1
|
Batuman O, Britt-Ugartemendia K, Kunwar S, Yilmaz S, Fessler L, Redondo A, Chumachenko K, Chakravarty S, Wade T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. PHYTOPATHOLOGY 2024; 114:885-909. [PMID: 38478738 DOI: 10.1094/phyto-10-23-0357-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Sanju Kunwar
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Lauren Fessler
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Ana Redondo
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kseniya Chumachenko
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Shourish Chakravarty
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Tara Wade
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
2
|
Reuter A, Virolle C, Goldlust K, Berne-Dedieu A, Nolivos S, Lesterlin C. Direct visualisation of drug-efflux in liveEscherichia colicells. FEMS Microbiol Rev 2020; 44:782-792. [DOI: 10.1093/femsre/fuaa031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACTDrug-efflux by pump proteins is one of the major mechanisms of antibiotic resistance in bacteria. Here, we use quantitative fluorescence microscopy to investigate the real-time dynamics of drug accumulation and efflux in live E. coli cells. We visualize simultaneously the intrinsically fluorescent protein-synthesis inhibitor tetracycline (Tc) and the fluorescently labelled Tc-specific efflux pump, TetA. We show that Tc penetrates the cells within minutes and accumulates to stable intracellular concentration after ∼20 min. The final level of drug accumulation reflects the balance between Tc-uptake by the cells and Tc-efflux by pump proteins. In wild-type Tc-sensitive cells, drug accumulation is significantly limited by the activity of the multidrug efflux pump, AcrAB-TolC. Tc-resistance wild-type cells carrying a plasmid-borne Tn10 transposon contain variable amounts of TetA protein, produced under steady-state repression by the TetR repressor. TetA content heterogeneity determines the cells’ initial ability to efflux Tc. Yet, efflux remains partial until the synthesis of additional TetA pumps allows for Tc-efflux activity to surpass Tc-uptake. Cells overproducing TetA no longer accumulate Tc and become resistant to high concentrations of the drug. This work uncovers the dynamic balance between drug entry, protein-synthesis inhibition, efflux-pump production, drug-efflux activity and drug-resistance levels.
Collapse
Affiliation(s)
- Audrey Reuter
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Chloé Virolle
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Kelly Goldlust
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Annick Berne-Dedieu
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Sophie Nolivos
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, 69007, Lyon, France
| |
Collapse
|
3
|
Abstract
Antibiotics have been used for the management of relatively few bacterial plant diseases and are largely restricted to high-value fruit crops because of the expense involved. Antibiotic resistance in plant-pathogenic bacteria has become a problem in pathosystems where these antibiotics have been used for many years. Where the genetic basis for resistance has been examined, antibiotic resistance in plant pathogens has most often evolved through the acquisition of a resistance determinant via horizontal gene transfer. For example, the strAB streptomycin-resistance genes occur in Erwinia amylovora, Pseudomonas syringae, and Xanthomonas campestris, and these genes have presumably been acquired from nonpathogenic epiphytic bacteria colocated on plant hosts under antibiotic selection. We currently lack knowledge of the effect of the microbiome of commensal organisms on the potential of plant pathogens to evolve antibiotic resistance. Such knowledge is critical to the development of robust resistance management strategies to ensure the safe and effective continued use of antibiotics in the management of critically important diseases.
Collapse
Affiliation(s)
- George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850, USA
| |
Collapse
|
4
|
Comparative genomics of Bifidobacterium animalis subsp. lactis reveals a strict monophyletic bifidobacterial taxon. Appl Environ Microbiol 2013; 79:4304-15. [PMID: 23645200 DOI: 10.1128/aem.00984-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Strains of Bifidobacterium animalis subsp. lactis are extensively exploited by the food industry as health-promoting bacteria, although the genetic variability of members belonging to this taxon has so far not received much scientific attention. In this article, we describe the complete genetic makeup of the B. animalis subsp. lactis Bl12 genome and discuss the genetic relatedness of this strain with other sequenced strains belonging to this taxon. Moreover, a detailed comparative genomic analysis of B. animalis subsp. lactis genomes was performed, which revealed a closely related and isogenic nature of all currently available B. animalis subsp. lactis strains, thus strongly suggesting a closed pan-genome structure of this bacterial group.
Collapse
|
5
|
Schmitz FJ, Fluit AC. Mechanisms of antibacterial resistance. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00131-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
|
7
|
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001; 65:232-60 ; second page, table of contents. [PMID: 11381101 PMCID: PMC99026 DOI: 10.1128/mmbr.65.2.232-260.2001] [Citation(s) in RCA: 2570] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.
