally, 37 putative genes and 66 putative non-coding RNAs were also identified. The panoramic landscape of the genome and transcriptome of E. coli BL21(DE3) revealed here will allow us to better understand the fundamental biology of the strain and also advance biotechnological applications in industry.
Collapse
Affiliation(s)
- Sinyeon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eun-Youn Kim
- School of Basic Sciences, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Jihyun F Kim
- Department of Systems Biology and Division of Life Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
| | - Sung Ho Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
6
|
Abstract
The tricarboxylic acid (TCA) cycle plays two essential roles in metabolism. First, under aerobic conditions the cycle is responsible for the total oxidation of acetyl-CoA that is derived mainly from the pyruvate produced by glycolysis. Second, TCA cycle intermediates are required in the biosynthesis of several amino acids. Although the TCA cycle has long been considered a "housekeeping" pathway in Escherichia coli and Salmonella enterica, the pathway is highly regulated at the transcriptional level. Much of this control is exerted in response to respiratory conditions. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although a few loose ends remain. The realization that a "shadow" TCA cycle exists that proceeds through methylcitrate has cleared up prior ambiguities. The glyoxylate bypass has long been known to be essential for growth on carbon sources such as acetate or fatty acids because this pathway allowsnet conversion of acetyl-CoA to metabolic intermediates. Strains lacking this pathway fail to grow on these carbon sources, since acetate carbon entering the TCA cycle is quantitatively lost as CO2 resulting in the lack of a means to replenish the dicarboxylic acids consumed in amino acid biosynthesis. The TCA cycle gene-protein relationship and mutant phenotypes have been well studied, although the identity of the small molecule ligand that modulates transcriptional control of the glyoxylate cycle genes by binding to the IclR repressor remains unknown. The activity of the cycle is also exerted at the enzyme level by the reversible phosphorylation of the TCA cycle enzyme isocitrate dehydrogenase catalyzed by a specific kinase/phosphatase to allow isocitratelyase to compete for isocitrate and cleave this intermediate to glyoxylate and succinate.
Collapse
|
7
|
Fong NL, Lerman JA, Lam I, Palsson BO, Charusanti P. Reconciling a Salmonella enterica metabolic model with experimental data confirms that overexpression of the glyoxylate shunt can rescue a lethal ppc deletion mutant. FEMS Microbiol Lett 2013; 342:62-9. [PMID: 23432746 DOI: 10.1111/1574-6968.12109] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 02/18/2013] [Accepted: 02/18/2013] [Indexed: 11/27/2022] Open
Abstract
The in silico reconstruction of metabolic networks has become an effective and useful systems biology approach to predict and explain many different cellular phenotypes. When simulation outputs do not match experimental data, the source of the inconsistency can often be traced to incomplete biological information that is consequently not captured in the model. To address this problem, general approaches continue to be needed that can suggest experimentally testable hypotheses to reconcile inconsistencies between simulation and experimental data. Here, we present such an approach that focuses specifically on correcting cases in which experimental data show a particular gene to be essential but model simulations do not. We use metabolic models to predict efficient compensatory pathways, after which cloning and overexpression of these pathways are performed to investigate whether they restore growth and to help determine why these compensatory pathways are not active in mutant cells. We demonstrate this technique for a ppc knockout of Salmonella enterica serovar Typhimurium; the inability of cells to route flux through the glyoxylate shunt when ppc is removed was correctly identified by our approach as the cause of the discrepancy. These results demonstrate the feasibility of our approach to drive biological discovery while simultaneously refining metabolic network reconstructions.
