1
|
Paietta EN, Kraberger S, Custer JM, Vargas KL, Espy C, Ehmke E, Yoder AD, Varsani A. Characterization of Diverse Anelloviruses, Cressdnaviruses, and Bacteriophages in the Human Oral DNA Virome from North Carolina (USA). Viruses 2023; 15:1821. [PMID: 37766228 PMCID: PMC10537320 DOI: 10.3390/v15091821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The diversity of viruses identified from the various niches of the human oral cavity-from saliva to dental plaques to the surface of the tongue-has accelerated in the age of metagenomics. This rapid expansion demonstrates that our understanding of oral viral diversity is incomplete, with only a few studies utilizing passive drool collection in conjunction with metagenomic sequencing methods. For this pilot study, we obtained 14 samples from healthy staff members working at the Duke Lemur Center (Durham, NC, USA) to determine the viral diversity that can be identified in passive drool samples from humans. The complete genomes of 3 anelloviruses, 9 cressdnaviruses, 4 Caudoviricetes large bacteriophages, 29 microviruses, and 19 inoviruses were identified in this study using high-throughput sequencing and viral metagenomic workflows. The results presented here expand our understanding of the vertebrate-infecting and microbe-infecting viral diversity of the human oral virome in North Carolina (USA).
Collapse
Affiliation(s)
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Joy M. Custer
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Karla L. Vargas
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Claudia Espy
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Erin Ehmke
- Duke Lemur Center, Duke University, Durham, NC 27705, USA;
| | - Anne D. Yoder
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
2
|
Mullally CA, Mikucki A, Wise MJ, Kahler CM. Modelling evolutionary pathways for commensalism and hypervirulence in Neisseria meningitidis. Microb Genom 2021; 7. [PMID: 34704920 PMCID: PMC8627216 DOI: 10.1099/mgen.0.000662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis, the meningococcus, resides exclusively in humans and causes invasive meningococcal disease (IMD). The population of N. meningitidis is structured into stable clonal complexes by limited horizontal recombination in this naturally transformable species. N. meningitidis is an opportunistic pathogen, with some clonal complexes, such as cc53, effectively acting as commensal colonizers, while other genetic lineages, such as cc11, are rarely colonizers but are over-represented in IMD and are termed hypervirulent. This study examined theoretical evolutionary pathways for pathogenic and commensal lineages by examining the prevalence of horizontally acquired genomic islands (GIs) and loss-of-function (LOF) mutations. Using a collection of 4850 genomes from the BIGSdb database, we identified 82 GIs in the pan-genome of 11 lineages (10 hypervirulent and one commensal lineage). A new computational tool, Phaser, was used to identify frameshift mutations, which were examined for statistically significant association with genetic lineage. Phaser identified a total of 144 frameshift loci of which 105 were shown to have a statistically significant non-random distribution in phase status. The 82 GIs, but not the LOF loci, were associated with genetic lineage and invasiveness using the disease carriage ratio metric. These observations have been integrated into a new model that infers the early events of the evolution of the human adapted meningococcus. These pathways are enriched for GIs that are involved in modulating attachment to the host, growth rate, iron uptake and toxin expression which are proposed to increase competition within the meningococcal population for the limited environmental niche of the human nasopharynx. We surmise that competition for the host mucosal surface with the nasopharyngeal microbiome has led to the selection of isolates with traits that enable access to cell types (non-phagocytic and phagocytic) in the submucosal tissues leading to an increased risk for IMD.
Collapse
Affiliation(s)
- Christopher A. Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - August Mikucki
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Michael J. Wise
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- School of Physics, Mathematics and Computing, University of Western Australia, Perth, Australia
| | - Charlene M. Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
3
|
Tommassen J, Arenas J. Biological Functions of the Secretome of Neisseria meningitidis. Front Cell Infect Microbiol 2017; 7:256. [PMID: 28670572 PMCID: PMC5472700 DOI: 10.3389/fcimb.2017.00256] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
Neisseria meningitidis is a Gram-negative bacterial pathogen that normally resides as a commensal in the human nasopharynx but occasionally causes disease with high mortality and morbidity. To interact with its environment, it transports many proteins across the outer membrane to the bacterial cell surface and into the extracellular medium for which it deploys the common and well-characterized autotransporter, two-partner and type I secretion mechanisms, as well as a recently discovered pathway for the surface exposure of lipoproteins. The surface-exposed and secreted proteins serve roles in host-pathogen interactions, including adhesion to host cells and extracellular matrix proteins, evasion of nutritional immunity imposed by iron-binding proteins of the host, prevention of complement activation, neutralization of antimicrobial peptides, degradation of immunoglobulins, and permeabilization of epithelial layers. Furthermore, they have roles in interbacterial interactions, including the formation and dispersal of biofilms and the suppression of the growth of bacteria competing for the same niche. Here, we will review the protein secretion systems of N. meningitidis and focus on the functions of the secreted proteins.
Collapse
Affiliation(s)
- Jan Tommassen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| | - Jesús Arenas
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht UniversityUtrecht, Netherlands
| |
Collapse
|
4
|
Sviridova E, Rezacova P, Bondar A, Veverka V, Novak P, Schenk G, Svergun DI, Kuta Smatanova I, Bumba L. Structural basis of the interaction between the putative adhesion-involved and iron-regulated FrpD and FrpC proteins of Neisseria meningitidis. Sci Rep 2017; 7:40408. [PMID: 28084396 PMCID: PMC5233953 DOI: 10.1038/srep40408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/06/2016] [Indexed: 01/14/2023] Open
Abstract
The iron-regulated protein FrpD from Neisseria meningitidis is an outer membrane lipoprotein that interacts with very high affinity (Kd ~ 0.2 nM) with the N-terminal domain of FrpC, a Type I-secreted protein from the Repeat in ToXin (RTX) protein family. In the presence of Ca2+, FrpC undergoes Ca2+ -dependent protein trans-splicing that includes an autocatalytic cleavage of the Asp414-Pro415 peptide bond and formation of an Asp414-Lys isopeptide bond. Here, we report the high-resolution structure of FrpD and describe the structure-function relationships underlying the interaction between FrpD and FrpC1-414. We identified FrpD residues involved in FrpC1-414 binding, which enabled localization of FrpD within the low-resolution SAXS model of the FrpD-FrpC1-414 complex. Moreover, the trans-splicing activity of FrpC resulted in covalent linkage of the FrpC1-414 fragment to plasma membrane proteins of epithelial cells in vitro, suggesting that formation of the FrpD-FrpC1-414 complex may be involved in the interaction of meningococci with the host cell surface.
