1
|
Barbosa ACC, Venceslau SS, Pereira IAC. DsrMKJOP is the terminal reductase complex in anaerobic sulfate respiration. Proc Natl Acad Sci U S A 2024; 121:e2313650121. [PMID: 38285932 PMCID: PMC10861901 DOI: 10.1073/pnas.2313650121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Microbial dissimilatory sulfate reduction (DSR) is a key process in the Earth biogeochemical sulfur cycle. In spite of its importance to the sulfur and carbon cycles, industrial processes, and human health, it is still not clear how reduction of sulfate to sulfide is coupled to energy conservation. A central step in the pathway is the reduction of sulfite by the DsrAB dissimilatory sulfite reductase, which leads to the production of a DsrC-trisulfide. A membrane-bound complex, DsrMKJOP, is present in most organisms that have DsrAB and DsrC, and its involvement in energy conservation has been inferred from sequence analysis, but its precise function was so far not determined. Here, we present studies revealing that the DsrMKJOP complex of the sulfate reducer Archaeoglobus fulgidus works as a menadiol:DsrC-trisulfide oxidoreductase. Our results reveal a close interaction between the DsrC-trisulfide and the DsrMKJOP complex and show that electrons from the quinone pool reduce consecutively the DsrM hemes b, the DsrK noncubane [4Fe-4S]3+/2+ catalytic center, and finally the DsrC-trisulfide with concomitant release of sulfide. These results clarify the role of this widespread respiratory membrane complex and support the suggestion that DsrMKJOP contributes to energy conservation upon reduction of the DsrC-trisulfide in the last step of DSR.
Collapse
Affiliation(s)
- Ana C. C. Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Sofia S. Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras2780-156, Portugal
| |
Collapse
|
2
|
Gallego-Parrilla JJ, Severi E, Chandra G, Palmer T. Identification of novel tail-anchored membrane proteins integrated by the bacterial twin-arginine translocase. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001431. [PMID: 38363712 PMCID: PMC10924467 DOI: 10.1099/mic.0.001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The twin-arginine protein transport (Tat) system exports folded proteins across the cytoplasmic membranes of prokaryotes and the energy transducing-membranes of plant thylakoids and mitochondria. Proteins are targeted to the Tat machinery by N-terminal signal peptides with a conserved twin-arginine motif, and some substrates are exported as heterodimers where the signal peptide is present on one of the partner proteins. A subset of Tat substrates is found in the membrane. Tat-dependent membrane proteins usually have large globular domains and a single transmembrane helix present at the N- or C-terminus. Five Tat substrates that have C-terminal transmembrane helices have previously been characterized in the model bacterium Escherichia coli. Each of these is an iron-sulfur cluster-containing protein involved in electron transfer from hydrogen or formate. Here we have undertaken a bioinformatic search to identify further tail-anchored Tat substrates encoded in bacterial genomes. Our analysis has revealed additional tail-anchored iron-sulfur proteins associated in modules with either a b-type cytochrome or a quinol oxidase. We also identified further candidate tail-anchored Tat substrates, particularly among members of the actinobacterial phylum, that are not predicted to contain cofactors. Using reporter assays, we show experimentally that six of these have both N-terminal Tat signal peptides and C-terminal transmembrane helices. The newly identified proteins include a carboxypeptidase and a predicted protease, and four sortase substrates for which membrane integration is a prerequisite for covalent attachment to the cell wall.
Collapse
Affiliation(s)
- José Jesús Gallego-Parrilla
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Emmanuele Severi
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Govind Chandra
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
3
|
Ferreira D, Venceslau SS, Bernardino R, Preto A, Zhang L, Waldbauer JR, Leavitt WD, Pereira IAC. DsrC is involved in fermentative growth and interacts directly with the FlxABCD-HdrABC complex in Desulfovibrio vulgaris Hildenborough. Environ Microbiol 2023; 25:962-976. [PMID: 36602077 DOI: 10.1111/1462-2920.16335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
DsrC is a key protein in dissimilatory sulfur metabolism, where it works as co-substrate of the dissimilatory sulfite reductase DsrAB. DsrC has two conserved cysteines in a C-terminal arm that are converted to a trisulfide upon reduction of sulfite. In sulfate-reducing bacteria, DsrC is essential and previous works suggested additional functions beyond sulfite reduction. Here, we studied whether DsrC also plays a role during fermentative growth of Desulfovibrio vulgaris Hildenborough, by studying two strains where the functionality of DsrC is impaired by a lower level of expression (IPFG07) and additionally by the absence of one conserved Cys (IPFG09). Growth studies coupled with metabolite and proteomic analyses reveal that fermentation leads to lower levels of DsrC, but impairment of its function results in reduced growth by fermentation and a shift towards more fermentative metabolism during sulfate respiration. In both respiratory and fermentative conditions, there is increased abundance of the FlxABCD-HdrABC complex and Adh alcohol dehydrogenase in IPFG09 versus the wild type, which is reflected in higher production of ethanol. Pull-down experiments confirmed a direct interaction between DsrC and the FlxABCD-HdrABC complex, through the HdrB subunit. Dissimilatory sulfur metabolism, where sulfur compounds are used for energy generation, is a key process in the ecology of anoxic environments, and is more widespread among bacteria than previously believed. Two central proteins for this type of metabolism are DsrAB dissimilatory sulfite reductase and its co-substrate DsrC. Using physiological, proteomic and biochemical studies of Desulfovibrio vulgaris Hildenborough and mutants affected in DsrC functionality, we show that DsrC is also relevant for fermentative growth of this model organism and that it interacts directly with the soluble FlxABCD-HdrABC complex that links the NAD(H) pool with dissimilatory sulfite reduction.
Collapse
Affiliation(s)
- Delfim Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Raquel Bernardino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André Preto
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lichun Zhang
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - Jacob R Waldbauer
- Department of the Geophysical Sciences, University of Chicago, Chicago, Illinois, USA
| | - William D Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire, USA
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
4
|
Duarte AG, Barbosa ACC, Ferreira D, Manteigas G, Domingos RM, Pereira IAC. Redox loops in anaerobic respiration - The role of the widespread NrfD protein family and associated dimeric redox module. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148416. [PMID: 33753023 DOI: 10.1016/j.bbabio.2021.148416] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/25/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
In prokaryotes, the proton or sodium motive force required for ATP synthesis is produced by respiratory complexes that present an ion-pumping mechanism or are involved in redox loops performed by membrane proteins that usually have substrate and quinone-binding sites on opposite sides of the membrane. Some respiratory complexes include a dimeric redox module composed of a quinone-interacting membrane protein of the NrfD family and an iron‑sulfur protein of the NrfC family. The QrcABCD complex of sulfate reducers, which includes the QrcCD module homologous to NrfCD, was recently shown to perform electrogenic quinone reduction providing the first conclusive evidence for energy conservation among this family. Similar redox modules are present in multiple respiratory complexes, which can be associated with electroneutral, energy-driven or electrogenic reactions. This work discusses the presence of the NrfCD/PsrBC dimeric redox module in different bioenergetics contexts and its role in prokaryotic energy conservation mechanisms.
Collapse
Affiliation(s)
- Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
| | - Ana C C Barbosa
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Delfim Ferreira
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Gonçalo Manteigas
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Renato M Domingos
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier/Universidade Nova de Lisboa, Av. da República, Estação Agronómica Nacional, 2780-157 Oeiras, Portugal.
| |
Collapse
|
5
|
Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. A brief survey of the "cytochromome". Adv Microb Physiol 2019; 75:69-135. [PMID: 31655743 DOI: 10.1016/bs.ampbs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.
Collapse
|
6
|
Duarte AG, Catarino T, White GF, Lousa D, Neukirchen S, Soares CM, Sousa FL, Clarke TA, Pereira IAC. An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation. Nat Commun 2018; 9:5448. [PMID: 30575735 PMCID: PMC6303296 DOI: 10.1038/s41467-018-07839-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 02/02/2023] Open
Abstract
The bioenergetics of anaerobic metabolism frequently relies on redox loops performed by membrane complexes with substrate- and quinone-binding sites on opposite sides of the membrane. However, in sulfate respiration (a key process in the biogeochemical sulfur cycle), the substrate- and quinone-binding sites of the QrcABCD complex are periplasmic, and their role in energy conservation has not been elucidated. Here we show that the QrcABCD complex of Desulfovibrio vulgaris is electrogenic, as protons and electrons required for quinone reduction are extracted from opposite sides of the membrane, with a H+/e− ratio of 1. Although the complex does not act as a H+-pump, QrcD may include a conserved proton channel leading from the N-side to the P-side menaquinone pocket. Our work provides evidence of how energy is conserved during dissimilatory sulfate reduction, and suggests mechanisms behind the functions of related bacterial respiratory complexes in other bioenergetic contexts. The bacterial complex QrcABCD plays a key role in the bioenergetics of sulfate respiration. Here, Duarte et al. show that this complex is electrogenic, with protons and electrons required for quinone reduction being extracted from opposite sides of the membrane.
Collapse
Affiliation(s)
- Américo G Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Gaye F White
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Diana Lousa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Sinje Neukirchen
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090, Vienna, Austria
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Filipa L Sousa
- Division of Archaea Biology and Ecogenomics, Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14 UZA I, 1090, Vienna, Austria
| | - Thomas A Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
7
|
Li X, Lan SM, Zhu ZP, Zhang C, Zeng GM, Liu YG, Cao WC, Song B, Yang H, Wang SF, Wu SH. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:162-170. [PMID: 29684746 DOI: 10.1016/j.ecoenv.2018.04.025] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Sulfate-reducing bacteria (SRB), a group of anaerobic prokaryotes, can use sulfur species as a terminal electron acceptor for the oxidation of organic compounds. They not only have significant ecological functions, but also play an important role in bioremediation of contaminated sites. Although numerous studies on metabolism and applications of SRB have been conducted, they still remain incompletely understood and even controversial. Fully understanding the metabolism of SRB paves the way for allowing the microorganisms to provide more beneficial services in bioremediation. Here we review progress in bioenergetics mechanisms and application of SRB including: (1) electron acceptors and donors for SRB; (2) pathway for sulfate reduction; (3) electron transfer in sulfate reduction; (4) application of SRB for economical and concomitant treatment of heavy metal, organic contaminants and sulfates. Moreover, current knowledge gaps and further research needs are identified.
