1
|
Ormeño-Orrillo E, Martínez-Romero E. A Genomotaxonomy View of the Bradyrhizobium Genus. Front Microbiol 2019; 10:1334. [PMID: 31263459 PMCID: PMC6585233 DOI: 10.3389/fmicb.2019.01334] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
Whole genome analysis of the Bradyrhizobium genus using average nucleotide identity (ANI) and phylogenomics showed the genus to be essentially monophyletic with seven robust groups within this taxon that includes nitrogen-fixing nodule forming bacteria as well as free living strains. Despite the wide genetic diversity of these bacteria no indication was found to suggest that the Bradyrhizobium genus have to split in different taxa. Bradyrhizobia have larger genomes than other genera of the Bradyrhizobiaceae family, probably reflecting their metabolic diversity and different lifestyles. Few plasmids in the sequenced strains were revealed from rep gene analysis and a relatively low proportion of the genome is devoted to mobile genetic elements. Sequence diversity of recA and glnII gene metadata was used to theoretically estimate the number of existing species and to predict how many would exist. There may be many more species than those presently described with predictions of around 800 species in nature. Different arguments are presented suggesting that nodulation might have arose in the ancestral genus Bradyrhizobium.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Laboratorio de Ecología Microbiana y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad Nacional Agraria La Molina, Lima, Peru
| | | |
Collapse
|
2
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
3
|
Govindasamy V, George P, Aher L, Ramesh SV, Thangasamy A, Anandan S, Raina SK, Kumar M, Rane J, Annapurna K, Minhas PS. Comparative conventional and phenomics approaches to assess symbiotic effectiveness of Bradyrhizobia strains in soybean (Glycine max L. Merrill) to drought. Sci Rep 2017; 7:6958. [PMID: 28761112 PMCID: PMC5537308 DOI: 10.1038/s41598-017-06441-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 06/13/2017] [Indexed: 11/21/2022] Open
Abstract
Symbiotic effectiveness of rhizobitoxine (Rtx)-producing strains of Bradyrhizobium spp. in soybean (cultivar NRC-37/Ahilya-4) under limited soil moisture conditions was evaluated using phenomics tools such as infrared(IR) thermal and visible imaging. Red, green and blue (RGB) colour pixels were standardized to analyse a total of 1017 IR thermal and 692 visible images. Plants inoculated with the Rtx-producing strains B. elkanii USDA-61 and USDA-94 and successive inoculation by B. diazoefficiens USDA-110 resulted in cooler canopy temperatures and increased canopy greenness. The results of the image analysis of plants inoculated with Rtx-producing strains were correlated with effective nodulation, improved photosynthesis, plant nitrogen status and yield parameters. Principal component analysis (PCA) revealed the reliability of the phenomics approach over conventional destructive approaches in assessing the symbiotic effectiveness of Bradyrhizobium strains in soybean plants under watered (87.41-89.96%) and water-stressed (90.54-94.21%) conditions. Multivariate cluster analysis (MCA) revealed two distinct clusters denoting effective (Rtx) and ineffective (non-Rtx) Bradyrhizobium inoculation treatments in soybean. Furthermore, correlation analysis showed that this phenotyping approach is a dependable alternative for screening drought tolerant genotypes or drought resilience symbiosis. This is the first report on the application of non-invasive phenomics techniques, particularly RGB-based image analysis, in assessing plant-microbe symbiotic interactions to impart abiotic stress tolerance.
Collapse
Affiliation(s)
- Venkadasamy Govindasamy
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India.
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Priya George
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| | - Lalitkumar Aher
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| | - Shunmugiah V Ramesh
- ICAR-Indian Institute of Soybean Research, Indore, 452001, Madhya Pradesh, India
| | - Arunachalam Thangasamy
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, Maharashtra, India
| | - Sivalingam Anandan
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, Maharashtra, India
| | - Susheel Kumar Raina
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
- ICAR-Central Institute of Temperate Horticulture, Srinagar, 190007, Jammu and Kashmir, India
| | - Mahesh Kumar
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| | - Jagadish Rane
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| | - Kannepalli Annapurna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Paramjit Singh Minhas
- School of Drought Stress Management, ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, 413115, Maharashtra, India
| |
Collapse
|
4
|
Huyop F, Cooper R. Degradation of Millimolar Concentration of the Herbicide Dalapon (2,2-Dichloropropionic Acid) byRhizobiumSp. Isolated from Soil. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2012.0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
The tRNAarg gene and engA are essential genes on the 1.7-Mb pSymB megaplasmid of Sinorhizobium meliloti and were translocated together from the chromosome in an ancestral strain. J Bacteriol 2012; 195:202-12. [PMID: 23123907 DOI: 10.1128/jb.01758-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial genomes with two (or more) chromosome-like replicons are known, and these appear to be particularly frequent in alphaproteobacteria. The genome of the N(2)-fixing alfalfa symbiont Sinorhizobium meliloti 1021 contains a 3.7-Mb chromosome and 1.4-Mb (pSymA) and 1.7-Mb (pSymB) megaplasmids. In this study, the tRNA(arg) and engA genes, located on the pSymB megaplasmid, are shown to be essential for growth. These genes could be deleted from pSymB when copies were previously integrated into the chromosome. However, in the closely related strain Sinorhizobium fredii NGR234, the tRNA(arg) and engA genes are located on the chromosome, in a 69-kb region designated the engA-tRNA(arg)-rmlC region. This region includes bacA, a gene that is important for intracellular survival during host-bacterium interactions for S. meliloti and the related alphaproteobacterium Brucella abortus. The engA-tRNA(arg)-rmlC region lies between the kdgK and dppF2 (NGR_c24410) genes on the S. fredii chromosome. Synteny analysis showed that kdgK and dppF2 orthologues are adjacent to each other on the chromosomes of 15 sequenced strains of S. meliloti and Sinorhizobium medicae, whereas the 69-kb engA-tRNA(arg)-rmlC region is present on the pSymB-equivalent megaplasmids. This and other evidence strongly suggests that the engA-tRNA(arg)-rmlC region translocated from the chromosome to the progenitor of pSymB in an ancestor common to S. meliloti and S. medicae. To our knowledge, this work represents one of the first experimental demonstrations that essential genes are present on a megaplasmid.
Collapse
|
6
|
|
7
|
Madhugiri R, Pessi G, Voss B, Hahn J, Sharma CM, Reinhardt R, Vogel J, Hess WR, Fischer HM, Evguenieva-Hackenberg E. Small RNAs of the Bradyrhizobium/Rhodopseudomonas lineage and their analysis. RNA Biol 2012; 9:47-58. [PMID: 22258152 DOI: 10.4161/rna.9.1.18008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Small RNAs (sRNAs) play a pivotal role in bacterial gene regulation. However, the sRNAs of the vast majority of bacteria with sequenced genomes still remain unknown since sRNA genes are usually difficult to recognize and thus not annotated. Here, expression of seven sRNAs (BjrC2a, BjrC2b, BjrC2c, BjrC68, BjrC80, BjrC174 and BjrC1505) predicted by genome comparison of Bradyrhizobium and Rhodopseudomonas members, was verified by RNA gel blot hybridization, microarray and deep sequencing analyses of RNA from the soybean symbiont Bradyrhizobium japonicum USDA 110. BjrC2a, BjrC2b and BjrC2c belong to the RNA family RF00519, while the other sRNAs are novel. For some of the sRNAs we observed expression differences between free-living bacteria and bacteroids in root nodules. The amount of BjrC1505 was decreased in nodules. By contrast, the amount of BjrC2a, BjrC68, BjrC80, BjrC174 and the previously described 6S RNA was increased in nodules, and accumulation of truncated forms of these sRNAs was observed. Comparative genomics and deep sequencing suggest that BjrC2a is an antisense RNA regulating the expression of inositol-monophosphatase. The analyzed sRNAs show a different degree of conservation in Rhizobiales, and expression of homologs of BjrC2, BjrC68, BjrC1505, and 6S RNA was confirmed in the free-living purple bacterium Rhodopseudomonas palustris 5D.