Collapse
Affiliation(s)
- Ekaterina Sviridova
- Faculty of Science, University of South Bohemia Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.,Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Pavlina Rezacova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Alexey Bondar
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague, Czech Republic
| | - Petr Novak
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| | - Gundolf Schenk
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Dmitri I Svergun
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Ivana Kuta Smatanova
- Faculty of Science, University of South Bohemia Ceske Budejovice, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic.,Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zamek 136, 37333 Nove Hrady, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
5
|
Kubáň V, Nováček J, Bumba L, Žídek L. NMR assignment of intrinsically disordered self-processing module of the FrpC protein of Neisseria meningitidis. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:435-440. [PMID: 26138689 DOI: 10.1007/s12104-015-9625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
The self-processing module (SPM) is an internal segment of the FrpC protein (P415-F591) secreted by the pathogenic Gram-negative bacterium Neisseria meningitidis during meningococcal infection of human upper respiratory tract. SPM mediates 'protein trans-splicing', a unique natural mechanism for editing of proteins, which involves a calcium-dependent autocatalytic cleavage of the peptide bond between D414 and P415 and covalent linkage of the cleaved fragment through its carboxy-terminal group of D414 to [Formula: see text]-amino group of lysine residue within a neighboring polypeptide chain. We present an NMR resonance assignment of the calcium-free SPM, which displays characteristic features of intrinsically disordered proteins. Non-uniformly sampled 5D HN(CA)CONH, 4D HCBCACON, and HCBCANCO spectra were recorded to resolve poorly dispersed resonance frequencies of the disordered protein and 91 % of SPM residues were unambiguously assigned. Analysis of the chemical shifts revealed that two regions of the intrinsically disordered SPM (A95-S101 and R120-I127) have a tendency to form a helical structure, whereas the residues P1-D7 and G36-A40 have the propensity to adopt a [Formula: see text]-structure.
Collapse
Affiliation(s)
- Vojtěch Kubáň
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Jiří Nováček
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Ladislav Bumba
- Institute of Microbiology of the ASCR, v. v. i, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Lukáš Žídek
- CEITEC, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
6
|
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are closely related organisms that cause the sexually transmitted infection gonorrhea and serious bacterial meningitis and septicemia, respectively. Both species possess multiple mechanisms to alter the expression of surface-exposed proteins through the processes of phase and antigenic variation. This potential for wide variability in surface-exposed structures allows the organisms to always have subpopulations of divergent antigenic types to avoid immune surveillance and to contribute to functional variation. Additionally, the Neisseria are naturally competent for DNA transformation, which is their main means of genetic exchange. Although bacteriophages and plasmids are present in this genus, they are not as effective as DNA transformation for horizontal genetic exchange. There are barriers to genetic transfer, such as restriction-modification systems and CRISPR loci, that limit particular types of exchange. These host-restricted pathogens illustrate the rich complexity of genetics that can help define the similarities and differences of closely related organisms.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | | |
Collapse
|
7
|
Virulence genes in clinical and environmental Stenotrophomas maltophilia isolates: a genome sequencing and gene expression approach. Microb Pathog 2014; 67-68:20-30. [PMID: 24530922 DOI: 10.1016/j.micpath.2014.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 11/21/2022]
Abstract
The rate of nosocomial infections with the opportunistic pathogen Stenotrophomonas maltophilia has remarkably increased in the last decade. To determine S. maltophilia virulence genes, the complete genome sequences of two S. maltophilia isolates were compared. The clinical strain SKK35 was proved virulent in an amoeba host-pathogen model, and wastewater strain RA8 was determined as non-virulent in the amoeba model. The genome sequences of three additional S. maltophilia strains, K279a (clinical, non-virulent against amoeba), R511-3 and SKA14 (both environmental, non-virulent against amoeba) were taken into account as reference strains. We were able to show that all clinical and environmental S. maltophilia strains presented comparable distribution of so far identified potential virulence genes, regardless to their virulence potential against amoebae. Aside from that, strain SKK35 was found harboring a putative, strain specific pathogenicity island, encoding two proteins from the RTX (repeats-in-toxin) family. The actual expression of the RTX genes was verified in growth experiments in different culture media containing blood or blood components and in co-cultures with amoeba.
Collapse
|
8
|
Skals M, Praetorius HA. Mechanisms of cytolysin-induced cell damage -- a role for auto- and paracrine signalling. Acta Physiol (Oxf) 2013; 209:95-113. [PMID: 23927595 DOI: 10.1111/apha.12156] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/21/2013] [Accepted: 07/30/2013] [Indexed: 12/22/2022]
Abstract
Cytolysins inflict cell damage by forming pores in the plasma membrane. The Na(+) conductivity of these pores results in an ion influx that exceeds the capacity of the Na(+) /K(+) -pump to extrude Na(+) . This net load of intracellular osmolytes results in swelling and eventual lysis of the attacked cell. Many nucleated cells have the capacity to reduce the potential damage of pore-forming proteins, whereas erythrocytes have been regarded as essentially defenceless against cytolysin-induced cell damage. This review addresses how autocrine/paracrine signalling and the cells intrinsic volume regulation markedly influence the fate of the cell after membrane insertion of cytolysins. Moreover, it regards the various steps that may explain the relative large degree of diversity between cell types and species as well as highlights some of the current gaps in the mechanistic understanding of cytolysin-induced cell injury.
Collapse
Affiliation(s)
- M. Skals
- Department of Biomedicine; Aarhus University; Aarhus C; Denmark
| | | |
Collapse
|
9
|
Lau SK, Wong GK, Tsang AK, Teng JL, Fan RY, Tse H, Yuen KY, Woo PC. Virulence determinants, drug resistance and mobile genetic elements of Laribacter hongkongensis: a genome-wide analysis. Cell Biosci 2011; 1:17. [PMID: 21711902 PMCID: PMC3125207 DOI: 10.1186/2045-3701-1-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/19/2011] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements. RESULTS For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases. CONCLUSIONS The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified.
Collapse
Affiliation(s)
- Susanna Kp Lau
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Gilman Km Wong
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Alan Kl Tsang
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Jade Ll Teng
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Rachel Yy Fan
- Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Herman Tse
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| | - Patrick Cy Woo
- State Key Laboratory of Emerging Infectious Diseases, Hong Kong.,Research Centre of Infection and Immunology, The University of Hong Kong, Hong Kong.,Carol Yu Centre of Infection, The University of Hong Kong, Hong Kong.,Department of Microbiology, The University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Maldonado R, Wei R, Kachlany SC, Kazi M, Balashova NV. Cytotoxic effects of Kingella kingae outer membrane vesicles on human cells. Microb Pathog 2011; 51:22-30. [PMID: 21443941 DOI: 10.1016/j.micpath.2011.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 11/20/2022]
Abstract
Kingella kingae is an emerging pathogen causing osteoarticular infections in pediatric patients. Electron microscopy of K. kingae clinical isolates revealed the heterogeneously-sized membranous structures blebbing from the outer membrane that were classified as outer membrane vesicles (OMVs). OMVs purified from the secreted fraction of a septic arthritis K. kingae isolate were characterized. Among several major proteins, K. kingae OMVs contained virulence factors RtxA toxin and PilC2 pilus adhesin. RtxA was also found secreted as a soluble protein in the extracellular environment indicating that the bacterium may utilize different mechanisms for the toxin delivery. OMVs were shown to be hemolytic and possess some leukotoxic activity while high leukotoxicity was detected in the non-hemolytic OMV-free component of the secreted fraction. OMVs were internalized by human osteoblasts and synovial cells. Upon interaction with OMVs, the cells produced increased levels of human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL-6) suggesting that these cytokines might be involved in the signaling response of infected joint and bone tissues during natural K. kingae infection. This study is the first report of OMV production by K. kingae and demonstrates that OMVs are a complex virulence factor of the organism causing cytolytic and inflammatory effects on host cells.