Collapse
Affiliation(s)
- Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shi-Ming Lan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhong-Ping Zhu
- School of Minerals processing and Bioengineering, Central South University, No. 932 South Lushan road, Changsha, Hunan 410083, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei-Cheng Cao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Biao Song
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Hong Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Sheng-Fan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Shao-Hua Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
8
|
Dörries M, Wöhlbrand L, Rabus R. Differential proteomic analysis of the metabolic network of the marine sulfate-reducer Desulfobacterium autotrophicum HRM2. Proteomics 2017; 16:2878-2893. [PMID: 27701823 DOI: 10.1002/pmic.201600041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/24/2016] [Accepted: 09/30/2016] [Indexed: 01/30/2023]
Abstract
The marine sulfate-reducing bacterium Desulfobacterium autotrophicum HRM2 belongs to the deltaproteobacterial family Desulfobacteraceae and stands out for its capacity of facultative chemolithoautotrophic growth (next to heterotrophy). Here, proteomics-driven metabolic reconstruction was based on a combination of 2D-DIGE, shotgun proteomics, and analysis of the membrane protein enriched fraction applied to eight different substrate adaptation conditions (seven aliphatic compounds plus H2 /CO2 ). In total, 1344 different proteins were identified (∼27% of the 4947 genome-predicted), from which a complex metabolic network was reconstructed consisting of 136 proteins (124 detected; ∼91%). Peripheral degradation routes for organic substrates feed directly or via the methylmalonyl-CoA pathway into the Wood-Ljungdahl pathway (WLP) for terminal oxidation to CO2 . Chemolithoautotrophic growth apparently involves the periplasmic [Ni/Fe/Se]-containing hydrogenase HysAB (H2 oxidation), the reductively operating WLP (CO2 fixation), and classical gluconeogenesis. Diverse soluble proteins (e.g., Hdr, Etf) probably establish a fine balanced cytoplasmic electron transfer network connecting individual catabolic reactions with the membrane menaquinone pool. In addition, multiple membrane protein complexes (Nqr, Qmo, Qrc, Rnf1, Rnf2, and Tmc) provide ample routes for interacting with the reducing equivalent pool and delivering electrons to dissimilatory sulfate reduction (both localized in the cytoplasm). Overall, this study contributes to the molecular understanding of the habitat-relevant Desulfobacteraceae.
Collapse
Affiliation(s)
- Marvin Dörries
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Department Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
9
|
Frank YA, Kadnikov VV, Lukina AP, Banks D, Beletsky AV, Mardanov AV, Sen'kina EI, Avakyan MR, Karnachuk OV, Ravin NV. Characterization and Genome Analysis of the First Facultatively Alkaliphilic Thermodesulfovibrio Isolated from the Deep Terrestrial Subsurface. Front Microbiol 2016; 7:2000. [PMID: 28066337 PMCID: PMC5165239 DOI: 10.3389/fmicb.2016.02000] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022] Open
Abstract
Members of the genus Thermodesulfovibrio belong to the Nitrospirae phylum and all isolates characterized to date are neutrophiles. They have been isolated from terrestrial hot springs and thermophilic methanogenic anaerobic sludges. Their molecular signatures have, however, also been detected in deep subsurface. The purpose of this study was to characterize and analyze the genome of a newly isolated, facultatively alkaliphilic Thermodesulfovibrio from a 2 km deep aquifer system in Western Siberia, Russia. The new isolate, designated N1, grows optimally at pH 8.5 and at 65°C. It is able to reduce sulfate, thiosulfate or sulfite with a limited range of electron donors, such as formate, pyruvate, and lactate. Analysis of the 1.93 Mb draft genome of strain N1 revealed that it contains a set of genes for dissimilatory sulfate reduction, including sulfate adenyltransferase, adenosine-5′-phosphosulfate reductase AprAB, membrane-bound electron transfer complex QmoABC, dissimilatory sulfite reductase DsrABC, and sulfite reductase-associated electron transfer complex DsrMKJOP. Hydrogen turnover is enabled by soluble cytoplasmic, membrane-linked, and soluble periplasmic hydrogenases. The use of thiosulfate as an electron acceptor is enabled by a membrane-linked molybdopterin oxidoreductase. The N1 requirement for organic carbon sources corresponds to the lack of the autotrophic C1-fixation pathways. Comparative analysis of the genomes of Thermodesulfovibrio (T. yellowstonii, T. islandicus, T. àggregans, T. thiophilus, and strain N1) revealed a low overall genetic diversity and several adaptive traits. Consistent with an alkaliphilic lifestyle, a multisubunit Na+/H+ antiporter of the Mnh family is encoded in the Thermodesulfovibrio strain N1 genome. Nitrogenase genes were found in T. yellowstonii, T. aggregans, and T. islandicus, nitrate reductase in T. islandicus, and cellulose synthetase in T. aggregans and strain N1. Overall, our results provide genomic insights into metabolism of the Thermodesulfovibrio lineage in microbial communities of the deep subsurface biosphere.
Collapse
Affiliation(s)
- Yulia A Frank
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University Tomsk, Russia
| | - Vitaly V Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Anastasia P Lukina
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University Tomsk, Russia
| | - David Banks
- Systems, Power and Energy, School of Engineering, Glasgow UniversityGlasgow, UK; Holymoor Consultancy Ltd.Chesterfield, UK
| | - Alexey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| | - Elena I Sen'kina
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University Tomsk, Russia
| | - Marat R Avakyan
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University Tomsk, Russia
| | - Olga V Karnachuk
- Laboratory of Biochemistry and Molecular Biology, Tomsk State University Tomsk, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
10
|
Dörries M, Wöhlbrand L, Kube M, Reinhardt R, Rabus R. Genome and catabolic subproteomes of the marine, nutritionally versatile, sulfate-reducing bacterium Desulfococcus multivorans DSM 2059. BMC Genomics 2016; 17:918. [PMID: 27846794 PMCID: PMC5109826 DOI: 10.1186/s12864-016-3236-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 11/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sulfate-reducing bacteria (SRB) are key players of the carbon- and sulfur-cycles in the sediments of the world's oceans. Habitat relevant SRBs are often members of the Desulfosarcina-Desulfococcus clade belonging to the deltaproteobacterial family of Desulfobacteraceae. Despite this environmental recognition, their molecular (genome-based) physiology and their potential to contribute to organic carbon mineralization as well as to adapt to changing environmental conditions have been scarcely investigated. A metabolically versatile representative of this family is Desulfococcus multivorans that is able to completely oxidize (to CO2) a variety of organic acids, including fatty acids up to C14, as well as aromatic compounds. RESULTS In this study the complete 4.46 Mbp and manually annotated genome of metabolically versatile Desulfococcus multivorans DSM 2059 is presented with particular emphasis on a proteomics-driven metabolic reconstruction. Proteomic profiling covered 17 substrate adaptation conditions (6 aromatic and 11 aliphatic compounds) and comprised 2D DIGE, shotgun proteomics and analysis of the membrane protein-enriched fractions. This comprehensive proteogenomic dataset allowed for reconstructing a metabolic network of degradation pathways and energy metabolism that consists of 170 proteins (154 detected; ~91 % coverage). Peripheral degradation routes feed via central benzoyl-CoA, (modified) β-oxidation or methylmalonyl-CoA pathways into the Wood-Ljungdahl pathway for complete oxidation of acetyl-CoA to CO2. Dissimilatory sulfate reduction is fueled by a complex electron transfer network composed of cytoplasmic components (e.g., electron transfer flavoproteins) and diverse membrane redox complexes (Dsr, Qmo, Hmc, Tmc, Qrc, Nuo and Rnf). Overall, a high degree of substrate-specific formation of catabolic enzymes was observed, while most complexes involved in electron transfer appeared to be constitutively formed. CONCLUSIONS A highly dynamic genome structure in combination with substrate-specifically formed catabolic subproteomes and a constitutive subproteome for energy metabolism and electron transfer appears to be a common trait of Desulfobacteraceae members.
Collapse
Affiliation(s)
- Marvin Dörries
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Lars Wöhlbrand
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Michael Kube
- Institute of Forest Genetics, Johann Heinrich von Thünen Institute, Waldsieversdorf, Germany
| | | | - Ralf Rabus
- General and Molecular Microbiology, Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
11
|
Abstract
In Escherichia coli, hydrogen metabolism plays a prominent role in anaerobic physiology. The genome contains the capability to produce and assemble up to four [NiFe]-hydrogenases, each of which are known, or predicted, to contribute to different aspects of cellular metabolism. In recent years, there have been major advances in the understanding of the structure, function, and roles of the E. coli [NiFe]-hydrogenases. The membrane-bound, periplasmically oriented, respiratory Hyd-1 isoenzyme has become one of the most important paradigm systems for understanding an important class of oxygen-tolerant enzymes, as well as providing key information on the mechanism of hydrogen activation per se. The membrane-bound, periplasmically oriented, Hyd-2 isoenzyme has emerged as an unusual, bidirectional redox valve able to link hydrogen oxidation to quinone reduction during anaerobic respiration, or to allow disposal of excess reducing equivalents as hydrogen gas. The membrane-bound, cytoplasmically oriented, Hyd-3 isoenzyme is part of the formate hydrogenlyase complex, which acts to detoxify excess formic acid under anaerobic fermentative conditions and is geared towards hydrogen production under those conditions. Sequence identity between some Hyd-3 subunits and those of the respiratory NADH dehydrogenases has led to hypotheses that the activity of this isoenzyme may be tightly coupled to the formation of transmembrane ion gradients. Finally, the E. coli genome encodes a homologue of Hyd-3, termed Hyd-4, however strong evidence for a physiological role for E. coli Hyd-4 remains elusive. In this review, the versatile hydrogen metabolism of E. coli will be discussed and the roles and potential applications of the spectrum of different types of [NiFe]-hydrogenases available will be explored.