Collapse
MESH Headings
- Bradyrhizobium/enzymology
- Bradyrhizobium/genetics
- Bradyrhizobium/metabolism
- Computational Biology
- Culture Media/metabolism
- Databases, Genetic
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Genome, Bacterial
- High-Throughput Nucleotide Sequencing/methods
- Oligonucleotide Array Sequence Analysis
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/metabolism
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Untranslated
- Rhodopseudomonas/enzymology
- Rhodopseudomonas/genetics
- Rhodopseudomonas/metabolism
- Root Nodules, Plant/genetics
- Root Nodules, Plant/metabolism
- Root Nodules, Plant/microbiology
- Glycine max/microbiology
- Symbiosis
Collapse
|
8
|
Orozco-Mosqueda MDC, Altamirano-Hernandez J, Farias-Rodriguez R, Valencia-Cantero E, Santoyo G. Homologous recombination and dynamics of rhizobial genomes. Res Microbiol 2009; 160:733-41. [DOI: 10.1016/j.resmic.2009.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/17/2009] [Accepted: 09/21/2009] [Indexed: 10/20/2022]
|
9
|
Wei M, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, Tabata S, Saeki K, Omori H, Tajima S, Uchiumi T, Abe M, Ohwada T. Soybean seed extracts preferentially express genomic loci of Bradyrhizobium japonicum in the initial interaction with soybean, Glycine max (L.) Merr. DNA Res 2008; 15:201-14. [PMID: 18511436 PMCID: PMC2575884 DOI: 10.1093/dnares/dsn012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 05/02/2008] [Indexed: 11/12/2022] Open
Abstract
Initial interaction between rhizobia and legumes actually starts via encounters of both partners in the rhizosphere. In this study, the global expression profiles of Bradyrhizobium japonicum USDA 110 in response to soybean (Glycine max) seed extracts (SSE) and genistein, a major soybean-released isoflavone for nod genes induction of B. japonicum, were compared. SSE induced many genomic loci as compared with genistein (5.0 microM), nevertheless SSE-supplemented medium contained 4.7 microM genistein. SSE markedly induced four predominant genomic regions within a large symbiosis island (681 kb), which include tts genes (type III secretion system) and various nod genes. In addition, SSE-treated cells expressed many genomic loci containing genes for polygalacturonase (cell-wall degradation), exopolysaccharide synthesis, 1-aminocyclopropane-1-carboxylate deaminase, ribosome proteins family and energy metabolism even outside symbiosis island. On the other hand, genistein-treated cells exclusively showed one expression cluster including common nod gene operon within symbiosis island and six expression loci including multidrug resistance, which were shared with SSE-treated cells. Twelve putatively regulated genes were indeed validated by quantitative RT-PCR. Several SSE-induced genomic loci likely participate in the initial interaction with legumes. Thus, these results can provide a basic knowledge for screening novel genes relevant to the B. japonicum- soybean symbiosis.
Collapse
Affiliation(s)
- Min Wei
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Tadashi Yokoyama
- Tokyo University of Agriculture and Technology, Saiwai-cho, Fuchu 183-8509, Tokyo, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Manabu Itakura
- Graduate School of Life Science, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Chiba 292-0812, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Chiba 292-0812, Japan
| | - Kazuhiko Saeki
- Department of Biological Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| | - Hirofumi Omori
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Shigeyuki Tajima
- Department of Life Science, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Toshiki Uchiumi
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | - Mikiko Abe
- Department of Chemistry and Bioscience, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan
| | - Takuji Ohwada
- Department of Agricultural and Life Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
10
|
Barcellos FG, Menna P, da Silva Batista JS, Hungria M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 2007; 73:2635-43. [PMID: 17308185 PMCID: PMC1855619 DOI: 10.1128/aem.01823-06] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Accepted: 02/04/2007] [Indexed: 11/20/2022] Open
Abstract
The importance of horizontal gene transfer (HGT) in the evolution and speciation of bacteria has been emphasized; however, most studies have focused on genes clustered in pathogenesis and very few on symbiosis islands. Both soybean (Glycine max [L.] Merrill) and compatible Bradyrhizobium japonicum and Bradyrhizobium elkanii strains are exotic to Brazil and have been massively introduced in the country since the early 1960s, occupying today about 45% of the cropped land. For the past 10 years, our group has obtained several isolates showing high diversity in morphological, physiological, genetic, and symbiotic properties in relation to the putative parental inoculant strains. In this study, parental strains and putative natural variants isolated from field-grown soybean nodules were genetically characterized in relation to conserved genes (by repetitive extragenic palindromic PCR using REP and BOX A1R primers, PCR-restriction fragment length polymorphism, and sequencing of the 16SrRNA genes), nodulation, and N(2)-fixation genes (PCR-RFLP and sequencing of nodY-nodA, nodC, and nifH genes). Both genetic variability due to adaptation to the stressful environmental conditions of the Brazilian Cerrados and HGT events were confirmed. One strain (S 127) was identified as an indigenous B. elkanii strain that acquired a nodC gene from the inoculant B. japonicum. Another one (CPAC 402) was identified as an indigenous Sinorhizobium (Ensifer) fredii strain that received the whole symbiotic island from the B. japonicum inoculant strain and maintained an extra copy of the original nifH gene. The results highlight the strategies that bacteria may commonly use to obtain ecological advantages, such as the acquisition of genes to establish effective symbioses with an exotic host legume.
Collapse
MESH Headings
- Bradyrhizobium/genetics
- Bradyrhizobium/isolation & purification
- Brazil
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Gene Transfer, Horizontal
- Genes, Bacterial
- Genes, rRNA/genetics
- Genomic Islands
- Molecular Sequence Data
- Nitrogen Fixation/genetics
- Phylogeny
- Plant Roots/microbiology
- Polymerase Chain Reaction
- Polymorphism, Restriction Fragment Length
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Homology, Nucleic Acid
- Sinorhizobium fredii/genetics
- Sinorhizobium fredii/isolation & purification
- Soil Microbiology
- Glycine max/microbiology
- Symbiosis/genetics
Collapse
|
11
|
Sarma AD, Emerich DW. A comparative proteomic evaluation of culture grownvs nodule isolatedBradyrhizobium japonicum. Proteomics 2006; 6:3008-28. [PMID: 16688787 DOI: 10.1002/pmic.200500783] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Total protein extract of Bradyrhizobium japonicum cultivated in HM media were resolved by 2-D PAGE using narrow range IPG strips. More than 1200 proteins were detected, of which nearly 500 proteins were analysed by MALDI-TOF and 310 spots were tentatively identified. The present study describes at the proteome level a significant number of metabolic pathways related to important cellular events in free-living B. japonicum. A comparative analysis of proteomes of free-living and nodule residing bacteria revealed major differences and similarities between the two states. Proteins related to fatty acid, nucleic acid and cell surface synthesis were significantly higher in cultured cells. Nitrogen metabolism was more pronounced in bacteroids whereas carbon metabolism was similar in both states. Relative percentage of proteins related to global functions like protein synthesis, maturation & degradation and membrane transporters were similar in both forms, however, different proteins provided these functions in the two states.
Collapse
Affiliation(s)
- Annamraju D Sarma
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
12
|
Sarma AD, Emerich DW. Global protein expression pattern of Bradyrhizobium japonicum bacteroids: a prelude to functional proteomics. Proteomics 2005; 5:4170-84. [PMID: 16254929 DOI: 10.1002/pmic.200401296] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
As a prelude to using functional proteomics towards understanding the process of symbiotic nitrogen fixation between the legume soybean and the soil bacteria Bradyrhizobium japonicum, we examined the total protein expression pattern of the nodule bacteria, often referred to as bacteroids. A partial proteome map was constructed by separating the total bacteroid proteins using high-resolution 2-DE. Of the several hundred protein spots analyzed using PMF, 180 spots were tentatively identified by searching the available database for B. japonicum, (http://www.kazusa.or.jp/index.html). The data showed that the bacteroid expressed a dominant and elaborate protein network for nitrogen and carbon metabolism, which is closely dependent on the plant supplied metabolites, and seems aptly supported by a selective group of bacteroid transporter proteins. However, they seem to lack a defined fatty acid and nucleic acid metabolism. Interestingly, the proteins related to protein synthesis, scaffolding and degradation were among the most predominant spots of the bacteroid proteome. In addition, several proteins, which showed fairly good expression, were identified to be involved with cellular detoxification, stress regulation and signaling communication components. This preliminary proteomic data matches very well with several biochemical and genetic reports, and clearly shows the inter-connection between several metabolic pathways that meet the needs of the bacteroid. It is expected that in the future this will allow us to develop testable hypotheses about the roles of several of these proteins in context to the metabolic pathway connections and metabolite fluxes.
Collapse
Affiliation(s)
- Annamraju D Sarma
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
13
|
Teyssier C, Marchandin H, Jumas-Bilak E. [The genome of alpha-proteobacteria : complexity, reduction, diversity and fluidity]. Can J Microbiol 2004; 50:383-96. [PMID: 15284884 DOI: 10.1139/w04-033] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The alpha-proteobacteria displayed diverse and often unconventional life-styles. In particular, they keep close relationships with the eucaryotic cell. Their genomic organization is often atypical. Indeed, complex genomes, with two or more chromosomes that could be linear and sometimes associated with plasmids larger than one megabase, have been described. Moreover, polymorphism in genome size and topology as well as in replicon number was observed among very related bacteria, even in a same species. Alpha-proteobacteria provide a good model to study the reductive evolution, the role and origin of multiple chromosomes, and the genomic fluidity. The amount of new data harvested in the last decade should lead us to better understand emergence of bacterial life-styles and to build the conceptual basis to improve the definition of the bacterial species.