Collapse
Affiliation(s)
- R Maldonado
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | |
Collapse
|
11
|
Linhartová I, Bumba L, Mašín J, Basler M, Osička R, Kamanová J, Procházková K, Adkins I, Hejnová-Holubová J, Sadílková L, Morová J, Sebo P. RTX proteins: a highly diverse family secreted by a common mechanism. FEMS Microbiol Rev 2011; 34:1076-112. [PMID: 20528947 PMCID: PMC3034196 DOI: 10.1111/j.1574-6976.2010.00231.x] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Repeats-in-toxin (RTX) exoproteins of Gram-negative bacteria form a steadily growing family of proteins with diverse biological functions. Their common feature is the unique mode of export across the bacterial envelope via the type I secretion system and the characteristic, typically nonapeptide, glycine- and aspartate-rich repeats binding Ca2+ ions. In this review, we summarize the current state of knowledge on the organization of rtx loci and on the biological and biochemical activities of therein encoded proteins. Applying several types of bioinformatic screens on the steadily growing set of sequenced bacterial genomes, over 1000 RTX family members were detected, with the biological functions of most of them remaining to be characterized. Activities of the so far characterized RTX family members are then discussed and classified according to functional categories, ranging from the historically first characterized pore-forming RTX leukotoxins, through the large multifunctional enzymatic toxins, bacteriocins, nodulation proteins, surface layer proteins, up to secreted hydrolytic enzymes exhibiting metalloprotease or lipase activities of industrial interest.
Collapse
Affiliation(s)
- Irena Linhartová
- Institute of Microbiology AS CR v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sviridova E, Bumba L, Rezacova P, Prochazkova K, Kavan D, Bezouska K, Kuty M, Sebo P, Kuta Smatanova I. Crystallization and preliminary crystallographic characterization of the iron-regulated outer membrane lipoprotein FrpD from Neisseria meningitidis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1119-23. [PMID: 20823542 DOI: 10.1107/s174430911003215x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/10/2010] [Indexed: 11/10/2022]
Abstract
Fe-regulated protein D (FrpD) is a Neisseria meningitidis outer membrane lipoprotein that may be involved in the anchoring of the secreted repeat in toxins (RTX) protein FrpC to the outer bacterial membrane. However, the function and biological roles of the FrpD and FrpC proteins remain unknown. Native and selenomethionine-substituted variants of recombinant FrpD43-271 protein were crystallized using the sitting-drop vapour-diffusion method. Diffraction data were collected to a resolution of 2.25 A for native FrpD43-271 protein and to a resolution of 2.00 A for selenomethionine-substituted FrpD43-271 (SeMet FrpD43-271) protein. The crystals of native FrpD43-271 protein belonged to the hexagonal space group P6(2) or P6(4), while the crystals of SeMet FrpD43-271 protein belonged to the primitive orthorhombic space group P2(1)2(1)2(1).
Collapse
Affiliation(s)
- Ekaterina Sviridova
- Institute of Physical Biology, University of South Bohemia Ceske Budejovice, Zamek 136, 373 33 Nove Hrady, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Comparative genome biology of a serogroup B carriage and disease strain supports a polygenic nature of meningococcal virulence. J Bacteriol 2010; 192:5363-77. [PMID: 20709895 DOI: 10.1128/jb.00883-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neisseria meningitidis serogroup B strains are responsible for most meningococcal cases in the industrialized countries, and strains belonging to the clonal complex ST-41/44 are among the most prevalent serogroup B strains in carriage and disease. Here, we report the first genome and transcriptome comparison of a serogroup B carriage strain from the clonal complex ST-41/44 to the serogroup B disease strain MC58 from the clonal complex ST-32. Both genomes are highly colinear, with only three major genome rearrangements that are associated with the integration of mobile genetic elements. They further differ in about 10% of their gene content, with the highest variability in gene presence as well as gene sequence found for proteins involved in host cell interactions, including Opc, NadA, TonB-dependent receptors, RTX toxin, and two-partner secretion system proteins. Whereas housekeeping genes coding for metabolic functions were highly conserved, there were considerable differences in their expression pattern upon adhesion to human nasopharyngeal cells between both strains, including differences in energy metabolism and stress response. In line with these genomic and transcriptomic differences, both strains also showed marked differences in their in vitro infectivity and in serum resistance. Taken together, these data support the concept of a polygenic nature of meningococcal virulence comprising differences in the repertoire of adhesins as well as in the regulation of metabolic genes and suggest a prominent role for immune selection and genetic drift in shaping the meningococcal genome.
Collapse
|
14
|
Biologic activities of the TolC-like protein of Neisseria meningitidis as assessed by functional complementation in Escherichia coli. Antimicrob Agents Chemother 2009; 54:506-8. [PMID: 19884363 DOI: 10.1128/aac.01168-09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis can produce a TolC-like protein needed for secretion of FrpC but not efflux of antimicrobials. We now report that expression of the meningococcal tolC gene in a TolC-deficient strain of Escherichia coli can restore properties of alpha-hemolysis and antimicrobial resistance known to involve efflux pumps.
Collapse
|
15
|
Sannigrahi S, Zhang X, Tzeng YL. Regulation of the type I protein secretion system by the MisR/MisS two-component system in Neisseria meningitidis. MICROBIOLOGY-SGM 2009; 155:1588-1601. [PMID: 19372150 DOI: 10.1099/mic.0.023945-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neisseria meningitidis, an obligate human pathogen, remains a leading cause of meningitis and fatal sepsis. Meningococci are known to secrete a family of proteins, such as FrpC, with sequence similarity to the repeat-in-toxin (RTX) proteins via the type I secretion system. The meningococcal type I secretion proteins are encoded at two distant genetic loci, NMB1400 (hlyB) and NMB1738/1737 (hlyD/tolC), and are separated from the RTX toxin-like substrates. We have characterized the promoter elements of both hlyB and hlyD by primer extension and lacZ reporter fusions and revealed the growth phase-dependent upregulation of both genes. In addition, we showed that the MisR/MisS two-component system negatively regulates the expression of hlyB and hlyD/tolC. Direct binding of MisR to hlyB and hlyD promoters was demonstrated by electrophoretic mobility shift assay (EMSA), and DNase I protection assays identified MisR binding sites overlapping the promoter elements. Direct repression of hlyB transcription by MisR was supported by in vitro transcription assays. Mutations in the MisR/S system affected, but did not eliminate, the growth phase-dependent upregulation of hlyB, suggesting additional regulatory mechanisms. Increased secretion of RTX toxin-like proteins was detected in the cell-free media from misS mutant cultures, indicating that the amounts of extracellular RTX toxin-like proteins are, in part, controlled by the abundance of the type I secretion apparatus. This is, to our knowledge, the first example of a two-component system mediating secretion of cytotoxin family proteins by controlling expression of the type I secretion proteins.