Collapse
Affiliation(s)
- Nicole L Fong
- Department of Bioengineering, University of California, San Diego, CA 92093-0412, USA
| | | | | | | | | |
Collapse
|
8
|
Renilla S, Bernal V, Fuhrer T, Castaño-Cerezo S, Pastor JM, Iborra JL, Sauer U, Cánovas M. Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures. Appl Microbiol Biotechnol 2011; 93:2109-24. [PMID: 21881893 DOI: 10.1007/s00253-011-3536-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/27/2011] [Accepted: 08/05/2011] [Indexed: 11/25/2022]
Abstract
Impairment of acetate production in Escherichia coli is crucial for the performance of many biotechnological processes. Aerobic production of acetate (or acetate overflow) results from changes in the expression of central metabolism genes. Acetyl-CoA synthetase scavenges extracellular acetate in glucose-limited cultures. Once converted to acetyl-CoA, it can be catabolized by the tricarboxylic acid cycle or the glyoxylate pathway. In this work, we assessed the significance of these pathways on acetate overflow during glucose excess and limitation. Gene expression, enzyme activities, and metabolic fluxes were studied in E. coli knock-out mutants related to the glyoxylate pathway operon and its regulators. The relevance of post-translational regulation by AceK-mediated phosphorylation of isocitrate dehydrogenase for pathway functionality was underlined. In chemostat cultures performed at increasing dilution rates, acetate overflow occurs when growing over a threshold glucose uptake rate. This threshold was not affected in a glyoxylate-pathway-deficient strain (lacking isocitrate lyase, the first enzyme of the pathway), indicating that it is not relevant for acetate overflow. In carbon-limited chemostat cultures, gluconeogenesis (maeB, sfcA, and pck), the glyoxylate operon and, especially, acetyl-CoA synthetase are upregulated. A mutant in acs (encoding acetyl-CoA synthetase) produced acetate at all dilution rates. This work demonstrates that, in E. coli, acetate production occurs at all dilution rates and that overflow is the result of unbalanced synthesis and scavenging activities. The over-expression of acetyl-CoA synthetase by cAMP-CRP-dependent induction limits this phenomenon in cultures consuming glucose at low rate, ensuring the recycling of the acetyl-CoA and acetyl-phosphate pools, although establishing an energy-dissipating substrate cycle.
Collapse
Affiliation(s)
- Sergio Renilla
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Peskov K, Goryanin I, Prank K, Tobin F, Demin O. Kinetic modeling of ace operon genetic regulation in Escherichia coli. J Bioinform Comput Biol 2009; 6:933-59. [PMID: 18942160 DOI: 10.1142/s0219720008003771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 02/13/2008] [Accepted: 02/27/2008] [Indexed: 11/18/2022]
Abstract
A family of kinetic models has been developed that takes into account available experimental information on the regulation of ace operon expression in Escherichia coli. This has allowed us to study and analyze possible versions of regulation of the ace operon and to test their possibilities. Based on literature analysis, we found that there is an ambiguity of properties of IclR (main repressor of ace operon). The main aspect of this ambiguity are two different forms of IclR purified from E. coli K strain and different coeffector sets for IclR purified from E. coli K and B strains. It has been shown that the full-length form of IclR is physiologically relevant and that IclR truncation is a result of purification of the protein from E. coli K strains. We also found that the IclR protein purified from E. coli B strain carries two coeffector binding sites. Using model-developed levels of steady state aceBAK expression against physiological ranges of coeffectors, concentration has been predicted.
Collapse
Affiliation(s)
- Kirill Peskov
- Institute of Theoretical and Experimental Biophysics, RAS, Institutskaya St. 3, 142290 Pushchino, Russia.
| | | | | | | | | |
Collapse
|
10
|
Cozzone AJ, El-Mansi M. Control of Isocitrate Dehydrogenase Catalytic Activity by Protein Phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol 2006; 9:132-46. [PMID: 16415587 DOI: 10.1159/000089642] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During aerobic growth of Escherichia coli on acetate as sole source of carbon and energy, the organism requires the operation of the glyoxylate bypass enzymes, namely isocitrate lyase (ICL) and the anaplerotic enzyme malate synthase (MS). Under these conditions, the glyoxylate bypass enzyme ICL is in direct competition with the Krebs cycle enzyme isocitrate dehydrogenase (ICDH) for their common substrate and although ICDH has a much higher affinity for isocitrate, flux of carbon through ICL is assured by virtue of high intracellular level of isocitrate and the reversible phosphorylation/inactivation of a large fraction of ICDH. Reversible inactivation is due to reversible phosphorylation catalysed by ICDH kinase/phosphatase, which harbours both catalytic activities on the same polypeptide. The catalytic activities of ICDH kinase/phosphatase constitute a moiety conserved cycle, require ATP and exhibit 'zero-order ultrasensitivity'. The structural gene encoding ICDH kinase/phosphatase (aceK) together with those encoding ICL (aceA) and MS (aceB) form an operon (aceBAK; otherwise known as the ace operon) the expression of which is intricately regulated at the transcriptional level by IclR, FadR, FruR and IHF. Although ICDH, an NADP(+)-dependent, non-allosteric dimer, can be phosphorylated at multiple sites, it is the phosphorylation of the Ser-113 residue that renders the enzyme catalytically inactive as it prevents isocitrate from binding to the active site, which is a consequence of the negative charge carried on phosphoserine 113 and the conformational change associated with it. The ICDH molecule readily undergo domain shifts and/or induced-fit conformational changes to accommodate the binding of ICDH kinase/phosphatase, the function of which has now been shown to be central to successful adaptation and growth of E. coli and related genera on acetate and fatty acids.