Collapse
Affiliation(s)
- Corinne Teyssier
- Laboratoire de bactériologie, Faculté de pharmacie, Montpellier CEDEX 5, France
| | | | | |
Collapse
|
14
|
Caldelari Baumberger I, Fraefel N, Göttfert M, Hennecke H. New NodW- or NifA-regulated Bradyrhizobium japonicum genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:342-351. [PMID: 12744463 DOI: 10.1094/mpmi.2003.16.4.342] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A cluster of genes coding for putative plant cell-wall degrading enzymes (i.e., genes for two endoglucanases [gunA and gunA2], one pectinmethylesterase [pme], and one polygalacturonase [pgl]) was identified by sequence similarities in the symbiotic region of the Bradyrhizobium japonicum chromosome. In addition, a systematic screen of the region revealed several genes potentially transcribed by the sigma(54)-RNA polymerase and activated by the transcriptional regulator NifA (i.e., genes for proteins with similarity to outer membrane proteins [id117 and id525] and a citrate carrier [id331 or citA] and one open reading frame without similarity to known proteins [id747]). Expression studies using transcriptional lacZ fusions showed that gunA2 and pgl were strongly induced by the isoflavone genistein in a NodW-dependent manner, suggesting a role of the gene products in early events of the nodulation process; by contrast, gunA and pme expression was very weak in the conditions tested. The gunA2 gene product was purified and was shown to have cellulase activity. beta-Galactosidase activity expressed from transcriptional lacZ fusions to id117, id525, and id747 in the wild type and in nifA and rpoN mutant backgrounds confirmed that their transcription was dependent on NifA and sigma(54). Despite the presence of a -24/-12-type promoter and a NifA binding site upstream of citA, no regulation could be demonstrated in this case. Null mutations introduced in gunA, gunA2, pgl, pme, citA, id117, id525, and id747 did not impair the symbiosis with the host plants.
Collapse
|
15
|
Abstract
We present models describing the acquisition and deletion of novel sequences in populations of microorganisms. We infer that most novel sequences are neutral. Thus, sequence duplications and gene transfer between organisms sharing the same environment are rarely expected to generate adaptive functions. Two classes of models are considered: (1) a homogeneous population with constant size, and (2) an island model in which the population is subdivided into patches that are in contact through slow migration. Distributions of gene frequencies are derived in a Moran model with overlapping generations. We find that novel, neutral or near-neutral coding sequences in microorganisms will not be fixed globally because they offer large target sizes for mutations and because the populations are so large. At most, such genes may have a transient presence in only a small fraction of the population. Consequently, a microbial population is expected to have a very large diversity of transient neutral gene content. Only sequences that are under strong selection, globally or in individual patches, can be expected to persist. We suggest that genome size is maintained in microorganisms by a quasi-steady state mechanism in which random fluctuations in the effective acquisition and deletion rates result in genome sizes that vary from patch to patch. We assign the genomic identity of a global population to those genes that are required for the participation of patches in the genetic sweeps that maintain the genomic coherence of the population. In contrast, we stress the influence of sequence loss on the isolation and the divergence (speciation) of novel patches from a global population.
Collapse
Affiliation(s)
- Otto G Berg
- Department of Molecular Evolution, Uppsala University EBC, Norbyvagen 18C, SE-75236 Uppsala, Sweden.
| | | |
Collapse
|
16
|
Mesa S, Velasco L, Manzanera ME, Delgado MAJ, Bedmar EJ. Characterization of the norCBQD genes, encoding nitric oxide reductase, in the nitrogen fixing bacterium Bradyrhizobium japonicum. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3553-3560. [PMID: 12427946 DOI: 10.1099/00221287-148-11-3553] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The genes norCBQD that encode the bc-type nitric oxide reductase from Bradyrhizobium japonicum USDA110 have been isolated and characterized. norC and norB encode the cytochrome c-containing subunit II and cytochrome b-containing subunit I of nitric oxide reductase, respectively. norQ encodes a protein with an ATP/GTP-binding motif, and the predicted norD gene product shows similarity with NorD from other denitrifiers. Mutational analysis indicates that the two structural norC and norB genes are required for microaerobic growth under nitrate-respiring conditions. A mutant strain lacking a functional norC gene also lacked the 16 kDa c-type cytochrome that is normally detectable by haem-staining of proteins from membranes of microaerobically grown wild-type cells. Expression of a transcriptional fusion of the nor promoter region to the reporter gene lacZ (P(norC)-lacZ) was not detected in aerobically grown cells of USDA110, but the fusion was induced threefold when the cells were cultured under microaerobic conditions (1% O(2)) with either nitrite or nitric oxide, and about 18-fold when nitrate was the N oxide present in the medium. The P(norC)-lacZ fusion was not expressed in the B. japonicum fixK(2) mutant strain 9043, but complementation of the mutant with the fixK(2) gene restored beta-galactosidase activity to levels similar to those found in the parental strain. The promoter region of the norCBQD genes has been characterized by primer extension. A major transcript initiates 45.5 bp downstream of the centre of a putative binding site for the transcription factor FixK(2).
Collapse
Affiliation(s)
- Socorro Mesa
- Departamento de Microbiologı́a del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidı́n, CSIC, E-18080 Granada, Spain1
| | - Leonardo Velasco
- Centro de Investigación y Formación Hortı́cola.E-04700 El Ejido, Almerı́a, Spain2
| | - Maximino E Manzanera
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK3
| | - Marı A J Delgado
- Departamento de Microbiologı́a del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidı́n, CSIC, E-18080 Granada, Spain1
| | - Eulogio J Bedmar
- Departamento de Microbiologı́a del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidı́n, CSIC, E-18080 Granada, Spain1
| |
Collapse
|
17
|
Parker MA, Lafay B, Burdon JJ, van Berkum P. Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2557-2565. [PMID: 12177349 DOI: 10.1099/00221287-148-8-2557] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Major differences in evolutionary relationships of the 16S rRNA gene and the nitrogenase alpha-subunit gene (nifD) were observed among 38 strains of Bradyrhizobium sp. nodule bacteria from North America, Central America, Asia and Australia. Two lineages were evident in the 16S rRNA phylogeny representing strains related to Bradyrhizobium japonicum (29 isolates) or Bradyrhizobium elkanii (9 isolates). Both clades were distributed across most or all of the geographic regions sampled. By contrast, in the nifD tree almost all isolates were placed into one of three groups each exclusively composed of taxa from a single geographic region (North Temperate, Central America or Australia). Isolates that were closely related or identical in gene sequence at one locus often had divergent sequences at the other locus and a partition homogeneity test indicated that the 16S rRNA and nifD phylogenies were significantly incongruent. No evidence for any gene duplication of nifD was found by Southern hybridization analysis on a subset of the strains, so unrecognized paralogy is not likely to be responsible for the discrepancy between 16S rRNA and nifD tree topologies. These results are consistent with a model whereby geographic areas were initially colonized by several diverse 16S rRNA lineages, with subsequent horizontal gene transfer of nifD leading to increased nifD sequence homogeneity within each regional population.
Collapse
Affiliation(s)
- Matthew A Parker
- Department of Biological Sciences, State University of New York, Binghamton, NY 13902, USA1
| | - Benedicte Lafay
- Centre for Plant Biodiversity Research, CSIRO Plant Industry, Canberra ACT 2601, Australia2
| | - Jeremy J Burdon
- Centre for Plant Biodiversity Research, CSIRO Plant Industry, Canberra ACT 2601, Australia2
| | - Peter van Berkum
- Soybean and Alfalfa Research Laboratory, USDA, ARS, HH-4, Bldg010, BARC-West, 10300 Baltimore Blvd, Beltsville, MD 20705, USA3
| |
Collapse
|
18
|
Yasuta T, Okazaki S, Mitsui H, Yuhashi K, Ezura H, Minamisawa K. DNA sequence and mutational analysis of rhizobitoxine biosynthesis genes in Bradyrhizobium elkanii. Appl Environ Microbiol 2001; 67:4999-5009. [PMID: 11679318 PMCID: PMC93263 DOI: 10.1128/aem.67.11.4999-5009.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We cloned and sequenced a cluster of genes involved in the biosynthesis of rhizobitoxine, a nodulation enhancer produced by Bradyrhizobium elkanii. The nucleotide sequence of the cloned 28.4-kb DNA region encompassing rtxA showed that several open reading frames (ORFs) were located downstream of rtxA. A large-deletion mutant of B. elkanii, USDA94 Delta rtx::Omega 1, which lacks rtxA, ORF1 (rtxC), ORF2, and ORF3, did not produce rhizobitoxine, dihydrorhizobitoxine, or serinol. The broad-host-range cosmid pLAFR1, which contains rtxA and these ORFs, complemented rhizobitoxine production in USDA94 Delta rtx::Omega 1. Further complementation experiments involving cosmid derivatives obtained by random mutagenesis with a kanamycin cassette revealed that at least rtxA and rtxC are necessary for rhizobitoxine production. Insertional mutagenesis of the N-terminal and C-terminal regions of rtxA indicated that rtxA is responsible for two crucial steps, serinol formation and dihydrorhizobitoxine biosynthesis. An insertional mutant of rtxC produced serinol and dihydrorhizobitoxine but no rhizobitoxine. Moreover, the rtxC product was highly homologous to the fatty acid desaturase of Pseudomonas syringae and included the copper-binding signature and eight histidine residues conserved in membrane-bound desaturase. This result suggested that rtxC encodes dihydrorhizobitoxine desaturase for the final step of rhizobitoxine production. In light of results from DNA sequence comparison, gene disruption experiments, and dihydrorhizobitoxine production from various substrates, we discuss the biosynthetic pathway of rhizobitoxine and its evolutionary significance in bradyrhizobia.