Collapse
Affiliation(s)
- Soma Sannigrahi
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xinjian Zhang
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yih-Ling Tzeng
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
van Ulsen P, Kuhn K, Prinz T, Legner H, Schmid P, Baumann C, Tommassen J. Identification of proteins of
Neisseria meningitidis
induced under iron-limiting conditions using the isobaric tandem mass tag (TMT) labeling approach. Proteomics 2009; 9:1771-81. [DOI: 10.1002/pmic.200800642] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Abstract
Two-component regulatory systems are involved in processes important for bacterial pathogenesis. Inactivation of the misR/misS system in Neisseria meningitidis results in the loss of phosphorylation of the lipooligosaccharide inner core and causes attenuation in a mouse model of meningococcal infection. One hundred seventeen (78 up-regulated and 39 down-regulated) potential regulatory targets of the MisR/MisS (MisR/S) system were identified by transcriptional profiling of the NMBmisR mutant and the parental wild-type meningococcal strain NMB. The regulatory effect was further confirmed in a subset of target genes by quantitative real-time PCR and beta-galactosidase transcriptional fusion reporter assays. The MisR regulon includes genes encoding proteins necessary for protein folding in the bacterial cytoplasm and periplasm, transcriptional regulation, metabolism, iron assimilation, and type I protein transport. Mutation in the MisR/S system caused increased sensitivity to oxidative stress and also resulted in decreased susceptibility to complement-mediated killing by normal human serum. To identify the direct targets of MisR regulation, electrophoretic mobility shift assays were carried out using purified MisR-His(6) protein. Among 22 genes examined, misR directly interacted with 14 promoter regions. Six promoters were further investigated by DNase I protection assays, and a MisR-binding consensus sequence was proposed. Thus, the direct regulatory targets of MisR and the minimal regulon of the meningococcal MisR/S two-component signal transduction system were characterized. These data indicate that the MisR/S system influences a wide range of biological functions in N. meningitidis either directly or via intermediate regulators.
Collapse
|
18
|
Genomic markers for differentiation of Francisella tularensis subsp. tularensis A.I and A.II strains. Appl Environ Microbiol 2007; 74:336-41. [PMID: 18024683 DOI: 10.1128/aem.01522-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tularemia is caused by two subspecies of Francisella tularensis, F. tularensis subsp. tularensis (type A) and F. tularensis subsp. holarctica (type B). F. tularensis subsp. tularensis is further subdivided into two genetically distinct populations (A.I and A.II) that differ with respect to geographical location, anatomical source of recovered isolates, and disease outcome. Using two human clinical isolates, suppression subtractive hybridization was performed to identify 13 genomic regions of difference between A.I and A.II strains. Two PCR assays, one to identify A.I and A.II as well as to discriminate between F. tularensis subsp. holarctica and F. novicida and another specific for A.I, were developed. This is the first report to identify and characterize conserved genomic differences between A.I and A.II.
Collapse
|
19
|
The TolC-like protein of neisseria meningitidis is required for extracellular production of the repeats-in-toxin toxin FrpC but not for resistance to antimicrobials recognized by the Mtr efflux pump system. Infect Immun 2007; 75:6008-12. [PMID: 17923520 DOI: 10.1128/iai.01995-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 2.9-kilobase pair locus in Neisseria meningitidis was identified as containing transcriptionally linked open reading frames encoding TolC- and HlyD-like proteins. Although the meningococcal TolC protein was required for extracellular production of the repeats-in-toxin (RTX) FrpC toxin, it could not functionally replace the MtrE protein as the outer membrane protein channel for drug export by the MtrC-MtrD-MtrE efflux pump.
Collapse
|
20
|
Linhartova I, Basler M, Ichikawa J, Pelicic V, Osicka R, Lory S, Nassif X, Sebo P. Meningococcal adhesion suppresses proapoptotic gene expression and promotes expression of genes supporting early embryonic and cytoprotective signaling of human endothelial cells. FEMS Microbiol Lett 2006; 263:109-18. [PMID: 16958858 DOI: 10.1111/j.1574-6968.2006.00407.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Neisseria meningitidis colonizes the human nasopharynx and occasionally causes lethal or damaging septicemia and meningitis. Here, we examined the adherence-mediated signaling of meningococci to human cells by comparing gene expression profiles of human umbilical vein endothelial cells (HUVEC) infected by adherent wild-type, frpC-deficient mutant, or the nonadherent (DeltapilD) N. meningitidis. Pili-mediated adhesion of meningococci resulted in alterations of expression levels of human genes known to regulate apoptosis, cell proliferation, inflammatory response, adhesion and genes for signaling pathway proteins such as TGF-beta/Smad, Wnt/beta-catenin and Notch/Jagged. This reveals that adhering piliated meningocci manipulate host signaling pathways controlling cell proliferation while establishing a commensal relationship.
Collapse
Affiliation(s)
- Irena Linhartova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Delany I, Grifantini R, Bartolini E, Rappuoli R, Scarlato V. Effect of Neisseria meningitidis fur mutations on global control of gene transcription. J Bacteriol 2006; 188:2483-92. [PMID: 16547035 PMCID: PMC1428404 DOI: 10.1128/jb.188.7.2483-2492.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ferric uptake regulator Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. In this study we used comparative transcriptome analysis to define the role of the Fur protein in the global control of gene transcription and iron regulation in Neisseria meningitidis. By using the Fur-null mutant and its complemented derivative, we identified 83 genes whose transcription is controlled by Fur. We report that Fur may control differential expression of these genes by binding directly to their promoters or through indirect mechanisms. In addition, mutation of the fur gene resulted in the induction of the heat shock response, and transcription of these genes does not respond to iron limitation. Furthermore, analysis of the iron starvation stimulon in the Fur-null mutant provided evidences of iron-responsive regulation that is independent of Fur. We began to dissect the regulatory networks of Fur and the heat shock (stress) response in N. meningitidis, and the observed interlink between the two circuits is discussed.