Collapse
|
12
|
A Post-Genomic View of the Ecophysiology, Catabolism and Biotechnological Relevance of Sulphate-Reducing Prokaryotes. Adv Microb Physiol 2015. [PMID: 26210106 DOI: 10.1016/bs.ampbs.2015.05.002] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Collapse
|
13
|
Syntrophic growth of Desulfovibrio alaskensis requires genes for H2 and formate metabolism as well as those for flagellum and biofilm formation. Appl Environ Microbiol 2015; 81:2339-48. [PMID: 25616787 DOI: 10.1128/aem.03358-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In anaerobic environments, mutually beneficial metabolic interactions between microorganisms (syntrophy) are essential for oxidation of organic matter to carbon dioxide and methane. Syntrophic interactions typically involve a microorganism degrading an organic compound to primary fermentation by-products and sources of electrons (i.e., formate, hydrogen, or nanowires) and a partner producing methane or respiring the electrons via alternative electron accepting processes. Using a transposon gene mutant library of the sulfate-reducing Desulfovibrio alaskensis G20, we screened for mutants incapable of serving as the electron-accepting partner of the butyrate-oxidizing bacterium, Syntrophomonas wolfei. A total of 17 gene mutants of D. alaskensis were identified as incapable of serving as the electron-accepting partner. The genes identified predominantly fell into three categories: membrane surface assembly, flagellum-pilus synthesis, and energy metabolism. Among these genes required to serve as the electron-accepting partner, the glycosyltransferase, pilus assembly protein (tadC), and flagellar biosynthesis protein showed reduced biofilm formation, suggesting that each of these components is involved in cell-to-cell interactions. Energy metabolism genes encoded proteins primarily involved in H2 uptake and electron cycling, including a rhodanese-containing complex that is phylogenetically conserved among sulfate-reducing Deltaproteobacteria. Utilizing an mRNA sequencing approach, analysis of transcript abundance in wild-type axenic and cocultures confirmed that genes identified as important for serving as the electron-accepting partner were more highly expressed under syntrophic conditions. The results imply that sulfate-reducing microorganisms require flagellar and outer membrane components to effectively couple to their syntrophic partners; furthermore, H2 metabolism is essential for syntrophic growth of D. alaskensis G20.
Collapse
|
14
|
Morais-Silva FO, Rezende AM, Pimentel C, Santos CI, Clemente C, Varela-Raposo A, Resende DM, da Silva SM, de Oliveira LM, Matos M, Costa DA, Flores O, Ruiz JC, Rodrigues-Pousada C. Genome sequence of the model sulfate reducer Desulfovibrio gigas: a comparative analysis within the Desulfovibrio genus. Microbiologyopen 2014; 3:513-30. [PMID: 25055974 PMCID: PMC4287179 DOI: 10.1002/mbo3.184] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/30/2014] [Accepted: 05/15/2014] [Indexed: 11/20/2022] Open
Abstract
Desulfovibrio gigas is a model organism of sulfate-reducing bacteria of which energy metabolism and stress response have been extensively studied. The complete genomic context of this organism was however, not yet available. The sequencing of the D. gigas genome provides insights into the integrated network of energy conserving complexes and structures present in this bacterium. Comparison with genomes of other Desulfovibrio spp. reveals the presence of two different CRISPR/Cas systems in D. gigas. Phylogenetic analysis using conserved protein sequences (encoded by rpoB and gyrB) indicates two main groups of Desulfovibrio spp, being D. gigas more closely related to D. vulgaris and D. desulfuricans strains. Gene duplications were found such as those encoding fumarate reductase, formate dehydrogenase, and superoxide dismutase. Complexes not yet described within Desulfovibrio genus were identified: Mnh complex, a v-type ATP-synthase as well as genes encoding the MinCDE system that could be responsible for the larger size of D. gigas when compared to other members of the genus. A low number of hydrogenases and the absence of the codh/acs and pfl genes, both present in D. vulgaris strains, indicate that intermediate cycling mechanisms may contribute substantially less to the energy gain in D. gigas compared to other Desulfovibrio spp. This might be compensated by the presence of other unique genomic arrangements of complexes such as the Rnf and the Hdr/Flox, or by the presence of NAD(P)H related complexes, like the Nuo, NfnAB or Mnh.
Collapse
Affiliation(s)
- Fabio O Morais-Silva
- Instituto de Tecnologia Quómica e Biológica - Antonio Xavier, Universidade Nova de Lisboa (ITQB-UNL), Av. da República - Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Venceslau SS, Stockdreher Y, Dahl C, Pereira IAC. The "bacterial heterodisulfide" DsrC is a key protein in dissimilatory sulfur metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1148-64. [PMID: 24662917 DOI: 10.1016/j.bbabio.2014.03.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 03/07/2014] [Accepted: 03/13/2014] [Indexed: 12/16/2022]
Abstract
DsrC is a small protein present in organisms that dissimilate sulfur compounds, working as a physiological partner of the DsrAB sulfite reductase. DsrC contains two redox active cysteines in a flexible carboxy-terminal arm that are involved in the process of sulfite reduction or sulfur(1) compound oxidation in sulfur-reducing(2) or sulfur-oxidizing(3) organisms, respectively. In both processes, a disulfide formed between the two cysteines is believed to serve as the substrate of several proteins present in these organisms that are related to heterodisulfide reductases of methanogens. Here, we review the information on DsrC and its possible physiological partners, and discuss the idea that this protein may serve as a redox hub linking oxidation of several substrates to dissimilative sulfur metabolism. In addition, we analyze the distribution of proteins of the DsrC superfamily, including TusE that only requires the last Cys of the C-terminus for its role in the biosynthesis of 2-thiouridine, and a new protein that we name RspA (for regulatory sulfur-related protein) that is possibly involved in the regulation of gene expression and does not need the conserved Cys for its function. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.
Collapse
Affiliation(s)
- S S Venceslau
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Y Stockdreher
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
| | - C Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany
| | - I A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
16
|
Meyer B, Kuehl JV, Deutschbauer AM, Arkin AP, Stahl DA. Flexibility of syntrophic enzyme systems in Desulfovibrio species ensures their adaptation capability to environmental changes. J Bacteriol 2013; 195:4900-14. [PMID: 23974031 PMCID: PMC3807489 DOI: 10.1128/jb.00504-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
Abstract
The mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers obligately linked by interspecies metabolite exchange in syntrophic consortia that may include sulfate reducing species such as Desulfovibrio. To evaluate the metabolic flexibility of syntrophic Desulfovibrio to adapt to naturally fluctuating methanogenic environments, we studied Desulfovibrio alaskensis strain G20 grown in chemostats under respiratory and syntrophic conditions with alternative methanogenic partners, Methanococcus maripaludis and Methanospirillum hungatei, at different growth rates. Comparative whole-genome transcriptional analyses, complemented by G20 mutant strain growth experiments and physiological data, revealed a significant influence of both energy source availability (as controlled by dilution rate) and methanogen on the electron transfer systems, ratios of interspecies electron carriers, energy generating systems, and interspecies physical associations. A total of 68 genes were commonly differentially expressed under syntrophic versus respiratory lifestyle. Under low-energy (low-growth-rate) conditions, strain G20 further had the capacity to adapt to the metabolism of its methanogenic partners, as shown by its differing gene expression of enzymes involved in the direct metabolic interactions (e.g., periplasmic hydrogenases) and the ratio shift in electron carriers used for interspecies metabolite exchange (hydrogen/formate). A putative monomeric [Fe-Fe] hydrogenase and Hmc (high-molecular-weight-cytochrome c3) complex-linked reverse menaquinone (MQ) redox loop become increasingly important for the reoxidation of the lactate-/pyruvate oxidation-derived redox pair, DsrC(red) and Fd(red), relative to the Qmo-MQ-Qrc (quinone-interacting membrane-bound oxidoreductase; quinone-reducing complex) loop. Together, these data underscore the high enzymatic and metabolic adaptive flexibility that likely sustains Desulfovibrio in naturally fluctuating methanogenic environments.
Collapse
Affiliation(s)
- Birte Meyer
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Jennifer V. Kuehl
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam M. Deutschbauer
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P. Arkin
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - David A. Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Parey K, Fritz G, Ermler U, Kroneck PMH. Conserving energy with sulfate around 100 °C – structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus. Metallomics 2013; 5:302-17. [DOI: 10.1039/c2mt20225e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth. J Bacteriol 2012; 195:990-1004. [PMID: 23264581 DOI: 10.1128/jb.01959-12] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mineralization of organic matter in anoxic environments relies on the cooperative activities of hydrogen producers and consumers linked by interspecies electron transfer in syntrophic consortia that may include sulfate-reducing species (e.g., Desulfovibrio). Physiological differences and various gene repertoires implicated in syntrophic metabolism among Desulfovibrio species suggest considerable variation in the biochemical basis of syntrophy. In this study, comparative transcriptional and mutant analyses of Desulfovibrio alaskensis strain G20 and Desulfovibrio vulgaris strain Hildenborough growing syntrophically with Methanococcus maripaludis on lactate were used to develop new and revised models for their alternative electron transfer and energy conservation systems. Lactate oxidation by strain G20 generates a reduced thiol-disulfide redox pair(s) and ferredoxin that are energetically coupled to H(+)/CO(2) reduction by periplasmic formate dehydrogenase and hydrogenase via a flavin-based reverse electron bifurcation process (electron confurcation) and a menaquinone (MQ) redox loop-mediated reverse electron flow involving the membrane-bound Qmo and Qrc complexes. In contrast, strain Hildenborough uses a larger number of cytoplasmic and periplasmic proteins linked in three intertwining pathways to couple H(+) reduction to lactate oxidation. The faster growth of strain G20 in coculture is associated with a kinetic advantage conferred by the Qmo-MQ-Qrc loop as an electron transfer system that permits higher lactate oxidation rates under elevated hydrogen levels (thereby enhancing methanogenic growth) and use of formate as the main electron-exchange mediator (>70% electron flux), as opposed to the primarily hydrogen-based exchange by strain Hildenborough. This study further demonstrates the absence of a conserved gene core in Desulfovibrio that would determine the ability for a syntrophic lifestyle.