Collapse
Affiliation(s)
- T Yasuta
- Institute of Genetic Ecology, Tohoku University, Katahira, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Barnett MJ, Fisher RF, Jones T, Komp C, Abola AP, Barloy-Hubler F, Bowser L, Capela D, Galibert F, Gouzy J, Gurjal M, Hong A, Huizar L, Hyman RW, Kahn D, Kahn ML, Kalman S, Keating DH, Palm C, Peck MC, Surzycki R, Wells DH, Yeh KC, Davis RW, Federspiel NA, Long SR. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci U S A 2001; 98:9883-8. [PMID: 11481432 PMCID: PMC55547 DOI: 10.1073/pnas.161294798] [Citation(s) in RCA: 208] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The symbiotic nitrogen-fixing soil bacterium Sinorhizobium meliloti contains three replicons: pSymA, pSymB, and the chromosome. We report here the complete 1,354,226-nt sequence of pSymA. In addition to a large fraction of the genes known to be specifically involved in symbiosis, pSymA contains genes likely to be involved in nitrogen and carbon metabolism, transport, stress, and resistance responses, and other functions that give S. meliloti an advantage in its specialized niche.
Collapse
Affiliation(s)
- M J Barnett
- Department of Biological Sciences, and Howard Hughes Medical Institute, Stanford University, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tomkins JP, Wood TC, Stacey MG, Loh JT, Judd A, Goicoechea JL, Stacey G, Sadowsky MJ, Wing RA. A marker-dense physical map of the Bradyrhizobium japonicum genome. Genome Res 2001; 11:1434-40. [PMID: 11483585 PMCID: PMC311109 DOI: 10.1101/gr.185001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Bacterial artificial chromosome (BAC) clones are effective mapping and sequencing reagents for use with a wide variety of small and large genomes. This report describes the development of a physical framework for the genome of Bradyrhizobium japonicum, the nitrogen-fixing symbiont of soybean. A BAC library for B. japonicum was constructed that provides a 77-fold genome coverage based on an estimated genome size of 8.7 Mb. The library contains 4608 clones with an average insert size of 146 kb. To generate a physical map, the entire library was fingerprinted with HindIII, and the fingerprinted clones were assembled into contigs using the software (; Sanger Centre, UK). The analysis placed 3410 clones in six large contigs. The ends of 1152 BAC inserts were sequenced to generate a sequence-tagged connector (STC) framework. To join and orient the contigs, high-density BAC colony filters were probed with 41 known gene probes and 17 end sequences from contig boundaries. STC sequences were searched against the public databases using and algorithms. Query results allowed the identification of 113 high probability matches with putative functional identities that were placed on the physical map. Combined with the hybridization data, a high-resolution physical map with 194 positioned markers represented in two large contigs was developed, providing a marker every 45 kb. Of these markers, 177 are known or putative B. japonicum genes. Additionally, 1338 significant results (E < 10(-4)) were manually sorted by function to produce a functionally categorized database of relevant B. japonicum STC sequences that can also be traced to specific locations in the physical map.
Collapse
Affiliation(s)
- J P Tomkins
- Clemson University Genomics Institute, Clemson, South Carolina 29634, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Perret X, Parsons J, Viprey V, Reichwald K, Broughton WJ. Séquences répétées des génomes de Rhizobium sp. NGR234 et Sinorhizobium meliloti : une analyse comparative par séquençage aléatoire. Can J Microbiol 2001. [DOI: 10.1139/w01-031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Amongst prokaryotic genomes, those of nitrogen-fixing members of the Rhizobiaceae family are relatively large (69 Mb), often include mega-plasmids of 1.52 Mb, and contain numerous families of repeated DNA sequences. Although most essential nodulation and nitrogen fixation genes are well characterized, these represent only a small fraction of the DNA content. Little is known about the detailed structure of rhizobial genomes. With the development of sequencing techniques and new bio-informatic tools such studies become possible, however. Using the 2275 shot-gun sequences of ANU265 (a derivative of NGR234 cured of pNGR234a), we have identified numerous families of repeats. Amongst these, the 58-bp-long NGRREP-4 represents the third most abundant DNA sequence after the RIME1 and RIME2 repeats, all of which are also found in Sinorhizobium meliloti. Surprisingly, studies on the distribution of these elements showed that in proportion to its size, the chromosome of NGR234 carries many more RIME modules than pNGR234a or pNGR234b. Together with the presence in NGR234 and S. meliloti 1021 of an insertion sequence (IS) element more conserved than essential nodulation and nitrogen fixation genes, these results give new insights into the origin and evolution of rhizobial genomes.Key words: shot-gun, repeats, BIME.
Collapse
|
22
|
Sun LV, Foster JM, Tzertzinis G, Ono M, Bandi C, Slatko BE, O'Neill SL. Determination of Wolbachia genome size by pulsed-field gel electrophoresis. J Bacteriol 2001; 183:2219-25. [PMID: 11244060 PMCID: PMC95127 DOI: 10.1128/jb.183.7.2219-2225.2001] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2000] [Accepted: 01/08/2001] [Indexed: 11/20/2022] Open
Abstract
Genome sizes of six different Wolbachia strains from insect and nematode hosts have been determined by pulsed-field gel electrophoresis of purified DNA both before and after digestion with rare-cutting restriction endonucleases. Enzymes SmaI, ApaI, AscI, and FseI cleaved the studied Wolbachia strains at a small number of sites and were used for the determination of the genome sizes of wMelPop, wMel, and wMelCS (each 1.36 Mb), wRi (1.66 Mb), wBma (1.1 Mb), and wDim (0.95 Mb). The Wolbachia genomes studied were all much smaller than the genomes of free-living bacteria such as Escherichia coli (4.7 Mb), as is typical for obligate intracellular bacteria. There was considerable genome size variability among Wolbachia strains, especially between the more parasitic A group Wolbachia infections of insects and the mutualistic C and D group infections of nematodes. The studies described here found no evidence for extrachromosomal plasmid DNA in any of the strains examined. They also indicated that the Wolbachia genome is circular.
Collapse
Affiliation(s)
- L V Sun
- Section of Vector Biology, Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Fischer HM, Velasco L, Delgado MJ, Bedmar EJ, Schären S, Zingg D, Göttfert M, Hennecke H. One of two hemN genes in Bradyrhizobium japonicum is functional during anaerobic growth and in symbiosis. J Bacteriol 2001; 183:1300-11. [PMID: 11157943 PMCID: PMC95004 DOI: 10.1128/jb.183.4.1300-1311.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we screened the symbiotic gene region of the Bradyrhizobium japonicum chromosome for new NifA-dependent genes by competitive DNA-RNA hybridization (A. Nienaber, A. Huber, M. Göttfert, H. Hennecke, and H. M. Fischer, J. Bacteriol. 182:1472-1480, 2000). Here we report more details on one of the genes identified, a hemN-like gene (now called hemN(1)) whose product exhibits significant similarity to oxygen-independent coproporphyrinogen III dehydrogenases involved in heme biosynthesis in facultatively anaerobic bacteria. In the course of these studies, we discovered that B. japonicum possesses a second hemN-like gene (hemN(2)), which was then cloned by using hemN(1) as a probe. The hemN(2) gene maps outside of the symbiotic gene region; it is located 1.5 kb upstream of nirK, the gene for a Cu-containing nitrite reductase. The two deduced HemN proteins are similar in size (445 and 450 amino acids for HemN(1) and HemN(2), respectively) and share 53% identical (68% similar) amino acids. Expression of both hemN genes was monitored with the help of chromosomally integrated translational lacZ fusions. No significant expression of either gene was detected in aerobically grown cells, whereas both genes were strongly induced (> or = 20-fold) under microaerobic or anaerobic conditions. Induction was in both cases dependent on the transcriptional activator protein FixK(2). In addition, maximal anaerobic hemN(1) expression was partially dependent on NifA, which explains why this gene had been identified by the competitive DNA-RNA hybridization approach. Strains were constructed carrying null mutations either in individual hemN genes or simultaneously in both genes. All mutants showed normal growth in rich medium under aerobic conditions. Unlike the hemN(1) mutant, strains lacking a functional hemN(2) gene were unable to grow anaerobically under nitrate-respiring conditions and largely failed to fix nitrogen in symbiosis with the soybean host plant. Moreover, these mutants lacked several c-type cytochromes which are normally detectable by heme staining of proteins from anaerobically grown wild-type cells. Taken together, our results revealed that B. japonicum hemN(2), but not hemN(1), encodes a protein that is functional under the conditions tested, and this conclusion was further corroborated by the successful complementation of a Salmonella enterica serovar Typhimurium hemF hemN mutant with hemN(2) only.