Collapse
Affiliation(s)
- Isabel Delany
- Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy, Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Renata Grifantini
- Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy, Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Erika Bartolini
- Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy, Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Rino Rappuoli
- Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy, Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Vincenzo Scarlato
- Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy, Department of Biology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
- Corresponding author. Mailing address: Molecular Immunology Unit, Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy. Phone: 39 0577 243565. Fax: 39 0577 243564. E-mail:
| |
Collapse
|
22
|
van Ulsen P, Tommassen J. Protein secretion and secreted proteins in pathogenicNeisseriaceae. FEMS Microbiol Rev 2006; 30:292-319. [PMID: 16472308 DOI: 10.1111/j.1574-6976.2006.00013.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Secreted proteins of pathogenic bacteria are often essential virulence factors. They are involved, for example, in the adherence of the bacteria to host cells or required to suppress the host's defence mechanisms. Until recently, only IgA1 protease had been studied in detail in the NeisseriaceaeNeisseria meningitidis and Neisseria gonorrhoeae. The availability of their genome sequences, however, has boosted research in this area. Here, we present a survey of the secretome of the pathogenic Neisseriaceae, based on the available genome sequences, and the current knowledge of the functions and structures of the secreted proteins. Of the six protein-secretion pathways that are widely disseminated among Gram-negative bacteria, three pathways appear to be present among the Neisseriaceae, i.e. the autotransporter-, the two-partner- and the type I-secretion mechanisms. Comparison of the predicted secretomes reveals a considerable flexibility. As compared with N. meningitidis and the nonpathogen N. lactamica, N. gonorrhoeae appears to have a considerably degenerated secretome, which may reflect its altered niche occupancy. The flexibility of the secretome may be enhanced by the presence of ORFs in the genomes potentially encoding fragments of secreted proteins. We hypothesize that these ORFs may substitute for the corresponding fragments in the full-length genes through genetic recombination, thereby changing the host-cell receptor specificity of the secreted protein.
Collapse
Affiliation(s)
- Peter van Ulsen
- Department of Molecular Microbiology and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
23
|
Omori K, Idei A. Gram-negative bacterial ATP-binding cassette protein exporter family and diverse secretory proteins. J Biosci Bioeng 2005; 95:1-12. [PMID: 16233359 DOI: 10.1016/s1389-1723(03)80141-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 08/05/2002] [Indexed: 10/27/2022]
Abstract
Protein translocation to the extracellular space is essential for the invasion, colonization, and survival of pathogenic gram-negative bacteria within a host organism. In addition to the N-terminal signal sequence-dependent secretion system, which is specific for protein transport to the periplasmic space, there are five major systems (type I, II, III, IV, and V) that are known to be involved in protein secretion into the extracellular space. Of the systems, the type I pathway, which is composed of three membrane components including an ATP-binding cassette (ABC) protein, translocates proteins into the extracellular space from the cytosol by directly using the energy generated from ATP hydrolysis, and therefore, the system is a member of the ABC transporter family and is also known as the ABC exporter. To date, ABC exporters have been discovered to be involved in the secretion of a wide variety of exoproteins including RTX (repeats-in-toxin) toxins, cell surface layer proteins, proteases, lipases, bacteriocins, heme-acquisition proteins, and nodulation-related proteins such as the exoglucanases of gram-negative bacteria. A secretory protein and its associated specific ABC exporter are encoded in the same gene cluster in most cases, and ABC exporters show substrate specificity for secretion. Consequently, ABC exporters are present based primarily on the number of secretory protein genes. A secretion signal is situated in the C-terminal region of secretory proteins, however, the characteristics of the secretion signal are not fully understood. Secretory substrates and their linked ABC exporters are reviewed in the following paper.
Collapse
Affiliation(s)
- Kenji Omori
- Discovery Research Laboratory, Tanabe Seiyaku Co., Ltd., Kawagishi-2-chome, Toda, Saitama 335-8505, Japan.
| | | |
Collapse
|
24
|
Wooldridge KG, Kizil M, Wells DB, Ala'aldeen DAA. Unusual genetic organization of a functional type I protein secretion system in Neisseria meningitidis. Infect Immun 2005; 73:5554-67. [PMID: 16113272 PMCID: PMC1231126 DOI: 10.1128/iai.73.9.5554-5567.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins secreted by Neisseria meningitidis are thought to play important roles in the pathogenesis of meningococcal disease. These proteins include the iron-repressible repeat-in-toxin (RTX) exoprotein FrpC. Related proteins in other pathogens are secreted via a type I secretion system (TOSS), but such a system has not been demonstrated in N. meningitidis. An in silico search of the group B meningococcal genome suggested the presence of a uniquely organized TOSS. Genes encoding homologs of the Escherichia coli HlyB (ATP-binding), HlyD (membrane fusion), and TolC (outer membrane channel) proteins were identified. In contrast to the cistronic organization of the secretion genes in most other rtx operons, the hlyD and tolC genes were adjacent but unlinked to hlyB; neither locus was part of an operon containing genes encoding putative TOSS substrates. Both loci were flanked by genes normally associated with mobile genetic elements. The three genes were shown to be expressed independently. Mutation at either locus resulted in an inability to secrete FrpC and a related protein, here called FrpC2. Successful complementation of these mutations at an ectopic site confirmed the observed phenotypes were caused by loss of function of the putative TOSS genes. We show that genes scattered in the meningococcal genome encode a functional TOSS required for secretion of the meningococcal RTX proteins.
Collapse
Affiliation(s)
- Karl G Wooldridge
- Division of Microbiology and Infectious Diseases, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom.
| | | | | | | |
Collapse
|
25
|
Humphries HE, Triantafilou M, Makepeace BL, Heckels JE, Triantafilou K, Christodoulides M. Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling. Cell Microbiol 2005; 7:415-30. [PMID: 15679844 DOI: 10.1111/j.1462-5822.2004.00471.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interactions of Neisseria meningitidis with cells of the meninges are critical to progression of the acute, compartmentalized intracranial inflammatory response that is characteristic of meningococcal meningitis. An important virulence mechanism of the bacteria is the ability to shed outer membrane (OM) blebs containing lipopolysaccharide (LPS), which has been assumed to be the major pro-inflammatory molecule produced during meningitis. Comparison of cytokine induction by human meningeal cells following infection with wild-type meningococci, LPS-deficient meningococci or after treatment with OM isolated from both organisms, demonstrated the involvement of non-LPS bacterial components in cell activation. Significantly, recognition of LPS-replete OM did not depend on host cell expression of Toll-like receptor (TLR)4, the accessory protein MD-2 or CD14, or the recruitment of LPS-accessory surface proteins heat shock protein (HSP)70, HSP90alpha, chemokine receptor CXCR4 and growth differentiation factor (GDF)5. In addition, recognition of LPS-deficient OM was not associated with the expression of TLR2 or any of these other molecules. These data suggest that during meningococcal meningitis innate recognition of both LPS and non-LPS modulins is dependent on the expression of as yet uncharacterized pattern recognition receptors on cells of the meninges. Moreover, the biological consequences of cellular activation by non-LPS modulins suggest that clinical intervention strategies based solely on abrogating the effects of LPS are likely to be only partially effective.