Collapse
|
19
|
Wöhlbrand L, Jacob JH, Kube M, Mussmann M, Jarling R, Beck A, Amann R, Wilkes H, Reinhardt R, Rabus R. Complete genome, catabolic sub-proteomes and key-metabolites of Desulfobacula toluolica Tol2, a marine, aromatic compound-degrading, sulfate-reducing bacterium. Environ Microbiol 2012; 15:1334-55. [PMID: 23088741 DOI: 10.1111/j.1462-2920.2012.02885.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/29/2012] [Accepted: 08/30/2012] [Indexed: 11/30/2022]
Abstract
Among the dominant deltaproteobacterial sulfate-reducing bacteria (SRB), members of the genus Desulfobacula are not only present in (hydrocarbon-rich) marine sediments, but occur also frequently in the anoxic water bodies encountered in marine upwelling areas. Here, we present the 5.2 Mbp genome of Desulfobacula toluolica Tol2, which is the first of an aromatic compound-degrading, marine SRB. The genome has apparently been shaped by viral attacks (e.g. CRISPRs) and its high plasticity is reflected by 163 detected genes related to transposases and integrases, a total of 494 paralogous genes and 24 group II introns. Prediction of the catabolic network of strain Tol2 was refined by differential proteome and metabolite analysis of substrate-adapted cells. Toluene and p-cresol are degraded by separate suites of specific enzymes for initial arylsuccinate formation via addition to fumarate (p-cresol-specific enzyme HbsA represents a new phylogenetic branch) as well as for subsequent modified β-oxidation of arylsuccinates to the central intermediate benzoyl-CoA. Proteogenomic evidence suggests specific electron transfer (EtfAB) and membrane proteins to channel electrons from dehydrogenation of both arylsuccinates directly to the membrane redox pool. In contrast to the known anaerobic degradation pathways in other bacteria, strain Tol2 deaminates phenylalanine non-oxidatively to cinnamate by phenylalanine ammonia-lyase and subsequently forms phenylacetate (both metabolites identified in (13) C-labelling experiments). Benzoate degradation involves CoA activation, reductive dearomatization by a class II benzoyl-CoA reductase and hydrolytic ring cleavage as found in the obligate anaerobe Geobacter metallireducens GS-15. The catabolic sub-proteomes displayed high substrate specificity, reflecting the genomically predicted complex and fine-tuned regulatory network of strain Tol2. Despite the genetic equipment for a TCA cycle, proteomic evidence supports complete oxidation of acetyl-CoA to CO2 via the Wood-Ljungdahl pathway. Strain Tol2 possesses transmembrane redox complexes similar to that of other Desulfobacteraceae members. The multiple heterodisulfide reductase-like proteins (more than described for Desulfobacterium autotrophicum HRM2) may constitute a multifaceted cytoplasmic electron transfer network.
Collapse
Affiliation(s)
- Lars Wöhlbrand
- Institute for Chemistry and Biology of Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26111, Oldenburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grein F, Ramos AR, Venceslau SS, Pereira IAC. Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:145-60. [PMID: 22982583 DOI: 10.1016/j.bbabio.2012.09.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 10/27/2022]
Abstract
Behind the versatile nature of prokaryotic energy metabolism is a set of redox proteins having a highly modular character. It has become increasingly recognized that a limited number of redox modules or building blocks appear grouped in different arrangements, giving rise to different proteins and functionalities. This modularity most likely reveals a common and ancient origin for these redox modules, and is obviously reflected in similar energy conservation mechanisms. The dissimilation of sulfur compounds was probably one of the earliest biological strategies used by primitive organisms to obtain energy. Here, we review some of the redox proteins involved in dissimilatory sulfur metabolism, focusing on sulfate reducing organisms, and highlight links between these proteins and others involved in different processes of anaerobic respiration. Noteworthy are links to the complex iron-sulfur molybdoenzyme family, and heterodisulfide reductases of methanogenic archaea. We discuss how chemiosmotic and electron bifurcation/confurcation may be involved in energy conservation during sulfate reduction, and how introduction of an additional module, multiheme cytochromes c, opens an alternative bioenergetic strategy that seems to increase metabolic versatility. Finally, we highlight new families of heterodisulfide reductase-related proteins from non-methanogenic organisms, which indicate a widespread distribution for these protein modules and may indicate a more general involvement of thiol/disulfide conversions in energy metabolism. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Fabian Grein
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | |
Collapse
|
21
|
da Silva SM, Pacheco I, Pereira IAC. Electron transfer between periplasmic formate dehydrogenase and cytochromes c in Desulfovibrio desulfuricans ATCC 27774. J Biol Inorg Chem 2012; 17:831-8. [DOI: 10.1007/s00775-012-0900-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/08/2012] [Indexed: 10/28/2022]
|
22
|
Abstract
Dissimilatory sulfate and sulfur reduction evolved billions of years ago and while the bacteria and archaea that use this unique metabolism employ a variety of electron donors, H(2) is most commonly used as the energy source. These prokaryotes use multiheme c-type proteins to shuttle electrons from electron donors, and electron transport complexes presumed to contain b-type hemoproteins contribute to proton charging of the membrane. Numerous sulfate and sulfur reducers use an alternate pathway for heme synthesis and, frequently, uniquely specific axial ligands are used to secure c-type heme to the protein. This review presents some of the types and functional activities of hemoproteins involved in these two dissimilatory reduction pathways.
Collapse
|
23
|
How sulphate-reducing microorganisms cope with stress: lessons from systems biology. Nat Rev Microbiol 2011; 9:452-66. [PMID: 21572460 DOI: 10.1038/nrmicro2575] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sulphate-reducing microorganisms (SRMs) are a phylogenetically diverse group of anaerobes encompassing distinct physiologies with a broad ecological distribution. As SRMs have important roles in the biogeochemical cycling of carbon, nitrogen, sulphur and various metals, an understanding of how these organisms respond to environmental stresses is of fundamental and practical importance. In this Review, we highlight recent applications of systems biology tools in studying the stress responses of SRMs, particularly Desulfovibrio spp., at the cell, population, community and ecosystem levels. The syntrophic lifestyle of SRMs is also discussed, with a focus on system-level analyses of adaptive mechanisms. Such information is important for understanding the microbiology of the global sulphur cycle and for developing biotechnological applications of SRMs for environmental remediation, energy production, biocorrosion control, wastewater treatment and mineral recovery.
Collapse
|
24
|
Pereira IAC, Ramos AR, Grein F, Marques MC, da Silva SM, Venceslau SS. A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2011; 2:69. [PMID: 21747791 PMCID: PMC3119410 DOI: 10.3389/fmicb.2011.00069] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/25/2011] [Indexed: 11/13/2022] Open
Abstract
The number of sequenced genomes of sulfate reducing organisms (SRO) has increased significantly in the recent years, providing an opportunity for a broader perspective into their energy metabolism. In this work we carried out a comparative survey of energy metabolism genes found in 25 available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii) are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H(+)-pyrophosphatases, complex I homologs, Rnf, and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases, and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H(2), formate, pyruvate, NAD(P)H, β-oxidation, and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation.
Collapse
Affiliation(s)
- Inês A Cardoso Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
25
|
Venceslau SS, Lino RR, Pereira IAC. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem 2010; 285:22774-83. [PMID: 20498375 PMCID: PMC2906268 DOI: 10.1074/jbc.m110.124305] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/07/2010] [Indexed: 11/06/2022] Open
Abstract
Biological sulfate reduction is a process with high environmental significance due to its major contribution to the carbon and sulfur cycles in anaerobic environments. However, the respiratory chain of sulfate-reducing bacteria is still poorly understood. Here we describe a new respiratory complex that was isolated as a major protein present in the membranes of Desulfovibrio vulgaris Hildenborough. The complex, which was named Qrc, is the first representative of a new family of redox complexes. It has three subunits related to the complex iron-sulfur molybdoenzyme family and a multiheme cytochrome c and binds six hemes c, one [3Fe-4S](+1/0) cluster, and several interacting [4Fe-4S](2+/1+) clusters but no molybdenum. Qrc is related to the alternative complex III, and we show that it has the reverse catalytic activity, acting as a Type I cytochrome c(3):menaquinone oxidoreductase. The qrc genes are found in the genomes of deltaproteobacterial sulfate reducers, which have periplasmic hydrogenases and formate dehydrogenases that lack a membrane subunit for reduction of the quinone pool. In these organisms, Qrc acts as a menaquinone reductase with electrons from periplasmic hydrogen or formate oxidation. Binding of a menaquinone analogue affects the EPR spectrum of the [3Fe-4S](+1/0) cluster, indicating the presence of a quinone-binding site close to the periplasmic subunits. Qrc is the first respiratory complex from sulfate reducers to have its physiological function clearly elucidated.