Collapse
Affiliation(s)
- H M Fischer
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Göttfert M, Röthlisberger S, Kündig C, Beck C, Marty R, Hennecke H. Potential symbiosis-specific genes uncovered by sequencing a 410-kilobase DNA region of the Bradyrhizobium japonicum chromosome. J Bacteriol 2001; 183:1405-12. [PMID: 11157954 PMCID: PMC95015 DOI: 10.1128/jb.183.4.1405-1412.2001] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The physical and genetic map of the Bradyrhizobium japonicum chromosome revealed that nitrogen fixation and nodulation genes are clustered. Because of the complex interactions between the bacterium and the plant, we expected this chromosomal sector to contain additional genes that are involved in the maintenance of an efficient symbiosis. Therefore, we determined the nucleotide sequence of a 410-kb region. The overall G+C nucleotide content was 59.1%. Using a minimum gene length of 150 nucleotides, 388 open reading frames (ORFs) were selected as coding regions. Thirty-five percent of the predicted proteins showed similarity to proteins of rhizobia. Sixteen percent were similar only to proteins of other bacteria. No database match was found for 29%. Repetitive DNA sequence-derived ORFs accounted for the rest. The sequenced region contained all nitrogen fixation genes and, apart from nodM, all nodulation genes that were known to exist in B. japonicum. We found several genes that seem to encode transport systems for ferric citrate, molybdate, or carbon sources. Some of them are preceded by -24/-12 promoter elements. A number of putative outer membrane proteins and cell wall-modifying enzymes as well as a type III secretion system might be involved in the interaction with the host.
Collapse
Affiliation(s)
- M Göttfert
- Institut für Genetik, Technische Universität Dresden, D-01062 Dresden, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral alpha-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from alpha-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the ancestral host of the alpha-proteobacterial endosymbiont is unclear, but there is no indication that it was an autotroph. There are no indications of a specific alpha-proteobacterial origin to genes for glycolysis. In the absence of data to the contrary, it is assumed that the ancestral host cell was a heterotroph.
Collapse
Affiliation(s)
- C G Kurland
- Department of Molecular Evolution, Evolutionary Biology Centre, University of Uppsala, Uppsala SE 752 36, Lund University, Lund SE 223 62, Sweden.
| | | |
Collapse
|
26
|
Martin-Didonet CC, Chubatsu LS, Souza EM, Kleina M, Rego FG, Rigo LU, Yates MG, Pedrosa FO. Genome structure of the genus Azospirillum. J Bacteriol 2000; 182:4113-6. [PMID: 10869094 PMCID: PMC94601 DOI: 10.1128/jb.182.14.4113-4116.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Azospirillum species are plant-associated diazotrophs of the alpha subclass of Proteobacteria. The genomes of five of the six Azospirillum species were analyzed by pulsed-field gel electrophoresis. All strains possessed several megareplicons, some probably linear, and 16S ribosomal DNA hybridization indicated multiple chromosomes in genomes ranging in size from 4.8 to 9.7 Mbp. The nifHDK operon was identified in the largest replicon.
Collapse
Affiliation(s)
- C C Martin-Didonet
- Departamento de Bioquímica, Universidade Federal do Paraná, CEP-81531-990, Curitiba-PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
A very small fraction of the proteins required for the propagation and function of mitochondria are coded by their genomes, while nuclear genes code the vast majority. We studied the migration of genes between the two genomes when transfer mechanisms mediate this exchange. We could calculate the influence of differential mutation rates, as well as that of biased transfer rates, on the partitioning of genes between the two genomes. We observe no significant difference in partitioning for haploid and diploid cell populations, but the effective size of cell populations is important. For infinitely large effective populations, higher mutation rates in mitochondria than in nuclear genomes are required to drive mitochondrial genes to the nuclear genome. In the more realistic case of finite populations, gene transfer favoring the nucleus and/or higher mutation rates in the mitochondrion will drive mitochondrial genes to the nucleus. We summarize experimental data that identify a gene transfer process mediated by vacuoles that favors the accumulation of mitochondrial genes in the nuclei of modern cells. Finally, we compare the behavior of mitochondrial genes for which transfer to the nucleus is neutral or influenced by purifying selection.
Collapse
Affiliation(s)
- O G Berg
- Department of Molecular Evolution, Uppsala University Evolutionary Biology Centre, Uppsala, Sweden.
| | | |
Collapse
|
28
|
Amador E, Martín JF, Castro JM. A Brevibacterium lactofermentum 16S rRNA gene used as target site for homologous recombination. FEMS Microbiol Lett 2000; 185:199-204. [PMID: 10754248 DOI: 10.1111/j.1574-6968.2000.tb09062.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genes for rRNA are highly conserved and present in multiple copies in most prokaryotic organisms increasing the number of theoretical sites for homologous recombination. They might be targets for integration events between unrelated microorganisms providing that an efficient genetic transfer is present. We have used a plasmid containing a portion of the 16S rRNA gene from the rrnD operon of Brevibacterium lactofermentum to transform the same strain resulting in non-essential inactivation of various rrn operons. Integration of the transforming DNA occurs in all cases. The system may be used to test possible gene transfer at least among closely related strains and is of great interest for integration of foreign DNA and for mapping.
Collapse
Affiliation(s)
- E Amador
- Area of Microbiology, Department of Ecology, Genetics and Microbiology, Biology Faculty, University of León, 24071, León, Spain
| | | | | |
Collapse
|
29
|
Nienaber A, Huber A, Göttfert M, Hennecke H, Fischer HM. Three new NifA-regulated genes in the Bradyrhizobium japonicum symbiotic gene region discovered by competitive DNA-RNA hybridization. J Bacteriol 2000; 182:1472-80. [PMID: 10692350 PMCID: PMC94442 DOI: 10.1128/jb.182.6.1472-1480.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The so-called symbiotic region of the Bradyrhizobium japonicum chromosome (C. Kündig, H. Hennecke, and M. Göttfert, J. Bacteriol. 175:613-622, 1993) was screened for the presence of genes controlled by the nitrogen fixation regulatory protein NifA. Southern blots of restriction enzyme-digested cosmids that represent an ordered, overlapping library of the symbiotic region were competitively hybridized with in vitro-labeled RNA from anaerobically grown wild-type cells and an excess of RNA isolated either from anaerobically grown nifA and rpoN mutant cells or from aerobically grown wild-type cells. In addition to the previously characterized nif and fix gene clusters, we identified three new NifA-regulated genes that were named nrgA, nrgB, and nrgC (nrg stands for NifA-regulated gene). The latter two probably form an operon, nrgBC. The proteins encoded by nrgC and nrgA exhibited amino acid sequence similarity to bacterial hydroxylases and N-acetyltransferases, respectively. The product of nrgB showed no significant similarity to any protein with a database entry. Primer extension experiments and expression studies with translational lacZ fusions revealed the presence of a functional -24/-12-type promoter upstream of nrgA and nrgBC and proved the NifA- and RpoN (sigma(54))-dependent transcription of the respective genes. Null mutations introduced into nrgA and nrgBC resulted in mutant strains that exhibited wild-type-like symbiotic properties, including nitrogen fixation, when tested on soybean, cowpea, or mung bean host plants. Thus, the discovery of nrgA and nrgBC further emphasizes the previously suggested role of NifA as an activator of anaerobically induced genes other than the classical nitrogen fixation genes.
Collapse
Affiliation(s)
- A Nienaber
- Institut für Mikrobiologie, Eidgenössische Hochschule, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
30
|
Viprey V, Rosenthal A, Broughton WJ, Perret X. Genetic snapshots of the Rhizobium species NGR234 genome. Genome Biol 2000; 1:RESEARCH0014. [PMID: 11178268 PMCID: PMC16145 DOI: 10.1186/gb-2000-1-6-research0014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2000] [Revised: 10/25/2000] [Accepted: 10/31/2000] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In nitrate-poor soils, many leguminous plants form nitrogen-fixing symbioses with members of the bacterial family Rhizobiaceae. We selected Rhizobium sp. NGR234 for its exceptionally broad host range, which includes more than I 12 genera of legumes. Unlike the genome of Bradyrhizobium japonicum, which is composed of a single 8.7 Mb chromosome, that of NGR234 is partitioned into three replicons: a chromosome of about 3.5 Mb, a megaplasmid of more than 2 Mb (pNGR234b) and pNGR234a, a 536,165 bp plasmid that carries most of the genes required for symbioses with legumes. Symbiotic loci represent only a small portion of all the genes coded by rhizobial genomes, however. To rapidly characterize the two largest replicons of NGR234, the genome of strain ANU265 (a derivative strain cured of pNGR234a) was analyzed by shotgun sequencing. RESULTS Homology searches of public databases with 2,275 random sequences of strain ANU265 resulted in the identification of 1,130 putative protein-coding sequences, of which 922 (41%) could be classified into functional groups. In contrast to the 18% of insertion-like sequences (ISs) found on the symbiotic plasmid pNGR234a, only 2.2% of the shotgun sequences represent known ISs, suggesting that pNGR234a is enriched in such elements. Hybridization data also indicate that the density of known transposable elements is higher in pNGR234b (the megaplasmid) than on the chromosome. Rhizobium-specific intergenic mosaic elements (RIMEs) were found in 35 shotgun sequences, 6 of which carry RIME2 repeats previously thought to be present only in Rhizobium meliloti. As non-overlapping shotgun sequences together represent approximately 10% of ANU265 genome, the chromosome and megaplasmid may carry a total of over 200 RIMEs. CONCLUSIONS 'Skimming' the genome of Rhizobium sp. NGR234 sheds new light on the fine structure and evolution of its replicons, as well as on the integration of symbiotic functions in the genome of a soil bacterium. Although most putative coding sequences could be distributed into functional classes similar to those in Bacillus subtilis, functions related to transposable elements were more abundant in NGR234. In contrast to ISs that accumulated in pNGR234a and pNGR234b, the hundreds of RIME elements seem mostly attributes of the chromosome.