Collapse
Affiliation(s)
- Holly E Humphries
- Molecular Microbiology, Division of Infection, Inflammation and Repair, University of Southampton Medical School, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | |
Collapse
|
26
|
Prochazkova K, Osicka R, Linhartova I, Halada P, Sulc M, Sebo P. The Neisseria meningitidis outer membrane lipoprotein FrpD binds the RTX protein FrpC. J Biol Chem 2004; 280:3251-8. [PMID: 15525636 DOI: 10.1074/jbc.m411232200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
At conditions of low iron availability, Neisseria meningitidis produces a family of FrpC-like, type I-secreted RTX proteins of unknown role in meningococcal lifestyle. It is shown here that iron starvation also induces production of FrpD, the other protein expressed from a gene located immediately upstream of the frpC gene in a predicted iron-regulated frpDC operon. We found that FrpD is highly conserved in a set of meningococcal strains representative of all serogroups and does not exhibit any similarity to known sequences of other organisms. Subcellular localization and [3H]palmitic acid labeling in Escherichia coli revealed that FrpD is synthesized with a type II signal peptide for export across the cytoplasmic membrane and is, upon processing to a lipoprotein, sorted to the outer bacterial membrane. Furthermore, the biological function of FrpD appears to be linked to that of the RTX protein FrpC, because FrpD was found to bind the amino-proximal portion of FrpC (first 300 residues) with very high affinity (apparent Kd approximately 0.2 nM). These results suggest that FrpD represents an rtx loci-encoded accessory lipoprotein that could be involved in anchoring of the secreted RTX protein to the outer bacterial membrane.
Collapse
Affiliation(s)
- Katerina Prochazkova
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, Videnska 1083, CZ-142 20 Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
27
|
Delany I, Rappuoli R, Scarlato V. Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis. Mol Microbiol 2004; 52:1081-90. [PMID: 15130126 DOI: 10.1111/j.1365-2958.2004.04030.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. Four promoters of Neisseria meningitidis predicted to have Fur-binding boxes were selected to study the molecular interactions between Fur and the promoter regions of genes expected to play a central role in survival and pathogenesis. We demonstrate that Fur acts not only as a repressor, but also as an activator of gene expression both in vivo and in vitro. We report that Fur binds to operators located upstream of three promoters that are positively regulated in vivo by Fur and iron, whereas Fur binds to an operator overlapping the classically iron-repressed tbp promoter. Deletion of the upstream operator in the norB promoter abolished activation of transcription in vivo in response to iron and in vitro in response to Fur. The role of such a dual mechanism of Fur regulation during infection is discussed.
Collapse
Affiliation(s)
- Isabel Delany
- Biochemistry and Molecular Biology Unit, IRIS, Chiron S.r.l., Via Fiorentina 1, 53100 Siena, Italy
| | | | | |
Collapse
|
28
|
Muryoi N, Sato M, Kaneko S, Kawahara H, Obata H, Yaish MWF, Griffith M, Glick BR. Cloning and expression of afpA, a gene encoding an antifreeze protein from the arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 2004; 186:5661-71. [PMID: 15317770 PMCID: PMC516810 DOI: 10.1128/jb.186.17.5661-5671.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2004] [Accepted: 05/23/2004] [Indexed: 01/10/2023] Open
Abstract
The Arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 secretes an antifreeze protein (AFP) that promotes survival at subzero temperatures. The AFP is unusual in that it also exhibits a low level of ice nucleation activity. A DNA fragment with an open reading frame encoding 473 amino acids was cloned by PCR and inverse PCR using primers designed from partial amino acid sequences of the isolated AFP. The predicted gene product, AfpA, had a molecular mass of 47.3 kDa, a pI of 3.51, and no previously known function. Although AfpA is a secreted protein, it lacked an N-terminal signal peptide and was shown by sequence analysis to have two possible secretion systems: a hemolysin-like, calcium-binding secretion domain and a type V autotransporter domain found in gram-negative bacteria. Expression of afpA in Escherichia coli yielded an intracellular 72-kDa protein modified with both sugars and lipids that exhibited lower levels of antifreeze and ice nucleation activities than the native protein. The 164-kDa AFP previously purified from P. putida GR12-2 was a lipoglycoprotein, and the carbohydrate was required for ice nucleation activity. Therefore, the recombinant protein may not have been properly posttranslationally modified. The AfpA sequence was most similar to cell wall-associated proteins and less similar to ice nucleation proteins (INPs). Hydropathy plots revealed that the amino acid sequence of AfpA was more hydrophobic than those of the INPs in the domain that forms the ice template, thus suggesting that AFPs and INPs interact differently with ice. To our knowledge, this is the first gene encoding a protein with both antifreeze and ice nucleation activities to be isolated and characterized.
Collapse
Affiliation(s)
- Naomi Muryoi
- Department of Biotechnology, Kansai University, Suita, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Osicka R, Procházková K, Sulc M, Linhartová I, Havlícek V, Sebo P. A novel "clip-and-link" activity of repeat in toxin (RTX) proteins from gram-negative pathogens. Covalent protein cross-linking by an Asp-Lys isopeptide bond upon calcium-dependent processing at an Asp-Pro bond. J Biol Chem 2004; 279:24944-56. [PMID: 15044436 DOI: 10.1074/jbc.m314013200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clinical isolates of Neisseria meningitidis produce a repeat in toxin (RTX) protein, FrpC, of unknown biological activity. Here we show that physiological concentrations of calcium ions induce a novel type of autocatalytic cleavage of the peptide bond between residues Asp(414) and Pro(415) of FrpC that is insensitive to inhibitors of serine, cysteine, aspartate, and metalloproteases. Moreover, as a result of processing, the newly generated amino-terminal fragment of FrpC can be covalently linked to another protein molecule by a novel type of Asp-Lys isopeptide bond that forms between the carboxyl group of its carboxyl-terminal Asp(414) residue and the epsilon-amino group of an internal lysine of another FrpC molecule. Point substitutions of negatively charged residues possibly involved in calcium binding (D499K, D510A, D521K, and E532A) dramatically reduced the self-processing activity of FrpC. The segment necessary and sufficient for FrpC processing was localized by deletion mutagenesis within residues 400-657, and sequences homologous to this segment were identified in several other RTX proteins. The same type of calcium-dependent processing and cross-linking activity was observed also for the purified ApxIVA protein of Actinobacillus pleuropneumoniae. These results define a protein cleavage and cross-linking module of a new class of RTX proteins of Gram-negative pathogens of man, animals, and plants. In the calcium-rich environments colonized by these bacteria this novel activity is likely to be of biological importance.
Collapse
Affiliation(s)
- Radim Osicka
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, Vídeòská 1083, CZ-142 20 Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
30
|
Perkins-Balding D, Ratliff-Griffin M, Stojiljkovic I. Iron transport systems in Neisseria meningitidis. Microbiol Mol Biol Rev 2004; 68:154-71. [PMID: 15007100 PMCID: PMC362107 DOI: 10.1128/mmbr.68.1.154-171.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acquisition of iron and iron complexes has long been recognized as a major determinant in the pathogenesis of Neisseria meningitidis. In this review, high-affinity iron uptake systems, which allow meningococci to utilize the human host proteins transferrin, lactoferrin, hemoglobin, and haptoglobin-hemoglobin as sources of essential iron, are described. Classic features of bacterial iron transport systems, such as regulation by the iron-responsive repressor Fur and TonB-dependent transport activity, are discussed, as well as more specific features of meningococcal iron transport. Our current understanding of how N. meningitidis acquires iron from the human host and the vaccine potentials of various components of these iron transport systems are also reviewed.