Collapse
Affiliation(s)
- Sofia S. Venceslau
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Rita R. Lino
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| | - Ines A. C. Pereira
- From the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras 2780-157, Portugal
| |
Collapse
|
26
|
Midorikawa T, Matsumoto K, Narikawa R, Ikeuchi M. An Rrf2-type transcriptional regulator is required for expression of psaAB genes in the cyanobacterium Synechocystis sp. PCC 6803. PLANT PHYSIOLOGY 2009; 151:882-92. [PMID: 19692537 PMCID: PMC2754614 DOI: 10.1104/pp.109.141390] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 08/14/2009] [Indexed: 05/21/2023]
Abstract
Photosynthetic organisms must regulate photosystem stoichiometry (photosystem I-to-photosystem II ratio) under various light conditions. Transcriptional regulation of the psaAB genes is a critical process for this photoacclimation in cyanobacteria. In the course of our screening of transcriptional regulators in the cyanobacterium Synechocystis sp. PCC 6803, we found that chlorophyll accumulation was impaired in an Rrf2-type regulator Slr0846 mutant. DNA microarray and primer extension analyses showed that the expression of psaAB genes was markedly decreased in the mutant. Consistently, the mutant exhibited lower photosystem I-to-photosystem II ratio under normal light conditions, suggestive of decreased accumulation of the photosystem I reaction center. Gel-shift assay confirmed that the Slr0846 protein bound to a far upstream promoter region of psaAB. These phenotypes of the mutant varied substantially with light conditions. These results suggest that Slr0846 is a novel transcriptional regulator for optimal expression of psaAB.
Collapse
Affiliation(s)
- Takafumi Midorikawa
- Department of Biological Science, Graduate School of Sciences, University of Tokyo, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
27
|
The electron transfer system of syntrophically grown Desulfovibrio vulgaris. J Bacteriol 2009; 191:5793-801. [PMID: 19581361 DOI: 10.1128/jb.00356-09] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic coupling between hydrogen producers and consumers is a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent on growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, numerous genes involved in electron transfer and energy generation were upregulated in D. vulgaris compared with their expression in sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn), and the well-characterized high-molecular-weight cytochrome (Hmc) were among the most highly expressed and upregulated genes. Additionally, a predicted operon containing genes involved in lactate transport and oxidation exhibited upregulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd, and Hyn impaired or severely limited syntrophic growth but had little effect on growth via sulfate respiration. These results demonstrate that syntrophic growth and sulfate respiration use largely independent energy generation pathways and imply that to understand microbial processes that sustain nutrient cycling, lifestyles not captured in pure culture must be considered.
Collapse
|
28
|
Strittmatter AW, Liesegang H, Rabus R, Decker I, Amann J, Andres S, Henne A, Fricke WF, Martinez-Arias R, Bartels D, Goesmann A, Krause L, Pühler A, Klenk HP, Richter M, Schüler M, Glöckner FO, Meyerdierks A, Gottschalk G, Amann R. Genome sequence of Desulfobacterium autotrophicum HRM2, a marine sulfate reducer oxidizing organic carbon completely to carbon dioxide. Environ Microbiol 2009; 11:1038-55. [PMID: 19187283 PMCID: PMC2702500 DOI: 10.1111/j.1462-2920.2008.01825.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/25/2008] [Indexed: 01/23/2023]
Abstract
Sulfate-reducing bacteria (SRB) belonging to the metabolically versatile Desulfobacteriaceae are abundant in marine sediments and contribute to the global carbon cycle by complete oxidation of organic compounds. Desulfobacterium autotrophicum HRM2 is the first member of this ecophysiologically important group with a now available genome sequence. With 5.6 megabasepairs (Mbp) the genome of Db. autotrophicum HRM2 is about 2 Mbp larger than the sequenced genomes of other sulfate reducers (SRB). A high number of genome plasticity elements (> 100 transposon-related genes), several regions of GC discontinuity and a high number of repetitive elements (132 paralogous genes Mbp(-1)) point to a different genome evolution when comparing with Desulfovibrio spp. The metabolic versatility of Db. autotrophicum HRM2 is reflected in the presence of genes for the degradation of a variety of organic compounds including long-chain fatty acids and for the Wood-Ljungdahl pathway, which enables the organism to completely oxidize acetyl-CoA to CO(2) but also to grow chemolithoautotrophically. The presence of more than 250 proteins of the sensory/regulatory protein families should enable Db. autotrophicum HRM2 to efficiently adapt to changing environmental conditions. Genes encoding periplasmic or cytoplasmic hydrogenases and formate dehydrogenases have been detected as well as genes for the transmembrane TpII-c(3), Hme and Rnf complexes. Genes for subunits A, B, C and D as well as for the proposed novel subunits L and F of the heterodisulfide reductases are present. This enzyme is involved in energy conservation in methanoarchaea and it is speculated that it exhibits a similar function in the process of dissimilatory sulfate reduction in Db. autotrophicum HRM2.
Collapse
Affiliation(s)
- Axel W Strittmatter
- Göttingen Genomics Laboratory, Georg-August-UniversityGrisebachstr. 8, D-37077 Göttingen, Germany
| | - Heiko Liesegang
- Göttingen Genomics Laboratory, Georg-August-UniversityGrisebachstr. 8, D-37077 Göttingen, Germany
| | - Ralf Rabus
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1, D-28359 Bremen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University OldenburgCarl-von-Ossietzky Str. 9-11, D-26111 Oldenburg, Germany
| | - Iwona Decker
- Göttingen Genomics Laboratory, Georg-August-UniversityGrisebachstr. 8, D-37077 Göttingen, Germany
| | - Judith Amann
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1, D-28359 Bremen, Germany
| | - Sönke Andres
- Göttingen Genomics Laboratory, Georg-August-UniversityGrisebachstr. 8, D-37077 Göttingen, Germany
| | - Anke Henne
- Göttingen Genomics Laboratory, Georg-August-UniversityGrisebachstr. 8, D-37077 Göttingen, Germany
| | - Wolfgang Florian Fricke
- Göttingen Genomics Laboratory, Georg-August-UniversityGrisebachstr. 8, D-37077 Göttingen, Germany
| | - Rosa Martinez-Arias
- Göttingen Genomics Laboratory, Georg-August-UniversityGrisebachstr. 8, D-37077 Göttingen, Germany
| | - Daniela Bartels
- Center for Biotechnology (CeBiTec), Bielefeld UniversityUniversitätsstr. 37, D-33615 Bielefeld, Germany
| | - Alexander Goesmann
- Center for Biotechnology (CeBiTec), Bielefeld UniversityUniversitätsstr. 37, D-33615 Bielefeld, Germany
| | - Lutz Krause
- Center for Biotechnology (CeBiTec), Bielefeld UniversityUniversitätsstr. 37, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität BielefeldD-33594 Bielefeld, Germany
| | - Hans-Peter Klenk
- DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbHInhoffenstraße 7 B, D-38124 Braunschweig, Germany
| | - Michael Richter
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1, D-28359 Bremen, Germany
| | - Margarete Schüler
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1, D-28359 Bremen, Germany
| | | | - Anke Meyerdierks
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1, D-28359 Bremen, Germany
| | - Gerhard Gottschalk
- Göttingen Genomics Laboratory, Georg-August-UniversityGrisebachstr. 8, D-37077 Göttingen, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine MicrobiologyCelsiusstr. 1, D-28359 Bremen, Germany
| |
Collapse
|
29
|
A molybdopterin oxidoreductase is involved in H2 oxidation in Desulfovibrio desulfuricans G20. J Bacteriol 2009; 191:2675-82. [PMID: 19233927 DOI: 10.1128/jb.01814-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three mutants deficient in hydrogen/formate uptake were obtained through screening of a transposon mutant library containing 5,760 mutants of Desulfovibrio desulfuricans G20. Mutations were in the genes encoding the type I tetraheme cytochrome c(3) (cycA), Fe hydrogenase (hydB), and molybdopterin oxidoreductase (mopB). Mutations did not decrease the ability of cells to produce H(2) or formate during growth. Complementation of the cycA and mopB mutants with a plasmid carrying the intact cycA and/or mopB gene and the putative promoter from the parental strain allowed the recovery of H(2) uptake ability, showing that these specific genes are involved in H(2) oxidation. The mop operon encodes a periplasm-facing transmembrane protein complex which may shuttle electrons from periplasmic cytochrome c(3) to the menaquinone pool. Electrons can then be used for sulfate reduction in the cytoplasm.
Collapse
|
30
|
Rothery RA, Workun GJ, Weiner JH. The prokaryotic complex iron–sulfur molybdoenzyme family. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1897-929. [DOI: 10.1016/j.bbamem.2007.09.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2007] [Revised: 08/17/2007] [Accepted: 09/02/2007] [Indexed: 10/22/2022]
|
31
|
Pereira PM, He Q, Xavier AV, Zhou J, Pereira IAC, Louro RO. Transcriptional response of Desulfovibrio vulgaris Hildenborough to oxidative stress mimicking environmental conditions. Arch Microbiol 2007; 189:451-61. [PMID: 18060664 DOI: 10.1007/s00203-007-0335-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 11/16/2007] [Accepted: 11/20/2007] [Indexed: 12/31/2022]
Abstract
Sulfate-reducing bacteria (SRB) are anaerobes readily found in oxic-anoxic interfaces. Multiple defense pathways against oxidative conditions were identified in these organisms and proposed to be differentially expressed under different concentrations of oxygen, contributing to their ability to survive oxic conditions. In this study, Desulfovibrio vulgaris Hildenborough cells were exposed to the highest concentration of oxygen that SRB are likely to encounter in natural habitats, and the global transcriptomic response was determined. Three hundred and seven genes were responsive, with cellular roles in energy metabolism, protein fate, cell envelope and regulatory functions, including multiple genes encoding heat shock proteins, peptidases and proteins with heat shock promoters. Of the oxygen reducing mechanisms of D. vulgaris only the periplasmic hydrogen-dependent mechanism was up-regulated, involving the [NiFeSe] hydrogenase, formate dehydrogenase(s) and the Hmc membrane complex. The oxidative defense response concentrated on damage repair by metal-free enzymes. These data, together with the down-regulation of the ferric uptake regulator operon, which restricts the availability of iron, and the lack of response of the peroxide-sensing regulator operon, suggest that a major effect of this oxygen stress is the inactivation and/or degradation of multiple metalloproteins present in D. vulgaris as a consequence of oxidative damage to their metal clusters.