Collapse
Affiliation(s)
- Virginie Viprey
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, chemin de l'Impératrice, 1292 Chambésy, Genève, Switzerland. E-mail:
- Current address: John Innes Centre, Colney Lane, Norwich, NR4 7UH, UK
| | - André Rosenthal
- Institut für Molekulare Biotechnologie, Abteilung Genomanalyze, Beutenbergstrasse, 07745 Jena, Germany
| | - William J Broughton
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, chemin de l'Impératrice, 1292 Chambésy, Genève, Switzerland. E-mail:
| | - Xavier Perret
- Laboratoire de Biologie Moléculaire des Plantes Supérieures, Université de Genève, chemin de l'Impératrice, 1292 Chambésy, Genève, Switzerland. E-mail:
| |
Collapse
|
31
|
Tomkins JP, Miller-Smith H, Sasinowski M, Choi S, Sasinowska H, Verce MF, Freedman DL, Dean RA, Wing RA. Physical map and gene survey of the Ochrobactrum anthropi genome using bacterial artificial chromosome contigs. MICROBIAL & COMPARATIVE GENOMICS 1999; 4:203-17. [PMID: 10587947 DOI: 10.1089/omi.1.1999.4.203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bacterial artificial chromosome (BAC) clones are effective mapping and sequencing reagents for use with a wide variety of small and large genomes. This report describes research aimed at determining the genome structure of Ochrobactrum anthropi, an opportunistic human pathogen that has potential applications in biodegradation of hazardous organic compounds. A BAC library for O. anthropi was constructed that provides a 70-fold genome coverage based on an estimated genome size of 4.8 Mb. The library contains 3072 clones with an average insert size of 112 kb. High-density colony filters of the library were made, and a physical map of the genome was constructed using a hybridization without replacement strategy. In addition, 1536 BAC clones were fingerprinted with HindIII and analyzed using IMAGE and Fingerprint Contig software (FPC, Sanger Centre, U.K.). The FPC results supported the hybridization data, resulting in the formation of two major contigs representing the two major replicons of the O. anthropi genome. After determining a reduced tiling path, 138 BAC ends from the reduced tile were sequenced for a preliminary gene survey. A search of the public databases with the BLASTX algorithm resulted in 77 strong hits (E-value < 0.001), of which 89% showed similarity to a wide variety of prokaryotic genes. These results provide a contig-based physical map to assist the cloning of important genomic regions and the potential sequencing of the O. anthropi genome.
Collapse
Affiliation(s)
- J P Tomkins
- Clemson University Genomics Institute, South Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Complete genome sequences for many mitochondria, as well as for some bacteria, together with the nuclear genome sequence of yeast have provided a coherent view of the origin of mitochondria. In particular, conventional phylogenetic reconstructions with genes coding for proteins active in energy metabolism and translation have confirmed the simplest version of the endosymbiosis hypothesis. In contrast, the hydrogen and the syntrophy hypotheses for the origin of mitochondria do not receive support from the available data. It remains to be seen how the evolution of hydrogenosomes is related to that of mitochondria.
Collapse
Affiliation(s)
- S G Andersson
- Department of Molecular Evolution Box 590 Biomedical Center 751 24, Uppsala, Sweden.
| | | |
Collapse
|
33
|
Minamisawa K, Nakatsuka Y, Isawa T. Diversity and field site variation of indigenous populations of soybean bradyrhizobia in Japan by fingerprints with repeated sequences RSα and RSβ. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00608.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Abstract
Bacterial genome sizes, which range from 500 to 10,000 kbp, are within the current scope of operation of large-scale nucleotide sequence determination facilities. To date, 8 complete bacterial genomes have been sequenced, and at least 40 more will be completed in the near future. Such projects give wonderfully detailed information concerning the structure of the organism's genes and the overall organization of the sequenced genomes. It will be very important to put this incredible wealth of detail into a larger biological picture: How does this information apply to the genomes of related genera, related species, or even other individuals from the same species? Recent advances in pulsed-field gel electrophoretic technology have facilitated the construction of complete and accurate physical maps of bacterial chromosomes, and the many maps constructed in the past decade have revealed unexpected and substantial differences in genome size and organization even among closely related bacteria. This review focuses on this recently appreciated plasticity in structure of bacterial genomes, and diversity in genome size, replicon geometry, and chromosome number are discussed at inter- and intraspecies levels.
Collapse
Affiliation(s)
- S Casjens
- Department of Oncological Sciences, University of Utah, Salt Lake City 84132, USA.
| |
Collapse
|
35
|
Moreno E. Genome evolution within the alpha Proteobacteria: why do some bacteria not possess plasmids and others exhibit more than one different chromosome? FEMS Microbiol Rev 1998; 22:255-75. [PMID: 9862123 DOI: 10.1111/j.1574-6976.1998.tb00370.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Animal intracellular Proteobacteria of the alpha subclass without plasmids and containing one or more chromosomes are phylogenetically entwined with opportunistic, plant-associated, chemoautotrophic and photosynthetic alpha Proteobacteria possessing one or more chromosomes and plasmids. Local variations in open environments, such as soil, water, manure, gut systems and the external surfaces of plants and animals, may have selected alpha Proteobacteria with extensive metabolic alternatives, broad genetic diversity, and more flexible and larger genomes with ability for horizontal gene flux. On the contrary, the constant and isolated animal cellular milieu selected heterotrophic alpha Proteobacteria with smaller genomes without plasmids and reduced genetic diversity as compared to their plant-associated and phototrophic relatives. The characteristics and genome sizes in the extant species suggest that a second chromosome could have evolved from megaplasmids which acquired housekeeping genes. Consequently, the genomes of the animal cell-associated Proteobacteria evolved through reductions of the larger genomes of chemoautotrophic ancestors and became rich in adenosine and thymidine, as compared to the genomes of their ancestors. Genome organisation and phylogenetic ancestor-descendent relationships between extant bacteria of closely related genera and within the same monophyletic genus and species suggest that some strains have undergone transition from two chromosomes to a single replicon. It is proposed that as long as the essential information is correctly expressed, the presence of one or more chromosomes within the same genus or species is the result of contingency. Genetic drift in clonal bacteria, such as animal cell-associated alpha Proteobacteria, would depend almost exclusively on mutation and internal genetic rearrangement processes. Alternatively, genomic variations in reticulate bacteria, such as many intestinal and plant cell-associated Proteobacteria, will depend not only on these processes, but also on their genetic interactions with other bacterial strains. Common pathogenic domains necessary for the invasion and survival in association with cells have been preserved in the chromosomes of the animal and plant-associated alpha Proteobacteria. These pathogenic domains have been maintained by vertical inherence, extensively ameliorated to match the chromosome G + C content and evolved within chromosomes of alpha Proteobacteria.
Collapse
Affiliation(s)
- E Moreno
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica.
| |
Collapse
|
36
|
Bauer E, Kaspar T, Fischer HM, Hennecke H. Expression of the fixR-nifA operon in Bradyrhizobium japonicum depends on a new response regulator, RegR. J Bacteriol 1998; 180:3853-63. [PMID: 9683482 PMCID: PMC107369 DOI: 10.1128/jb.180.15.3853-3863.1998] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Accepted: 05/27/1998] [Indexed: 02/08/2023] Open
Abstract
Many nitrogen fixation-associated genes in the soybean symbiont Bradyrhizobium japonicum are regulated by the transcriptional activator NifA, whose activity is inhibited by aerobiosis. NifA is encoded in the fixR-nifA operon, which is expressed at a low level under aerobic conditions and induced approximately fivefold under low-oxygen tension. This induction depends on a -24/-12-type promoter (fixRp1) that is recognized by the sigma54 RNA polymerase and activated by NifA. Low-level aerobic expression and part of the anaerobic expression originates from a second promoter (fixRp2) that overlaps with fixRp1 and depends on an upstream DNA region (UAS) located around position -68 (H. Barrios, H. M. Fischer, H. Hennecke, and E. Morett, J. Bacteriol. 177:1760-1765, 1995). A protein binding to the UAS was previously postulated to act as an activator. This protein has now been purified, and the corresponding gene (regR) has been cloned. On the basis of the predicted amino acid sequence, RegR belongs to the family of response regulators of two-component regulatory systems. We identified upstream of the regR gene an additional gene (regS) encoding a putative sensor kinase. A regR mutant was constructed in which neither a specific UAS-binding activity nor fixRp2-dependent transcript formation and fixR'-'lacZ expression was detected in aerobically grown cells. Anaerobic fixR'-'lacZ expression was also decreased in regR mutants to about 10% of the level observed in the wild type. Similarly, regR mutants showed only about 2% residual nitrogen fixation activity, but unlike nodules induced by nifA mutants, the morphology of those nodules was normal, displaying no signs of necrosis. While regR mutants grew only slightly slower in free-living, aerobic conditions, they displayed a strong growth defect under anaerobic conditions. The phenotypic properties of regS mutants differed only marginally, if at all, from those of the wild type, suggesting the existence of a compensating sensor activity in these strains. The newly identified RegR protein may be regarded as a master regulator in the NifA-dependent network controlling nif and fix gene expression in B. japonicum.