Collapse
Affiliation(s)
- I Chopra
- Antimicrobial Research Centre and Division of Microbiology, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
8
|
Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 2001. [PMID: 11381101 DOI: 10.1016/s0022-3093(98)00783-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Tetracyclines were discovered in the 1940s and exhibited activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, chlamydiae, mycoplasmas, rickettsiae, and protozoan parasites. They are inexpensive antibiotics, which have been used extensively in the prophlylaxis and therapy of human and animal infections and also at subtherapeutic levels in animal feed as growth promoters. The first tetracycline-resistant bacterium, Shigella dysenteriae, was isolated in 1953. Tetracycline resistance now occurs in an increasing number of pathogenic, opportunistic, and commensal bacteria. The presence of tetracycline-resistant pathogens limits the use of these agents in treatment of disease. Tetracycline resistance is often due to the acquisition of new genes, which code for energy-dependent efflux of tetracyclines or for a protein that protects bacterial ribosomes from the action of tetracyclines. Many of these genes are associated with mobile plasmids or transposons and can be distinguished from each other using molecular methods including DNA-DNA hybridization with oligonucleotide probes and DNA sequencing. A limited number of bacteria acquire resistance by mutations, which alter the permeability of the outer membrane porins and/or lipopolysaccharides in the outer membrane, change the regulation of innate efflux systems, or alter the 16S rRNA. New tetracycline derivatives are being examined, although their role in treatment is not clear. Changing the use of tetracyclines in human and animal health as well as in food production is needed if we are to continue to use this class of broad-spectrum antimicrobials through the present century.
Collapse
Affiliation(s)
- I Chopra
- Antimicrobial Research Centre and Division of Microbiology, School of Biochemistry & Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
9
|
Zhao J, Leung HE, Winkler ME. The miaA mutator phenotype of Escherichia coli K-12 requires recombination functions. J Bacteriol 2001; 183:1796-800. [PMID: 11160115 PMCID: PMC95069 DOI: 10.1128/jb.183.5.1796-1800.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
miaA mutants, which contain A-37 instead of the ms(2)i(6)A-37 hypermodification in their tRNA, show a moderate mutator phenotype leading to increased GC-->TA transversion. We show that the miaA mutator phenotype is dependent on recombination functions similar to, but not exactly the same as, those required for translation stress-induced mutagenesis.
Collapse
Affiliation(s)
- J Zhao
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
10
|
Charpentier E, Tuomanen E. Mechanisms of antibiotic resistance and tolerance in Streptococcus pneumoniae. Microbes Infect 2000; 2:1855-64. [PMID: 11165930 DOI: 10.1016/s1286-4579(00)01345-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus pneumoniae is a major pathogen causing potentially life-threatening community-acquired diseases in both the developed and developing world. Since 1967, there has been a dramatic increase in the incidence of penicillin-resistant and multiply antibiotic-resistant pneumococci worldwide. Prevention of access of the antibiotic to the target, inactivation of the antibiotic and alteration of the target are mechanisms that S. pneumoniae has developed to resist antibiotics. Recent studies on antibiotic-tolerant pneumococcal mutants permitted development of a novel model for the control of bacterial cell death.
Collapse
Affiliation(s)
- E Charpentier
- Department of Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, New York, NY 10016, USA
| | | |
Collapse
|
11
|
Moore JA, Mathis JR, Poulter CD. Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase: pre-steady-state kinetic studies. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1479:166-74. [PMID: 11004538 DOI: 10.1016/s0167-4838(00)00031-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli dimethylallyl diphosphate:tRNA dimethylallyltransferase (DMAPP-tRNA transferase) catalyzes the first step in the biosynthesis of the hypermodified A37 residue in tRNAs that read codons beginning with uridine. The mechanism of the enzyme-catalyzed reaction was studied by isotope trapping, pre-steady-state rapid quench, and single turnover experiments. Isotope trapping indicated that the enzyme.tRNA complex is catalytically competent, whereas the enzyme.DMAPP complex is not. The results are consistent with an ordered sequential mechanism for substrate binding where tRNA binds first. The association and dissociation rate constants for the enzyme.tRNA binary complex are 1. 15+/-0.33x10(7) M(-1) s(-1) and 0.06+/-0.01 s(-1), respectively. Addition of DMAPP gives an enzyme.tRNA.DMAPP ternary complex in rapid equilibrium with the binary complex and DMAPP. Rapid quench studies yielded a linear profile (k(cat)=0.36+/-0.01 s(-1)) with no evidence for buildup of enzyme-bound product. Product release from DMAPP-tRNA transferase is therefore not rate-limiting. The Michaelis constant for tRNA and the equilibrium dissociation constant for DMAPP calculated from the individual rate constants determined here are consistent with values obtained from a steady-state kinetic analysis.