Collapse
Affiliation(s)
- Patrícia M Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
32
|
Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis. Antonie van Leeuwenhoek 2007; 93:347-62. [DOI: 10.1007/s10482-007-9212-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 11/20/2007] [Indexed: 10/22/2022]
|
33
|
Vignais PM, Billoud B. Occurrence, Classification, and Biological Function of Hydrogenases: An Overview. Chem Rev 2007; 107:4206-72. [PMID: 17927159 DOI: 10.1021/cr050196r] [Citation(s) in RCA: 1039] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paulette M. Vignais
- CEA Grenoble, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF 5092, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 rue des Martyrs, 38054 Grenoble cedex 9, France, and Atelier de BioInformatique Université Pierre et Marie Curie (Paris 6), 12 rue Cuvier, 75005 Paris, France
| | - Bernard Billoud
- CEA Grenoble, Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF 5092, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), 17 rue des Martyrs, 38054 Grenoble cedex 9, France, and Atelier de BioInformatique Université Pierre et Marie Curie (Paris 6), 12 rue Cuvier, 75005 Paris, France
| |
Collapse
|
34
|
Santos-Silva T, Dias JM, Dolla A, Durand MC, Gonçalves LL, Lampreia J, Moura I, Romão MJ. Crystal structure of the 16 heme cytochrome from Desulfovibrio gigas: a glycosylated protein in a sulphate-reducing bacterium. J Mol Biol 2007; 370:659-73. [PMID: 17531266 DOI: 10.1016/j.jmb.2007.04.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 04/16/2007] [Accepted: 04/19/2007] [Indexed: 11/20/2022]
Abstract
Sulphate-reducing bacteria have a wide variety of periplasmic cytochromes involved in electron transfer from the periplasm to the cytoplasm. HmcA is a high molecular mass cytochrome of 550 amino acid residues that harbours 16 c-type heme groups. We report the crystal structure of HmcA isolated from the periplasm of Desulfovibrio gigas. Crystals were grown using polyethylene glycol 8K and zinc acetate, and diffracted beyond 2.1 A resolution. A multiple-wavelength anomalous dispersion experiment at the iron absorption edge enabled us to obtain good-quality phases for structure solution and model building. DgHmcA has a V-shape architecture, already observed in HmcA isolated from Desulfovibrio vulgaris Hildenborough. The presence of an oligosaccharide molecule covalently bound to an Asn residue was observed in the electron density maps of DgHmcA and confirmed by mass spectrometry. Three modified monosaccharides appear at the highly hydrophobic vertex, possibly acting as an anchor of the protein to the cytoplasmic membrane.
Collapse
Affiliation(s)
- Teresa Santos-Silva
- REQUIMTE, CQFB, Departamento de Química, FCT-UNL, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Hydrogenases are metalloenzymes subdivided into two classes that contain iron-sulfur clusters and catalyze the reversible oxidation of hydrogen gas (H(2)[Symbol: see text]left arrow over right arrow[Symbol: see text]2H(+)[Symbol: see text]+[Symbol: see text]2e(-)). Two metal atoms are present at their active center: either a Ni and an Fe atom in the [NiFe]hydrogenases, or two Fe atoms in the [FeFe]hydrogenases. They are phylogenetically distinct classes of proteins. The catalytic core of [NiFe]hydrogenases is a heterodimeric protein associated with additional subunits in many of these enzymes. The catalytic core of [FeFe]hydrogenases is a domain of about 350 residues that accommodates the active site (H cluster). Many [FeFe]hydrogenases are monomeric but possess additional domains that contain redox centers, mostly Fe-S clusters. A third class of hydrogenase, characterized by a specific iron-containing cofactor and by the absence of Fe-S cluster, is found in some methanogenic archaea; this Hmd hydrogenase has catalytic properties different from those of [NiFe]- and [FeFe]hydrogenases. The [NiFe]hydrogenases can be subdivided into four subgroups: (1) the H(2) uptake [NiFe]hydrogenases (group 1); (2) the cyanobacterial uptake hydrogenases and the cytoplasmic H(2) sensors (group 2); (3) the bidirectional cytoplasmic hydrogenases able to bind soluble cofactors (group 3); and (4) the membrane-associated, energy-converting, H(2) evolving hydrogenases (group 4). Unlike the [NiFe]hydrogenases, the [FeFe]hydrogenases form a homogeneous group and are primarily involved in H(2) evolution. This review recapitulates the classification of hydrogenases based on phylogenetic analysis and the correlation with hydrogenase function of the different phylogenetic groupings, discusses the possible role of the [FeFe]hydrogenases in the genesis of the eukaryotic cell, and emphasizes the structural and functional relationships of hydrogenase subunits with those of complex I of the respiratory electron transport chain.
Collapse
Affiliation(s)
- Paulette M Vignais
- Laboratoire de Biochimie et Biophysique des Systèmes Intégrés, UMR CEA/CNRS/UJF no. 5092, Institut de Recherches en Technologies et Sciences pour le Vivant, Grenoble cedex 9, France.
| |
Collapse
|
36
|
|
37
|
Paquete CM, Pereira PM, Catarino T, Turner DL, Louro RO, Xavier AV. Functional properties of type I and type II cytochromes c3 from Desulfovibrio africanus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:178-88. [PMID: 17316553 DOI: 10.1016/j.bbabio.2007.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/09/2007] [Accepted: 01/17/2007] [Indexed: 10/23/2022]
Abstract
Type I cytochrome c(3) is a key protein in the bioenergetic metabolism of Desulfovibrio spp., mediating electron transfer between periplasmic hydrogenase and multihaem cytochromes associated with membrane bound complexes, such as type II cytochrome c(3). This work presents the NMR assignment of the haem substituents in type I cytochrome c(3) isolated from Desulfovibrio africanus and the thermodynamic and kinetic characterisation of type I and type II cytochromes c(3) belonging to the same organism. It is shown that the redox properties of the two proteins allow electrons to be transferred between them in the physiologically relevant direction with the release of energised protons close to the membrane where they can be used by the ATP synthase.
Collapse
Affiliation(s)
- Catarina M Paquete
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Rua da Quinta Grande, 6, Apt. 127, 2780-156 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
38
|
Rodrigues ML, Oliveira TF, Pereira IAC, Archer M. X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. EMBO J 2006; 25:5951-60. [PMID: 17139260 PMCID: PMC1698886 DOI: 10.1038/sj.emboj.7601439] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 10/10/2006] [Indexed: 11/09/2022] Open
Abstract
Oxidation of membrane-bound quinol molecules is a central step in the respiratory electron transport chains used by biological cells to generate ATP by oxidative phosphorylation. A novel family of cytochrome c quinol dehydrogenases that play an important role in bacterial respiratory chains was recognised in recent years. Here, we describe the first structure of a cytochrome from this family, NrfH from Desulfovibrio vulgaris, which forms a stable complex with its electron partner, the cytochrome c nitrite reductase NrfA. One NrfH molecule interacts with one NrfA dimer in an asymmetrical manner, forming a large membrane-bound complex with an overall alpha(4)beta(2) quaternary arrangement. The menaquinol-interacting NrfH haem is pentacoordinated, bound by a methionine from the CXXCHXM sequence, with an aspartate residue occupying the distal position. The NrfH haem that transfers electrons to NrfA has a lysine residue from the closest NrfA molecule as distal ligand. A likely menaquinol binding site, containing several conserved and essential residues, is identified.
Collapse
Affiliation(s)
- Maria Luisa Rodrigues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Oeiras, Portugal
| | - Tânia F Oliveira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Oeiras, Portugal
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Oeiras, Portugal
- Membrane Protein Crystallography, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Apt. 127, Av. Republica, EAN, Oeiras 2780-157, Portugal. Tel.: +351 214469762; Fax: +351 21433644; E-mail:
| |
Collapse
|
39
|
Sander J, Engels-Schwarzlose S, Dahl C. Importance of the DsrMKJOP complex for sulfur oxidation in Allochromatium vinosum and phylogenetic analysis of related complexes in other prokaryotes. Arch Microbiol 2006; 186:357-66. [PMID: 16924482 DOI: 10.1007/s00203-006-0156-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 05/24/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
In the phototrophic sulfur bacterium Allochromatium vinosum, sulfur of oxidation state zero stored in intracellular sulfur globules is an obligate intermediate during the oxidation of sulfide and thiosulfate. The proteins encoded in the dissimilatory sulfite reductase (dsr) locus are essential for the oxidation of the stored sulfur. DsrMKJOP form a membrane-spanning complex proposed to accept electrons from or to deliver electrons to cytoplasmic sulfur-oxidizing proteins. In frame deletion mutagenesis showed that each individual of the complex-encoding genes is an absolute requirement for the oxidation of the stored sulfur in Alc. vinosum. Complementation of the DeltadsrJ mutant using the conjugative broad host range plasmid pBBR1-MCS2 and the dsr promoter was successful. The importance of the DsrMKJOP complex is underlined by the fact that the respective genes occur in all currently sequenced genomes of sulfur-forming bacteria such as Thiobacillus denitrificans and Chlorobaculum tepidum. Furthermore, closely related genes are present in the genomes of sulfate- and sulfite-reducing prokaryotes. A phylogenetic analysis showed that most dsr genes from sulfide oxidizers are clearly separated of those from sulfate reducers. Surprisingly, the dsrMKJOP genes of the Chlorobiaceae all cluster together with those of the sulfate/sulfite-reducing prokaryotes, indicating a lateral gene transfer at the base of the Chlorobiaceae.