Collapse
Affiliation(s)
- E Bauer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, CH-8092 Zürich, Switzerland
| | | | | | | |
Collapse
|
37
|
Rodríguez C, Romero D. Multiple recombination events maintain sequence identity among members of the nitrogenase multigene family in Rhizobium etli. Genetics 1998; 149:785-94. [PMID: 9611191 PMCID: PMC1460202 DOI: 10.1093/genetics/149.2.785] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A distinctive characteristic of the Rhizobium genome is the frequent finding of reiterated sequences, which often constitute multigene families. Interestingly, these families usually maintain a high degree of nucleotide sequence identity. It is commonly assumed that apparent gene conversion between reiterated elements might lead to concerted variation among members of a multigene family. However, the operation of this mechanism has not yet been demonstrated in the Rhizobiaceae. In this work, we employed different genetic constructions to address the role of apparent gene conversion as a homogenizing mechanism between members of the plasmid-located nitrogenase multigene family in Rhizobium etli. Our results show that a 28-bp insertion into one of the nitrogenase reiterations can be corrected by multiple recombination events, including apparent gene conversion. The correction process was dependent on the presence of both a wild-type recA gene and wild-type copies of the nitrogenase reiterations. Frequencies of apparent gene conversion to the wild-type nitrogenase reiterations were the same when the insertion to be corrected was located either in cis or in trans, indicating that this event frequently occurs through intermolecular interactions. Interestingly, a high frequency of multiple crossovers was observed, suggesting that these large plasmid molecules are engaging repeatedly in recombination events, in a situation akin to phage recombination or recombination among small, high-copy number plasmids.
Collapse
Affiliation(s)
- C Rodríguez
- Departamento de Genética Molecular, Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | |
Collapse
|
38
|
Jumas-Bilak E, Michaux-Charachon S, Bourg G, Ramuz M, Allardet-Servent A. Unconventional genomic organization in the alpha subgroup of the Proteobacteria. J Bacteriol 1998; 180:2749-55. [PMID: 9573163 PMCID: PMC107230 DOI: 10.1128/jb.180.10.2749-2755.1998] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/1997] [Accepted: 03/02/1998] [Indexed: 02/07/2023] Open
Abstract
Pulsed-field gel electrophoresis was used to analyze the genomic organization of 16 bacteria belonging or related to the family Rhizobiaceae of the alpha subgroup of the class Proteobacteria. The number and sizes of replicons were determined by separating nondigested DNA. Hybridization of an rrn gene probe was used to distinguish between chromosomes and plasmids. Members of the genus Agrobacterium all possess two chromosomes, and each biovar has a specific genome size. As previously demonstrated for Agrobacterium tumefaciens C58, the smaller chromosomes of Agrobacterium biovar 1 and Agrobacterium rubi strains appear to be linear. The genomes of Rhizobium strains were all of similar sizes but were seen to contain either one, two, or three megareplicons. Only one chromosome was present in the member of the related genus Phyllobacterium. We found one or two chromosomes in Rhodobacter and Brucella species, two chromosomes in Ochrobactrum anthropi, and one chromosome in Mycoplana dimorpha and Bartonella quintana; all of these genera are related to the Rhizobiaceae. The presence of multiple chromosomes is discussed from a phylogenetic and taxonomic point of view.
Collapse
Affiliation(s)
- E Jumas-Bilak
- Faculté de Médecine, Institut National de la Santé et de la Recherche Médicale, Unité 431, 30900 Nimes, France
| | | | | | | | | |
Collapse
|
39
|
Wang J, Hollingsworth RI. The identification of glycerol-3-yl 6-deoxy-6-C-sulfo-α-d-glucopyranoside (glyceryl α-sulfoquinovoside) as a metabolite in Rhizobium, a non-photosynthetic organism. Carbohydr Res 1998. [DOI: 10.1016/s0008-6215(97)10078-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
|
41
|
Abstract
Denitrification is a distinct means of energy conservation, making use of N oxides as terminal electron acceptors for cellular bioenergetics under anaerobic, microaerophilic, and occasionally aerobic conditions. The process is an essential branch of the global N cycle, reversing dinitrogen fixation, and is associated with chemolithotrophic, phototrophic, diazotrophic, or organotrophic metabolism but generally not with obligately anaerobic life. Discovered more than a century ago and believed to be exclusively a bacterial trait, denitrification has now been found in halophilic and hyperthermophilic archaea and in the mitochondria of fungi, raising evolutionarily intriguing vistas. Important advances in the biochemical characterization of denitrification and the underlying genetics have been achieved with Pseudomonas stutzeri, Pseudomonas aeruginosa, Paracoccus denitrificans, Ralstonia eutropha, and Rhodobacter sphaeroides. Pseudomonads represent one of the largest assemblies of the denitrifying bacteria within a single genus, favoring their use as model organisms. Around 50 genes are required within a single bacterium to encode the core structures of the denitrification apparatus. Much of the denitrification process of gram-negative bacteria has been found confined to the periplasm, whereas the topology and enzymology of the gram-positive bacteria are less well established. The activation and enzymatic transformation of N oxides is based on the redox chemistry of Fe, Cu, and Mo. Biochemical breakthroughs have included the X-ray structures of the two types of respiratory nitrite reductases and the isolation of the novel enzymes nitric oxide reductase and nitrous oxide reductase, as well as their structural characterization by indirect spectroscopic means. This revealed unexpected relationships among denitrification enzymes and respiratory oxygen reductases. Denitrification is intimately related to fundamental cellular processes that include primary and secondary transport, protein translocation, cytochrome c biogenesis, anaerobic gene regulation, metalloprotein assembly, and the biosynthesis of the cofactors molybdopterin and heme D1. An important class of regulators for the anaerobic expression of the denitrification apparatus are transcription factors of the greater FNR family. Nitrate and nitric oxide, in addition to being respiratory substrates, have been identified as signaling molecules for the induction of distinct N oxide-metabolizing enzymes.
Collapse
Affiliation(s)
- W G Zumft
- Lehrstuhl für Mikrobiologie, Universität Fridericiana, Karlsruhe, Germany
| |
Collapse
|
42
|
Kiss E, Kondorosi �. Complete sequence of aRhizobium plasmid carrying genes necessary for symbiotic association with the plant host. Bioessays 1997. [DOI: 10.1002/bies.950191003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Andersson JO, Andersson SGE. Genomic rearrangements during evolution of the obligate intracellular parasite Rickettsia prowazekii as inferred from an analysis of 52015 bp nucleotide sequence. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 8):2783-2795. [PMID: 9274032 DOI: 10.1099/00221287-143-8-2783] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study a description is given of the sequence and analysis of 52 kb from the 1.1 Mb genome of Rickettsia prowazekii, a member of the alpha-Proteobacteria. An investigation was made of nucleotide frequencies and amino acid composition patterns of 41 coding sequences, distributed in 10 genomic contigs, of which 32 were found to have putative homologues in the public databases. Overall, the coding content of the individual contigs ranged from 59 to 97%, with a mean of 81%. The genes putatively identified included genes involved in the biosynthesis of nucleotides, macromolecules and cell wall structures as well as citric acid cycle component genes. In addition, a putative identification was made of a member of the regulatory response family of two-component signal transduction systems as well as a gene encoding haemolysin. For one gene, the homologue of metK, an internal stop codon was discovered within a region that is otherwise highly conserved. Comparisons with the genomic structures of Escherichia coli, Haemophilus influenzae and Bacillus subtilis have revealed several atypical gene organization patterns in the R. prowazekii genome. For example, R. prowazekii was found to have a unique arrangement of genes upstream of dnaA in a region that is highly conserved among other microbial genomes and thought to represent the origin of replication of a primordial replicon. The results presented in this paper support the hypothesis that the R. prowazekii genome is a highly derived genome and provide examples of gene order structures that are unique for the Rickettsia.