Collapse
Affiliation(s)
- J A Moore
- Department of Chemistry, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
12
|
Widdowson CA, Klugman KP. The molecular mechanisms of tetracycline resistance in the pneumococcus. Microb Drug Resist 2000; 4:79-84. [PMID: 9533730 DOI: 10.1089/mdr.1998.4.79] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tetracycline resistance in the pneumococcus is a result of the acquisition of one of two resistance determinants, tet(M) or tet(O). These genes encode ribosomal protection proteins that have homology to the elongation factors G and Tu. Tet(M) and Tet(O) both have GTPase activity that appears to be important in the displacement of tetracycline from the ribosome. Modification of tRNA may also be important for tetracycline resistance. Transcription of tet(M) is thought to be regulated by transcriptional attenuation. Transcription of tet(O) is constitutive, however, upstream of the gene are sequences that also appear to be involved in transcriptional attenuation. tet(M) is transferred on the conjugative transposons, Tn1545 and Tn5151. It is not yet known whether tet(O) is transported on transposons or plasmids, or whether it is chromosomally integrated, in pneumococci.
Collapse
Affiliation(s)
- C A Widdowson
- South African Institute for Medical Research and the University of Witwatersrand, Department of Clinical Microbiology and Infectious Diseases, Johannesburg
| | | |
Collapse
|
13
|
Luo ZQ, Farrand SK. Cloning and characterization of a tetracycline resistance determinant present in Agrobacterium tumefaciens C58. J Bacteriol 1999; 181:618-26. [PMID: 9882678 PMCID: PMC93418 DOI: 10.1128/jb.181.2.618-626.1999] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/1998] [Accepted: 11/07/1998] [Indexed: 11/20/2022] Open
Abstract
Agrobacterium tumefaciens C58 and its derivatives give rise to spontaneous mutants resistant to tetracycline at a high frequency. We observed that a mutation affecting a tRNA processing function significantly affected the emergence of such mutants, suggesting that C58 contained a positively acting gene conferring resistance to tetracycline. A cosmid clone conferring resistance to tetracycline in Escherichia coli and Agrobacterium was isolated from a genomic bank of one such mutant. Subcloning, transposon mutagenesis, and DNA sequence analysis revealed that this DNA fragment contained two divergently transcribed genes, tetA and tetR, encoding products that were very similar to proteins of the Tet(A) class of tetracycline resistance systems. In the clone from this mutant, tetR was disrupted by an IS426. The homologous region from wild-type NT1 contained an intact tetR gene and did not confer resistance to tetracycline. Hybridization analysis showed that of 22 members of the genus Agrobacterium surveyed, only strains C58 and T37 contained the tet determinant. Moreover, only these two strains mutated to resistance to this antibiotic. Unlike other Tet(A) systems, neither tetracycline nor a series of its derivatives induced the expression of this tet gene unit. Other polycyclic compounds, including many of plant origin, also did not induce this tet gene system. The divergent promoter region of this tet system contained a single inverted repeat element identical to one such operator repeat in the promoter region of the tet determinant from the IncP1alpha R plasmid RP4. TetR repressor proteins from the Agrobacterium tet system and from RP4 interacted with the heterologous operators. While the repressive effect of the TetR protein from strain C58 (TetRC58) on the tetA gene from strain RP4 (tetARP4) was not relieved by tetracycline, repression of tetAC58 by TetRRP4 was lifted by this antibiotic.
Collapse
Affiliation(s)
- Z Q Luo
- Departments of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
14
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
15
|
Trieber CA, Burkhardt N, Nierhaus KH, Taylor DE. Ribosomal protection from tetracycline mediated by Tet(O): Tet(O) interaction with ribosomes is GTP-dependent. Biol Chem 1998; 379:847-55. [PMID: 9705148 DOI: 10.1515/bchm.1998.379.7.847] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tet(O) mediates tetracycline resistance by protecting the ribosome from inhibition. A recombinant Tet(O) protein with a histidine tag was purified and its activity in protein synthesis characterized. Tetracycline inhibited the rate of poly(Phe) synthesis, producing short peptide chains. Tet(O)-His was able to restore the elongation rate and processivity. 70S ribosomes bound tetracycline with high affinity. Tet(O)-His in the presence of GTP, but not GDP or GMP, reduced the affinity of the ribosomes for tetracycline. Non-hydrolyzable GTP analogs in the presence of the factor were also able to interfere with tetracycline binding. Ribosomes increased the affinity of Tet(O)-His for GTPgammaS. Tet(O), 70S ribosomes and GTPgammaS formed a complex that could be isolated by gel filtration. The GTP conformer is the active form of Tet(O) that interacts with the ribosome. GTP binding is necessary for Tet(O) activity.