Collapse
Affiliation(s)
- Johannes Sander
- Institut für Mikrobiologie und Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | | | | |
Collapse
|
40
|
Hedderich R, Hamann N, Bennati M. Heterodisulfide reductase from methanogenic archaea: a new catalytic role for an iron-sulfur cluster. Biol Chem 2005; 386:961-70. [PMID: 16218868 DOI: 10.1515/bc.2005.112] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterodisulfide reductase (HDR) from methanogenic archaea is an iron-sulfur protein that catalyzes reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic thiol-coenzymes, coenzyme M (CoM-SH) and coenzyme B (CoB-SH). Via the characterization of a paramagnetic reaction intermediate generated upon oxidation of the enzyme in the presence of coenzyme M, the enzyme was shown to contain a [4Fe-4S] cluster in its active site that catalyzes reduction of the disulfide substrate in two one-electron reduction steps. The formal thiyl radical generated by the initial one-electron reduction of the disulfide is stabilized via reduction and coordination of the resultant thiol to the [4Fe-4S] cluster.
Collapse
Affiliation(s)
- Reiner Hedderich
- Max-Planck-Institute for Terrestrial Microbiology, Karl-von-Frisch Strasse, D-35043 Marburg, Germany.
| | | | | |
Collapse
|
41
|
Di Paolo RE, Pereira PM, Gomes I, Valente FMA, Pereira IAC, Franco R. Resonance Raman fingerprinting of multiheme cytochromes from the cytochrome c 3 family. J Biol Inorg Chem 2005; 11:217-24. [PMID: 16341896 DOI: 10.1007/s00775-005-0067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 11/22/2005] [Indexed: 10/25/2022]
Abstract
Resonance Raman (RR) spectroscopy was used to investigate conformational characteristics of the hemes of several ferricytochromes of the cytochrome c3 family, electron transfer proteins isolated from the periplasm and membranes of sulfate-reducing bacteria. Our analysis concentrated on the low-frequency region of the RR spectra, a fingerprint region that includes vibrations for heme-protein C-S bonds [nu(C(a)S)]. It has been proposed that these bonds are directly involved in the electron transfer process. The three groups of tetraheme cytochrome c3 analyzed, namely Type I cytochrome c (3) (TpIc (3)s), Type II cytochrome c (3) (TpIIc (3)s) and Desulfomicrobium cytochromes c3, display different frequency separations for the two nu(C(a)S) lines that are similar among members of each group. These spectral differences correlate with differences in protein structure observed among the three groups of cytochromes c3. Two larger cytochromes of the cytochrome c3 family display RR spectral characteristics for the nu(C(a)S) lines that are closer to TpIIc3 than to TpIc3. Two other multiheme cytochromes from Desulfovibrio that do not belong to the cytochrome c3 family display nu(C(a)S) lines with reverse relative areas in comparison with the latter family. This RR study shows that the small differences in protein structure observed among these cytochrome c3 correlate to differences on the heme-protein bonds, which are likely to have an impact upon the protein function, making RR spectroscopy a sensitive and useful tool for characterizing these cytochromes.
Collapse
Affiliation(s)
- Roberto E Di Paolo
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, Av. da República, 2781-901 Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | | | | |
Collapse
|
43
|
Mussmann M, Richter M, Lombardot T, Meyerdierks A, Kuever J, Kube M, Glöckner FO, Amann R. Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol 2005; 187:7126-37. [PMID: 16199583 PMCID: PMC1251608 DOI: 10.1128/jb.187.20.7126-7137.2005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dissimilatory reduction of sulfate is an ancient metabolic process central to today's biogeochemical cycling of sulfur and carbon in marine sediments. Until now its polyphyletic distribution was most parsimoniously explained by multiple horizontal transfers of single genes rather than by a not-yet-identified "metabolic island." Here we provide evidence that the horizontal transfer of a gene cluster may indeed be responsible for the patchy distribution of sulfate-reducing prokaryotes (SRP) in the phylogenetic tree. We isolated three DNA fragments (32 to 41 kb) from uncultured, closely related SRP from DNA directly extracted from two distinct marine sediments. Fosmid ws39f7, and partially also fosmids ws7f8 and hr42c9, harbored a core set of essential genes for the dissimilatory reduction of sulfate, including enzymes for the reduction of sulfur intermediates and synthesis of the prosthetic group of the dissimilatory sulfite reductase. Genome comparisons suggest that encoded membrane proteins universally present among SRP are critical for electron transfer to cytoplasmic enzymes. In addition, novel, conserved hypothetical proteins that are likely involved in dissimilatory sulfate reduction were identified. Based on comparative genomics and previously published experimental evidence, a more comprehensive model of dissimilatory sulfate reduction is presented. The observed clustering of genes involved in dissimilatory sulfate reduction has not been previously found. These findings strongly support the hypothesis that genes responsible for dissimilatory sulfate reduction were concomitantly transferred in a single event among prokaryotes. The acquisition of an optimized gene set would enormously facilitate a successful implementation of a novel pathway.
Collapse
Affiliation(s)
- Marc Mussmann
- Max Planck Institute for Marine Microbiology, Celsiusstr. 1, D-28359 Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Valente FMA, Oliveira ASF, Gnadt N, Pacheco I, Coelho AV, Xavier AV, Teixeira M, Soares CM, Pereira IAC. Hydrogenases in Desulfovibrio vulgaris Hildenborough: structural and physiologic characterisation of the membrane-bound [NiFeSe] hydrogenase. J Biol Inorg Chem 2005; 10:667-82. [PMID: 16187073 DOI: 10.1007/s00775-005-0022-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2005] [Accepted: 08/11/2005] [Indexed: 10/25/2022]
Abstract
The genome of Desulfovibrio vulgaris Hildenborough (DvH) encodes for six hydrogenases (Hases), making it an interesting organism to study the role of these proteins in sulphate respiration. In this work we address the role of the [NiFeSe] Hase, found to be the major Hase associated with the cytoplasmic membrane. The purified enzyme displays interesting catalytic properties, such as a very high H(2) production activity, which is dependent on the presence of phospholipids or detergent, and resistance to oxygen inactivation since it is isolated aerobically in a Ni(II) oxidation state. Evidence was obtained that the [NiFeSe] Hase is post-translationally modified to include a hydrophobic group bound to the N-terminal, which is responsible for its membrane association. Cleavage of this group originates a soluble, less active form of the enzyme. Sequence analysis shows that [NiFeSe] Hases from Desulfovibrionacae form a separate family from the [NiFe] enzymes of these organisms, and are more closely related to [NiFe] Hases from more distant bacterial species that have a medial [4Fe4S](2+/1+) cluster, but not a selenocysteine. The interaction of the [NiFeSe] Hase with periplasmic cytochromes was investigated and is similar to the [NiFe](1) Hase, with the Type I cytochrome c (3) as the preferred electron acceptor. A model of the DvH [NiFeSe] Hase was generated based on the structure of the Desulfomicrobium baculatum enzyme. The structures of the two [NiFeSe] Hases are compared with the structures of [NiFe] Hases, to evaluate the consensual structural differences between the two families. Several conserved residues close to the redox centres were identified, which may be relevant to the higher activity displayed by [NiFeSe] Hases.
Collapse
Affiliation(s)
- Filipa M A Valente
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Matias PM, Pereira IAC, Soares CM, Carrondo MA. Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 89:292-329. [PMID: 15950057 DOI: 10.1016/j.pbiomolbio.2004.11.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sulphate-reducing organisms are widespread in anaerobic enviroments, including the gastrointestinal tract of man and other animals. The study of these bacteria has attracted much attention over the years, due also to the fact that they can have important implications in industry (in biocorrosion and souring of oil and gas deposits), health (in inflamatory bowel diseases) and the environment (bioremediation). The characterization of the various components of the electron transport chain associated with the hydrogen metabolism in Desulfovibrio has generated a large and comprehensive list of studies. This review summarizes the more relevant aspects of the current information available on the structural data of various molecules associated with hydrogen metabolism, namely hydrogenases and cytochromes. The transmembrane redox complexes known to date are also described and discussed. Redox-Bohr and cooperativity effects, observed in a few cytochromes, and believed to be important for their functional role, are discussed. Kinetic studies performed with these redox proteins, showing clues to their functional inter-relationship, are also addressed. These provide the groundwork for the application of a variety of molecular modelling approaches to understanding electron transfer and protein interactions among redox partners, leading to the characterization of several transient periplasmic complexes. In contrast to the detailed understanding of the periplasmic hydrogen oxidation process, very little is known about the cytoplasmic side of the respiratory electron transfer chain, in terms of molecular components (with exception of the terminal reductases), their structure and the protein-protein interactions involved in sulphate reduction. Therefore, a thorough understanding of the sulphate respiratory chain in Desulfovibrio remains a challenging task.