Collapse
Affiliation(s)
- Alain J Cozzone
- Institut de Biologie et Chimie des Protéines, Centre National de la Recherche Scientifique, Université de Lyon, Lyon, France
| | | |
Collapse
|
11
|
Abstract
Growth of enteric bacteria on acetate as the sole source of carbon and energy requires operation of a particular anaplerotic pathway known as the glyoxylate bypass. In this pathway, two specific enzymes, isocitrate lyase and malate synthase, are activated to divert isocitrate from the tricarboxylic acid cycle and prevent the quantitative loss of acetate carbons as carbon dioxide. Bacteria are thus supplied with the metabolic intermediates they need for synthesizing their cellular components. The channeling of isocitrate through the glyoxylate bypass is regulated via the phosphorylation/dephosphorylation of isocitrate dehydrogenase, the enzyme of the tricarboxylic acid cycle which competes for a common substrate with isocitrate lyase. When bacteria are grown on acetate, isocitrate dehydrogenase is phosphorylated and, concomitantly, its activity declines drastically. Conversely, when cells are cultured on a preferred carbon source, such as glucose, the enzyme is dephosphorylated and recovers full activity. Such reversible phosphorylation is mediated by an unusual bifunctional enzyme, isocitrate dehydrogenase kinase/phosphatase, which contains both modifying and demodifying activities on the same polypeptide. The genes coding for malate synthase, isocitrate lyase, and isocitrate dehydrogenase kinase/phosphatase are located in the same operon. Their expression is controlled by a complex dual mechanism that involves several transcriptional repressors and activators. Recent developments have brought new insights into the nature and mode of action of these different regulators. Also, significant advances have been made lately in our understanding of the control of enzyme activity by reversible phosphorylation. In general, analyzing the physiological behavior of bacteria on acetate provides a valuable approach for deciphering at the molecular level the mechanisms of cell adaptation to the environment.
Collapse
Affiliation(s)
- A J Cozzone
- Institut de Biologie et Chimie des Protéines, Université de Lyon, France
| |
Collapse
|
12
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
13
|
Abstract
The control of the glyoxylate bypass operon (aceBAK) of Escherichia coli is mediated by two regulatory proteins, IclMR and FadR. IclMR is a repressor protein which has previously been shown to bind to a site which overlaps the aceBAK promoter. FAR is a repressor/activator protein which participates in control of the genes of fatty acid metabolism. A sequence just upstream of the iclR promoter bears a striking resemblance to FadR binding sites found in the fatty acid metabolic genes. The in vitro binding specificity of FadR, determined by oligonucleotide selection, was in good agreement with the sequences of these sites. The ability of FadR to bind to the site associated with iclR was demonstrated by gel shift and DNase I footprint analyses. Disruption of FadR or inactivation of the FadR binding site of iclR decreased the expression of an iclR::lacZ operon fusion, indicating that FadR activates the expression of iclR. It has been reported that disruption of fadR increases the expression of aceBAK. We observed a similar increase when we inactivated the FadR binding site of an iclR+ allele. This result suggests that FadR regulates aceBAK indirectly by altering the expression of IclR.
Collapse
Affiliation(s)
- L Gui
- Department of Biochemistry, University of Minnesota, Minneapolis, 55455, USA
| | | | | |
Collapse
|
14
|
Gui L, Sunnarborg A, Pan B, LaPorte DC. Autoregulation of iclR, the gene encoding the repressor of the glyoxylate bypass operon. J Bacteriol 1996; 178:321-4. [PMID: 8550439 PMCID: PMC177660 DOI: 10.1128/jb.178.1.321-324.1996] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The aceBAK operon was partially induced by a multicopy plasmid which carried the promoter region of the gene which encodes its repressor, iclR. Gel shift and DNase I analyses demonstrated that IclR binds to its own promoter. Disruption of iclR increased the expression of an iclR::lacZ operon fusion. Although aceBAK and iclR are both regulated by IclR, aceBAK expression responds to the carbon source, while expression of iclR does not.
Collapse
Affiliation(s)
- L Gui
- Department of Biochemistry, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|