Collapse
Affiliation(s)
- C A Trieber
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
16
|
Taylor DE, Trieber CA, Trescher G, Bekkering M. Host mutations (miaA and rpsL) reduce tetracycline resistance mediated by Tet(O) and Tet(M). Antimicrob Agents Chemother 1998; 42:59-64. [PMID: 9449261 PMCID: PMC105456 DOI: 10.1128/aac.42.1.59] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effects of mutations in host genes on tetracycline resistance mediated by the Tet(O) and Tet(M) ribosomal protection proteins, which originated in Campylobacter spp. and Streptococcus spp., respectively, were investigated by using mutants of Salmonella typhimurium and Escherichia coli. The miaA, miaB, and miaAB double mutants of S. typhimurium specify enzymes for tRNA modification at the adenosine at position 37, adjacent to the anticodon in tRNA. In S. typhimurium, this involves biosynthesis of N6-(4-hydroxyisopentenyl)-2-methylthio-adenosine (ms2io6A). The miaA mutation reduced the level of tetracycline resistance mediated by both Tet(O) and Tet(M), but the latter showed a greater effect, which was ascribed to the isopentenyl (i6) group or to a combination of the methylthioadenosine (ms2) and i6 groups but not to the ms2 group alone (specified by miaB). In addition, mutations in E. coli rpsL genes, generating both streptomycin-resistant and streptomycin-dependent strains, were also shown to reduce the level of tetracycline resistance mediated by Tet(O) and Tet(M). The single-site amino acid substitutions present in the rpsL mutations were pleiotropic in their effects on tetracycline MICs. These mutants affect translational accuracy and kinetics and suggest that Tet(O) and Tet(M) binding to the ribosome may be reduced or slowed in the E. coli rpsL mutants in which the S12 protein is altered. Data from both the miaA and rpsL mutant studies indicate a possible link between stability of the aminoacyl-tRNA in the ribosomal acceptor site and tetracycline resistance mediated by the ribosomal protection proteins.
Collapse
Affiliation(s)
- D E Taylor
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, Canada.
| | | | | | | |
Collapse
|
17
|
Leung HC, Chen Y, Winkler ME. Regulation of substrate recognition by the MiaA tRNA prenyltransferase modification enzyme of Escherichia coli K-12. J Biol Chem 1997; 272:13073-83. [PMID: 9148919 DOI: 10.1074/jbc.272.20.13073] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We purified polyhistidine (His6)-tagged and native Escherichia coli MiaA tRNA prenyltransferase, which uses dimethylallyl diphosphate (DMAPP) to isopentenylate A residues adjacent to the anticodons of most tRNA species that read codons starting with U residues. Kinetic and binding studies of purified MiaA were performed with several substrates, including synthetic wild-type tRNAPhe, the anticodon stem-loop (ACSLPhe) of tRNAPhe, and bulk tRNA isolated from a miaA mutant. Gel filtration shift and steady-state kinetic determinations showed that affinity-purified MiaA had the same properties as native MiaA and was completely active for tRNAPhe binding. MiaA had a Kmapp (tRNA substrates) approximately 3 nM, which is orders of magnitude lower than that of other purified tRNA modification enzymes, a Kmapp (DMAPP) = 632 nM, and a kcatapp = 0.44 s-1. MiaA activity was minimally affected by other modifications or nonsubstrate tRNA species present in bulk tRNA isolated from a miaA mutant. MiaA modified ACSLPhe with a kcatapp/Kmapp substrate specificity about 17-fold lower than that for intact tRNAPhe, mostly due to a decrease in apparent substrate binding affinity. Quantitative Western immunoblotting showed that MiaA is an abundant protein in exponentially growing bacteria (660 monomers per cell; 1.0 microM concentration) and is present in a catalytic excess. However, MiaA activity was strongly competitively inhibited for DMAPP by ATP and ADP (Kiapp = 0.06 microM), suggesting that MiaA activity is inhibited substantially in vivo and that DMAPP may bind to a conserved P-loop motif in this class of prenyltransferases. Band shift, filter binding, and gel filtration shift experiments support a model in which MiaA tRNA substrates are recognized by binding tightly to MiaA multimers possibly in a positively cooperative way (Kdapp approximately 0.07 microM).