Collapse
Affiliation(s)
- Jan O Andersson
- Department of Molecular Biology, Biomedical Center, Uppsala University, Uppsala, S-751 24, Sweden
| | - Siv G E Andersson
- Department of Molecular Biology, Biomedical Center, Uppsala University, Uppsala, S-751 24, Sweden
| |
Collapse
|
44
|
Correia A, Martin JF, Castro JM. Targeted integration of foreign genes into repetitive sequences of theBrevibacterium lactofermentumchromosome. FEMS Microbiol Lett 1996. [DOI: 10.1111/j.1574-6968.1996.tb08440.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
45
|
Narberhaus F, Weiglhofer W, Fischer HM, Hennecke H. The Bradyrhizobium japonicum rpoH1 gene encoding a sigma 32-like protein is part of a unique heat shock gene cluster together with groESL1 and three small heat shock genes. J Bacteriol 1996; 178:5337-46. [PMID: 8808920 PMCID: PMC178348 DOI: 10.1128/jb.178.18.5337-5346.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The heat shock response of Bradyrhizobium japonicum is controlled by a complex network involving two known regulatory systems. While some heat shock genes are controlled by a highly conserved inverted-repeat structure (CIRCE), others depend on a sigma 32-type heat shock sigma factor. Using Western blot (immunoblot) analysis, we confirmed the presence of a sigma 32-like protein in B. japonicum and defined its induction pattern after heat shock. A B. japonicum rpoH-like gene (rpoH1) was cloned by complementation of an Escherichia coli strain lacking sigma 32. A knockout mutation in rpoH1 did not abolish sigma 32 production in B. japonicum, and the rpoH1 mutant showed the wild-type growth phenotype, suggesting the presence of multiple rpoH homologs in this bacterium. Further characterization of the rpoH1 gene region revealed that the rpoH1 gene is located in a heat shock gene cluster together with the previously characterized groESL1 operon and three genes encoding small heat shock proteins in the following arrangement: groES1, groEL1, hspA, rpoH1, hspB, and hspC. Three heat-inducible promoters are responsible for transcription of the six genes as three bicistronic operons. A sigma 32-dependent promoter has previously been described upstream of the groESL1 operon. Although the hspA-rpoH1 and hspBC operons were clearly heat inducible, they were preceded by sigma 70-like promoters. Interestingly, a stretch of about 100 bp between the transcription start site and the start codon of the first gene in each of these two operons was nearly identical, making it a candidate for a regulatory element potentially allowing heat shock induction of sigma 70-dependent promoters.
Collapse
Affiliation(s)
- F Narberhaus
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland.
| | | | | | | |
Collapse
|
46
|
Weidenhaupt M, Rossi P, Beck C, Fischer HM, Hennecke H. Bradyrhizobium japonicum possesses two discrete sets of electron transfer flavoprotein genes: fixA, fixB and etfS, etfL. Arch Microbiol 1996; 165:169-78. [PMID: 8599534 DOI: 10.1007/bf01692858] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A group of four co-regulated genes (fixA, fixB, fixC, fixX) essential for symbiotic nitrogen fixation has been described in several rhizobial species, including Bradyrhizobium japonicum. The complete nucleotide sequence of the B. japonicum fixA, fixB and fixC, genes is reported here. The derived amino acid sequences confirmed the previously noted sequence similarity between FixA and the beta-subunit and between FixB and the alpha-subunit of mammalian and Paracoccus denitrificans electron transfer flavoproteins (ETF). Since the classical role of ETF is in beta-oxidation of fatty acids, a process unrelated to nitrogen fixation, we rationalized that B. japonicum ought to contain bona fide etf genes in addition to the etf-like genes fixA and fixB. Therefore, we identified, cloned, sequenced, and transcriptionally analyzed the B. japonicum etfSL genes encoding the beta- and alpha-subunits of ETF. The etfSL genes, but not the fix genes, are transcribed in aerobically grown cells. An amino acid sequence comparison between all available ETFs and ETF-like proteins revealed the existence of two distinguishable subfamilies. Group I comprises housekeeping ETFs that link acyl-CoA dehydrogenase reactions with the respiratory chain, such as in the fatty acid degradation pathway. B. japonicum EtfS and EtfL clearly belong to this group. Group II contains ETF-like proteins that are synthesized only under certain specific growth conditions and receive electrons from the oxidation of specific substrates. The products of the anaerobically induced fixA and fixB genes of B. japonicum are members of that group. B. japonicum is the first example of an organism in which genes for proteins of both groups I and II of the ETF family have been identified.
Collapse
Affiliation(s)
- M Weidenhaupt
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- M Dworkin
- Department of Microbiology, University of Minnesota, Minneapolis 55455-0312, USA.
| |
Collapse
|
48
|
Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW. Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 1995; 92:8985-9. [PMID: 7568057 PMCID: PMC41092 DOI: 10.1073/pnas.92.19.8985] [Citation(s) in RCA: 338] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rhizobia were isolated from nodules off a stand of Lotus corniculatus established with a single inoculant strain, ICMP3153, 7 years earlier in an area devoid of naturalized Rhizobium loti. The isolates showed diversity in growth rate, Spe I fingerprint of genomic DNA, and hybridization pattern to genomic DNA probes. The 19% of isolates that grew at the same rate as strain ICMP3153 were the only isolates that had the same fingerprint as strain ICMP3153. Sequencing of part of the 16S rRNA gene of several diverse isolates confirmed that they were not derived from the inoculant strain. Nevertheless, all non-ICMP3153 strains gave EcoRI and Spe I hybridization patterns identical to ICMP3153 when hybridized to nodulation gene cosmids. Hybridization of digests generated by the very rare cutting enzyme Swa I revealed that the symbiotic DNA region (at least 105 kb) was chromosomally integrated in the strains. The results suggest that the diverse strains arose by transfer of chromosomal symbiotic genes from ICMP3153 to nonsymbiotic rhizobia in the environment.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Chromosomes, Bacterial/genetics
- Conserved Sequence
- DNA, Bacterial/genetics
- DNA, Ribosomal/genetics
- Electrophoresis, Gel, Pulsed-Field
- Gene Transfer Techniques
- Genes, Bacterial
- Molecular Sequence Data
- Nitrogen Fixation
- Plant Roots/microbiology
- Plasmids/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Restriction Mapping
- Rhizobium/genetics
- Rhizobium/isolation & purification
- Sequence Analysis, DNA
- Symbiosis/genetics
Collapse
Affiliation(s)
- J T Sullivan
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
49
|
Abstract
Bradyrhizobium japonicum contains only a single rRNA (rrn) gene region, despite its comparatively large genome size of 8,700 kb. The nucleotide sequence revealed an organization of rRNA and tRNA genes that is frequently found in bacteria: 5'-rrs (16S rRNA)-ileT (tRNA(Ile))-alaT (tRNA(Ala))-rrl (23S rRNA)-rrf (5S rRNA)-3'. The 5' end of the primary transcript, one of the 16S rRNA processing sites, and the 5' end of the mature 16S rRNA were determined by primer extension. DNA hybridization experiments showed that the slowly growing Bradyrhizobium strains generally have only a single copy of the 16S rRNA gene, whereas the faster-growing Rhizobium species contain three rrs copies.
Collapse
MESH Headings
- Base Sequence
- Cloning, Molecular
- DNA, Ribosomal/genetics
- Gene Dosage
- Gene Expression
- Genes, Bacterial/genetics
- Genome, Bacterial
- Molecular Sequence Data
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 5S/genetics
- RNA, Transfer, Ala/genetics
- RNA, Transfer, Ile/genetics
- Restriction Mapping
- Rhizobiaceae/genetics
- Sequence Analysis, DNA
- Transcription, Genetic
Collapse
Affiliation(s)
- C Kündig
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| | | | | | | |
Collapse
|
50
|
Thöny-Meyer L, Fischer F, Künzler P, Ritz D, Hennecke H. Escherichia coli genes required for cytochrome c maturation. J Bacteriol 1995; 177:4321-6. [PMID: 7635817 PMCID: PMC177179 DOI: 10.1128/jb.177.15.4321-4326.1995] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The so-called aeg-46.5 region of Escherichia coli contains genes whose expression is induced under anaerobic growth conditions in the presence of nitrate or nitrite as the terminal electron acceptor. In this work, we have examined more closely several genes of this cluster, here designated ccmABCDEFGH, that are homologous to two separate Bradyrhizobium japonicum gene clusters required for the biogenesis of c-type cytochromes. A deletion mutant of E. coli which lacked all of these genes was constructed. Maturation of indigenous c-type cytochromes synthesized under anaerobic respiratory conditions, with nitrite, nitrate, or trimethylamine N-oxide as the electron acceptor, was found to be defective in the mutant. The biogenesis of foreign cytochromes, such as the soluble B. japonicum cytochrome c550 and the membrane-bound Bacillus subtilis cytochrome c550, was also investigated. None of these cytochromes was synthesized in its mature form when expressed in the mutant, as opposed to the situation in the wild type. The results suggest that the E. coli ccm gene cluster present in the aeg-46.5 region is required for a general pathway involved in cytochrome c maturation.
Collapse
Affiliation(s)
- L Thöny-Meyer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | | | | | |
Collapse
|