Collapse
Affiliation(s)
- Pedro M Matias
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | | | |
Collapse
|
46
|
Pieulle L, Morelli X, Gallice P, Lojou E, Barbier P, Czjzek M, Bianco P, Guerlesquin F, Hatchikian EC. The type I/type II cytochrome c3 complex: an electron transfer link in the hydrogen-sulfate reduction pathway. J Mol Biol 2005; 354:73-90. [PMID: 16226767 DOI: 10.1016/j.jmb.2005.09.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/30/2005] [Accepted: 09/13/2005] [Indexed: 11/25/2022]
Abstract
In Desulfovibrio metabolism, periplasmic hydrogen oxidation is coupled to cytoplasmic sulfate reduction via transmembrane electron transfer complexes. Type II tetraheme cytochrome c3 (TpII-c3), nine-heme cytochrome c (9HcA) and 16-heme cytochrome c (HmcA) are periplasmic proteins associated to these membrane-bound redox complexes and exhibit analogous physiological function. Type I tetraheme cytochrome c3 (TpI-c3) is thought to act as a mediator for electron transfer from hydrogenase to these multihemic cytochromes. In the present work we have investigated Desulfovibrio africanus (Da) and Desulfovibrio vulgaris Hildenborough (DvH) TpI-c3/TpII-c3 complexes. Comparative kinetic experiments of Da TpI-c3 and TpII-c3 using electrochemistry confirm that TpI-c3 is much more efficient than TpII-c3 as an electron acceptor from hydrogenase (second order rate constant k = 9 x 10(8) M(-1) s(-1), K(m) = 0.5 microM as compared to k = 1.7 x 10(7) M(-1) s(-1), K(m) = 40 microM, for TpI-c3 and TpII-c3, respectively). The Da TpI-c3/TpII-c3 complex was characterized at low ionic strength by gel filtration, analytical ultracentrifugation and cross-linking experiments. The thermodynamic parameters were determined by isothermal calorimetry titrations. The formation of the complex is mainly driven by a positive entropy change (deltaS = 137(+/-7) J mol(-1) K(-1) and deltaH = 5.1(+/-1.3) kJ mol(-1)) and the value for the association constant is found to be (2.2(+/-0.5)) x 10(6) M(-1) at pH 5.5. Our thermodynamic results reveal that the net increase in enthalpy and entropy is dominantly produced by proton release in combination with water molecule exclusion. Electrostatic forces play an important role in stabilizing the complex between the two proteins, since no complex formation is detected at high ionic strength. The crystal structure of Da TpI-c3 has been solved at 1.5 angstroms resolution and structural models of the complex have been obtained by NMR and docking experiments. Similar experiments have been carried out on the DvH TpI-c3/TpII-c3 complex. In both complexes, heme IV of TpI-c3 faces heme I of TpII-c3 involving basic residues of TpI-c3 and acidic residues of TpII-c3. A secondary interacting site has been observed in the two complexes, involving heme II of Da TpII-c3 and heme III of DvH TpI-c3 giving rise to a TpI-c3/TpII-c3 molar ratio of 2:1 and 1:2 for Da and DvH complexes, respectively. The physiological significance of these alternative sites in multiheme cytochromes c is discussed.
Collapse
Affiliation(s)
- Laetitia Pieulle
- Unité de Bioénergétique et Ingéniérie des Protéines, Institut de Biologie Structurale et Microbiologie, CNRS, 31 chemin Joseph-Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Guiral M, Leroy G, Bianco P, Gallice P, Guigliarelli B, Bruschi M, Nitschke W, Giudici-Orticoni MT. Interaction and electron transfer between the high molecular weight cytochrome and cytochrome c3 from Desulfovibrio vulgaris Hildenborough: Kinetic, microcalorimetric, EPR and electrochemical studies. Biochim Biophys Acta Gen Subj 2005; 1723:45-54. [PMID: 15780995 DOI: 10.1016/j.bbagen.2005.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 01/27/2005] [Accepted: 01/28/2005] [Indexed: 11/26/2022]
Abstract
The complex formation between the tetraheme cytochrome c3 and hexadecaheme high molecular weight cytochrome c (Hmc), the structure of which has recently been resolved, has been characterized by cross-linking experiments, EPR, electrochemistry and kinetic analysis, and some key parameters of the interaction were determined. The analysis of electron transfer between [Fe] hydrogenase, cytochrome c3 and Hmc demonstrates a redox-shuttling role of cytochrome c3 in the pathway from hydrogenase to Hmc, and shows an effect of redox state on the interaction between the two cytochromes. The role of polyheme cytochromes in electron transfer from periplasmic hydrogenase to membrane redox proteins is assessed. A model with cytochrome c3 as an intermediate between hydrogenase and various polyheme cytochromes is proposed and its physiological consequences are discussed.
Collapse
Affiliation(s)
- Marianne Guiral
- Bioénergétique et Ingénierie des Protéines, CNRS, IBSM, 31 chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 2005; 187:1392-404. [PMID: 15687204 PMCID: PMC545617 DOI: 10.1128/jb.187.4.1392-1404.2005] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven new genes designated dsrLJOPNSR were identified immediately downstream of dsrABEFHCMK, completing the dsr gene cluster of the phototrophic sulfur bacterium Allochromatium vinosum D (DSM 180(T)). Interposon mutagenesis proved an essential role of the encoded proteins for the oxidation of intracellular sulfur, an obligate intermediate during the oxidation of sulfide and thiosulfate. While dsrR and dsrS encode cytoplasmic proteins of unknown function, the other genes encode a predicted NADPH:acceptor oxidoreductase (DsrL), a triheme c-type cytochrome (DsrJ), a periplasmic iron-sulfur protein (DsrO), and an integral membrane protein (DsrP). DsrN resembles cobyrinic acid a,c-diamide synthases and is probably involved in the biosynthesis of siro(heme)amide, the prosthetic group of the dsrAB-encoded sulfite reductase. The presence of most predicted Dsr proteins in A. vinosum was verified by Western blot analysis. With the exception of the constitutively present DsrC, the formation of Dsr gene products was greatly enhanced by sulfide. DsrEFH were purified from the soluble fraction and constitute a soluble alpha(2)beta(2)gamma(2)-structured 75-kDa holoprotein. DsrKJO were purified from membranes pointing at the presence of a transmembrane electron-transporting complex consisting of DsrKMJOP. In accordance with the suggestion that related complexes from dissimilatory sulfate reducers transfer electrons to sulfite reductase, the A. vinosum Dsr complex is copurified with sulfite reductase, DsrEFH, and DsrC. We therefore now have an ideal and unique possibility to study the interaction of sulfite reductase with other proteins and to clarify the long-standing problem of electron transport from and to sulfite reductase, not only in phototrophic bacteria but also in sulfate-reducing prokaryotes.
Collapse
Affiliation(s)
- Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, Daugherty SC, Deboy RT, Dodson RJ, Durkin AS, Madupu R, Nelson WC, Sullivan SA, Fouts D, Haft DH, Selengut J, Peterson JD, Davidsen TM, Zafar N, Zhou L, Radune D, Dimitrov G, Hance M, Tran K, Khouri H, Gill J, Utterback TR, Feldblyum TV, Wall JD, Voordouw G, Fraser CM. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 2004; 22:554-9. [PMID: 15077118 DOI: 10.1038/nbt959] [Citation(s) in RCA: 407] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 03/03/2004] [Indexed: 11/09/2022]
Abstract
Desulfovibrio vulgaris Hildenborough is a model organism for studying the energy metabolism of sulfate-reducing bacteria (SRB) and for understanding the economic impacts of SRB, including biocorrosion of metal infrastructure and bioremediation of toxic metal ions. The 3,570,858 base pair (bp) genome sequence reveals a network of novel c-type cytochromes, connecting multiple periplasmic hydrogenases and formate dehydrogenases, as a key feature of its energy metabolism. The relative arrangement of genes encoding enzymes for energy transduction, together with inferred cellular location of the enzymes, provides a basis for proposing an expansion to the 'hydrogen-cycling' model for increasing energy efficiency in this bacterium. Plasmid-encoded functions include modification of cell surface components, nitrogen fixation and a type-III protein secretion system. This genome sequence represents a substantial step toward the elucidation of pathways for reduction (and bioremediation) of pollutants such as uranium and chromium and offers a new starting point for defining this organism's complex anaerobic respiration.
Collapse
Affiliation(s)
- John F Heidelberg
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, Maryland 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mander GJ, Pierik AJ, Huber H, Hedderich R. Two distinct heterodisulfide reductase-like enzymes in the sulfate-reducing archaeonArchaeoglobus profundus. ACTA ACUST UNITED AC 2004; 271:1106-16. [PMID: 15009189 DOI: 10.1111/j.1432-1033.2004.04013.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Heterodisulfide reductase (Hdr) is a unique disulfide reductase that plays a key role in the energy metabolism of methanogenic archaea. Two types of Hdr have been identified and characterized from distantly related methanogens. Here we show that the sulfate-reducing archaeon Archaeoglobus profundus cultivated on H2/sulfate forms enzymes related to both types of Hdr. From the membrane fraction of A. profundus, a two-subunit enzyme (HmeCD) composed of a b-type cytochrome and a hydrophilic iron-sulfur protein was isolated. The amino-terminal sequences of these subunits revealed high sequence identities to subunits HmeC and HmeD of the Hme complex from A. fulgidus. HmeC and HmeD in turn are closely related to subunits HdrE and HdrD of Hdr from Methanosarcina spp. From the soluble fraction of A. profundus a six-subunit enzyme complex (Mvh:Hdl) containing Ni, iron-sulfur clusters and FAD was isolated. Via amino-terminal sequencing, the encoding genes were identified in the genome of the closely related species A. fulgidus in which these genes are clustered. They encode a three-subunit [NiFe] hydrogenase with high sequence identity to the F420-nonreducing hydrogenase from Methanothermobacter spp. while the remaining three polypeptides are related to the three-subunit heterodisulfide reductase from Methanothermobacter spp. The oxidized enzyme exhibited an unusual EPR spectrum with gxyz = 2.014, 1.939 and 1.895 similar to that observed for oxidized Hme and Hdr. Upon reduction with H2 this signal was no longer detectable.
Collapse
Affiliation(s)
- Gerd J Mander
- Max-Planck-Institut for Terrestrial Microbiology, Marburg, Germany
| | | | | | | |
Collapse
|