Collapse
Affiliation(s)
- Donna Perkins-Balding
- Rollins Research Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
31
|
Kakuda T, Oishi D, Tsubaki S, Takai S. Cloning and characterization of the fur gene from Moraxella bovis. Microbiol Immunol 2003; 47:411-7. [PMID: 12906101 DOI: 10.1111/j.1348-0421.2003.tb03378.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A homologue of the ferric uptake regulator gene (fur) was isolated from Moraxella bovis by degenerate polymerase chain reaction and cloning. Fur protein of M. bovis exhibited 72.1% amino acid identity with Acinetobacter calcoaceticus Fur. Western blot analysis showed a decrease of Fur expression in response to sufficient-iron conditions compared with deficient-iron conditions. An electrophoretic mobility-shift assay indicated that Fur protein binds to DNA fragments containing a putative Fur-box derived from the upstream region of the M. bovis fur gene. Fur of M. bovis may regulate the expression of iron transport systems in response to iron limitation in the environment.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Proteins/genetics
- Base Sequence
- Blotting, Western
- Cloning, Molecular
- DNA, Bacterial/genetics
- DNA, Complementary/genetics
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Iron/pharmacology
- Molecular Sequence Data
- Moraxella bovis/drug effects
- Moraxella bovis/genetics
- Open Reading Frames/genetics
- Polymerase Chain Reaction
- Promoter Regions, Genetic/genetics
- Repetitive Sequences, Nucleic Acid
- Repressor Proteins/genetics
- Sequence Homology, Nucleic Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- Tsutomu Kakuda
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Science, Kitasato University, Towada, Aomori 034-8628, Japan.
| | | | | | | |
Collapse
|
32
|
Delany I, Ieva R, Alaimo C, Rappuoli R, Scarlato V. The iron-responsive regulator fur is transcriptionally autoregulated and not essential in Neisseria meningitidis. J Bacteriol 2003; 185:6032-41. [PMID: 14526014 PMCID: PMC225026 DOI: 10.1128/jb.185.20.6032-6041.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2003] [Accepted: 07/28/2003] [Indexed: 11/20/2022] Open
Abstract
Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. The fur gene in Neisseria meningitidis has been described as an essential gene that may regulate a broad array of genes. We succeeded in obtaining an N. meningitidis mutant with the fur gene knocked out and used it to undertake studies of fur-mediated iron regulation. We show that expression of both Fur and the transferrin binding protein Tbp2 is iron regulated and demonstrate that this regulation is Fur mediated for the Tbp2 protein. Footprinting analysis revealed that Fur binds to two distinct sites upstream of its coding region with different affinities and that these binding sites overlap two promoters that differentially control transcription of the fur gene in response to iron. The presence of two independently regulated fur promoters may allow meningococcus to fine-tune expression of this regulator controlling iron homeostasis, possibly during infection.
Collapse
Affiliation(s)
- Isabel Delany
- Biochemistry and Molecular Biology Unit, IRIS, Chiron S.r.l., 53100 Siena, Italy
| | | | | | | | | |
Collapse
|
33
|
Forman S, Linhartova I, Osicka R, Nassif X, Sebo P, Pelicic V. Neisseria meningitidis RTX proteins are not required for virulence in infant rats. Infect Immun 2003; 71:2253-7. [PMID: 12654851 PMCID: PMC152105 DOI: 10.1128/iai.71.4.2253-2257.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RTX cytotoxins play an important role in virulence of numerous gram-negative pathogens. Unexpectedly, however, we show here that the RTX proteins of Neisseria meningitidis are dispensable for virulence in the infant rat model of infection.
Collapse
Affiliation(s)
- Stanislav Forman
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology, Czech Academy of Sciences, CZ-142 20 Prague 4, Czech Republic
| | | | | | | | | | | |
Collapse
|
34
|
OMORI KENJI, IDEI AKIKO. Gram-Negative Bacterial ATP-Binding Cassette Protein Exporter Family and Diverse Secretory Proteins. J Biosci Bioeng 2003. [DOI: 10.1263/jbb.95.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Perrin A, Bonacorsi S, Carbonnelle E, Talibi D, Dessen P, Nassif X, Tinsley C. Comparative genomics identifies the genetic islands that distinguish Neisseria meningitidis, the agent of cerebrospinal meningitis, from other Neisseria species. Infect Immun 2002; 70:7063-72. [PMID: 12438387 PMCID: PMC133019 DOI: 10.1128/iai.70.12.7063-7072.2002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis colonizes the nasopharynx and, unlike commensal Neisseria species, is capable of entering the bloodstream, crossing the blood-brain barrier, and invading the meninges. The other pathogenic Neisseria species, Neisseria gonorrhoeae, generally causes an infection which is localized to the genitourinary tract. In order to investigate the genetic basis of this difference in disease profiles, we used a strategy of genomic comparison. We used DNA arrays to compare the genome of N. meningitidis with those of N. gonorrhoeae and Neisseria lactamica, a commensal of the nasopharynx. We thus identified sequences conserved among a representative set of virulent strains which are either specific to N. meningitidis or shared with N. gonorrhoeae but absent from N. lactamica. Though these bacteria express dramatically different pathogenicities, these meningococcal sequences were limited and, in contrast to what has been found in other pathogenic bacterial species, they are not organized in large chromosomal islands.
Collapse
Affiliation(s)
- Agnès Perrin
- INSERM U5701 Faculté de Médecine Necker, 75015 Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Patterson K, Olsen B, Thomas C, Norn D, Tam M, Elkins C. Development of a rapid immunodiagnostic test for Haemophilus ducreyi. J Clin Microbiol 2002; 40:3694-702. [PMID: 12354868 PMCID: PMC130854 DOI: 10.1128/jcm.40.10.3694-3702.2002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2002] [Revised: 04/11/2002] [Accepted: 06/28/2002] [Indexed: 01/06/2023] Open
Abstract
Haemophilus ducreyi is the etiologic agent of chancroid, a sexually transmitted disease that increases the rate of transmission of human immunodeficiency virus. Chancroid ulcerations are difficult to distinguish from those produced by syphilis and herpes. Diagnosis based solely on clinical grounds is inaccurate, and culture is insensitive. Highly sensitive PCR has largely superseded culture as the preferred method of laboratory diagnosis; however, neither culture nor PCR is feasible where chancroid is endemic. We developed a rapid (15-min) diagnostic test based on monoclonal antibodies (MAbs) to the hemoglobin receptor of H. ducreyi, HgbA. This outer membrane protein is conserved in all strains of H. ducreyi tested and is required for the establishment of experimental human infection. MAbs to HgbA were generated and tested for cross-reactivity against a panel of geographically diverse strains. Three MAbs were found to be unique and noncompetitive and bound to all strains of H. ducreyi tested. Using an immunochromatography format, we evaluated the sensitivity and specificity of the test using geographically diverse strains of H. ducreyi, other Haemophilus strains, and other bacteria known to superinfect genital ulcers. All H. ducreyi strains were positive, and all other bacteria were negative, resulting in a specificity of 100%. The minimum number of CFU of H. ducreyi detected was 2 x 10(6) CFU, and the minimum amount of purified HgbA protein detected was 8.5 ng. Although this level of sensitivity may not be sufficient to detect H. ducreyi in all clinical specimens, further work to increase the sensitivity could potentially make this a valuable bedside tool in areas where chancroid is endemic.