Collapse
Affiliation(s)
- H C Leung
- Department of Microbiology and Molecular Genetics, University of Texas Houston Medical School, Houston, Texas 77030-1501, USA
| | | | | |
Collapse
|
18
|
Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 1996; 19:1-24. [PMID: 8916553 DOI: 10.1111/j.1574-6976.1996.tb00251.x] [Citation(s) in RCA: 362] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Tetracycline-resistant bacteria were first isolated in 1953 from Shigella dysenteriae, a bacterium which causes bacterial dysentery. Since then tetracycline-resistant bacterial have been found in increasing numbers of species and genera. This has resulted in reduced effectiveness of tetracycline therapy over time. Tetracycline resistance is normally due to the acquisition of new genes often associated with either a mobile plasmid or a transposon. These tetracycline resistance determinants are distinguishable both genetically and biochemically. Resistance is primarily due to either energy-dependent efflux of tetracycline or protection of the ribosomes from the action of tetracycline. Gram-negative tetracycline efflux proteins are linked to repressor proteins which in the absence of tetracycline block transcription of the repressor and structural efflux genes. In contrast, expression of the Gram-positive tetracycline efflux genes and some of the ribosomal protection genes appears to be regulated by attenuation of mRNA transcription. Specific tetracycline resistance genes have been identified in 32 Gram-negative and 22 Gram-positive genera. Tetracycline-resistant bacteria are found in pathogens, opportunistic and normal flora species. Tetracycline-resistant bacteria can be isolated from man, animals, food, and the environment. The nonpathogens in each of these ecosystems may play an important role as reservoirs for the antibiotic resistance genes. It is clear that if we are to reverse the trend toward increasingly antibiotic-resistant pathogenic bacteria we will need to change how antibiotics are used in both human and animal health and food production.
Collapse
Affiliation(s)
- M C Roberts
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195-7238, USA.
| |
Collapse
|
19
|
Taylor DE, Chau A. Tetracycline resistance mediated by ribosomal protection. Antimicrob Agents Chemother 1996; 40:1-5. [PMID: 8787868 PMCID: PMC163045 DOI: 10.1128/aac.40.1.1] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- D E Taylor
- Department of Medical Microbiology, University of Alberta, Edmonton, Canada.
| | | |
Collapse
|
20
|
Xia M, Pang Y, Roberts MC. Detection of two groups of 25.2 MDa Tet M plasmids by polymerase chain reaction of the downstream region. Mol Cell Probes 1995; 9:327-32. [PMID: 8569773 DOI: 10.1016/s0890-8508(95)91620-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Forty-four Neisseria gonorrhoeae, 12 N. meningitidis, four Kingella denitrificans and one Eikenella corrodens carrying 25.2 MDa Tet M plasmids were analysed using polymerase chain reaction (PCR) to the downstream region of the incomplete Tet M transposon. From each isolate, one of two different PCR fragments of approximately 700 or 1600 bp were obtained. The two different sized PCR fragments had > or = 90% DNA sequence identity with Ureaplasma urealyticum Tet M downstream sequences. The difference between the large PCR fragment and the smaller PCR fragment was a deletion of over 800 bp in the smaller fragment. Both PCR fragments were found in plasmids isolated from N. gonorrhoeae and K. denitrificans. The smaller PCR fragment was found in N. meningitidis plasmids and the larger PCR fragment was found in the E. corrodens plasmid.
Collapse
Affiliation(s)
- M Xia
- Department of Pathobiology, University of Washington, Seattle 89195, USA
| | | | | |
Collapse
|
21
|
Björk GR. Genetic dissection of synthesis and function of modified nucleosides in bacterial transfer RNA. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1995; 50:263-338. [PMID: 7538683 DOI: 10.1016/s0079-6603(08)60817-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- G R Björk
- Department of Microbiology, Umeå University, Sweden
| |
Collapse
|
22
|
Abstract
Resistance to tetracycline is generally due either to energy-dependent efflux of tetracycline or to protection of the bacterial ribosomes from the action of tetracycline. The genes that encode this resistance are normally acquired via transferable plasmids and/or transposons. Tet determinants have been found in a wide range of Gram-positive and Gram-negative bacteria and have reduced the effectiveness of therapy with tetracycline.
Collapse
Affiliation(s)
- M C Roberts
- Dept of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195
| |
Collapse
|