Collapse
Affiliation(s)
- Kristine Patterson
- Department of Medicine, Division of Infectious Diseases, University of North Carolina, 547 Burnett-Womack Building, Chapel Hill, NC 27599-7030, USA
| | | | | | | | | | | |
Collapse
|
37
|
Marciel AM, Highlander SK. Use of operon fusions in Mannheimia haemolytica to identify environmental and cis-acting regulators of leukotoxin transcription. Infect Immun 2001; 69:6231-9. [PMID: 11553565 PMCID: PMC98756 DOI: 10.1128/iai.69.10.6231-6239.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leukotoxin of Mannheimia haemolytica is an important virulence factor that contributes to much of the pathology observed in the lungs of animals with bovine shipping fever pneumonia. We believe that identification of factors that regulate leukotoxin expression may provide insight into M. haemolytica pathogenicity. The DNA sequence upstream of the leukotoxin operon is divergently shared by P(lapT), which transcribes an arginine permease gene. The intergenic region contains several elements that are potential sites for transcriptional modulation of the promoters. We have developed plasmid-borne chloramphenicol acetyltransferase (cat) operon fusions, as well as lktC::cat chromosomal fusions, to study transcription initiation in M. haemolytica. Using these genetic tools, we have identified cis-acting sequences and environmental conditions that modulate transcription of the leukotoxin and lapT promoters. By deletion analysis, promoters were shown to rely on sequences upstream of their -10 and -35 regions for full activity. Direct repeats of the sequence TGT-N(11)-ACA and a static bend region caused by phased adenine tracts were necessary for full activation of P(lkt). A computer-generated model of the promoter's structure shows how DNA bending brings the repeat sequences within close proximity to the P(lkt) RNA polymerase, and we hypothesize that these repeats are a binding site for an activator of leukotoxin transcription. The lktC::cat operon fusion was also used to demonstrate that, like that of other RTX toxins, leukotoxin transcription is environmentally regulated. Roles for iron deprivation and temperature change were identified.
Collapse
Affiliation(s)
- A M Marciel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
38
|
Osicka R, Kalmusová J, Krízová P, Sebo P. Neisseria meningitidis RTX protein FrpC induces high levels of serum antibodies during invasive disease: polymorphism of frpC alleles and purification of recombinant FrpC. Infect Immun 2001; 69:5509-19. [PMID: 11500424 PMCID: PMC98664 DOI: 10.1128/iai.69.9.5509-5519.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Neisseria meningitidis FAM20 strain secretes two proteins of unknown function, FrpA and FrpC, which contain typical RTX domains found in cytotoxins from other gram-negative pathogens. To evaluate whether the Frp proteins could be involved in meningococcal virulence, 65 isolates of all serogroups were screened by PCR for the presence of both frp genes. The frpA allele was, however, poorly conserved. A single strain harbored an frpA allele of the previously described size, while large insertions were detected in the frpA loci of 22 isolates (34%), and the 42 remaining isolates (65%) did not contain frpA at all. In contrast, frpC alleles, albeit of variable length, were detected in all invasive and most carrier strains. This suggests that meningococci may produce a family of FrpC proteins of various molecular masses. High levels of both immunoglobulin G (IgG) and IgA class antibodies recognizing recombinant FrpC were indeed detected in convalescent-phase sera of most patients at 2 and 4 to 5 weeks after the first symptoms of meningococcal disease. These results show that FrpC-like proteins are produced and may play a role in invasive meningococcal infections.
Collapse
Affiliation(s)
- R Osicka
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-142 20 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
39
|
Dillard JP, Seifert HS. A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 2001; 41:263-77. [PMID: 11454218 DOI: 10.1046/j.1365-2958.2001.02520.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neisseria gonorrhoeae (the gonococcus) is the causative agent of the sexually transmitted disease gonorrhoea. Most gonococcal infections remain localized to the genital tract but, in a small proportion of untreated cases, the bacterium becomes systemic to produce the serious complication of disseminated gonococcal infection (DGI). We have identified a large region of chromosomal DNA in N. gonorrhoeae that is not found in a subset of gonococcal isolates (a genetic island), in the closely related pathogen, Neisseria meningitidis or in commensal Neisseria that do not usually cause disease. Certain versions of the island carry a serum resistance locus and a gene for the production of a cytotoxin; these versions of the island are found preferentially in DGI isolates. All versions of the genetic island encode homologues of F factor conjugation proteins, suggesting that, like some other pathogenicity islands, this region encodes a conjugation-like secretion system. Consistent with this hypothesis, a wild-type strain released large amounts of DNA into the medium during exponential growth without cell lysis, whereas an isogenic strain mutated in a peptidoglycan hydrolase gene (atlA) was drastically reduced in its ability to donate DNA for transformation during growth. This genetic island constitutes the first major discriminating factor between the gonococcus and the other Neisseria and carries genes for providing DNA for genetic transformation.
Collapse
Affiliation(s)
- J P Dillard
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | |
Collapse
|
40
|
Guzman-Verri C, Chaves-Olarte E, García F, Arvidson S, Moreno E. In vivo proteolytic degradation of the Escherichia coli acyltransferase HlyC. J Biol Chem 2001; 276:16660-6. [PMID: 11278516 DOI: 10.1074/jbc.m009514200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli hemolysin (HlyA) is the prototype toxin of a major family of exoproteins produced by Gram-negative bacteria known as "repeats in toxins." Only fatty acid-acylated HlyA molecules at residues Lys564 and Lys690 are able to damage the target cell membrane. Fatty acylation of pro-HlyA is dependent on the co-synthesized acyltransferase HlyC and the acylated form of acyl-carrier protein. By using a collection of hlyA and hlyC mutant strains, the processing of HlyC was investigated. HlyC was not detected by Western blot in an E. coli strain encoding hlyC and hlyA, but it was present in a strain encoding only hlyC. The hlyC mRNA pattern, however, was similar in both strains indicating that the turnover of HlyC does not occur at the transcriptional level. HlyC was detected in Western blots of cell lysates from an E. coli strain encoding HlyC and a HlyA derivative where both acylation sites were substituted. Similar results were obtained when HlyC was expressed in a hlyA mutant strain lacking part of a putative HlyC binding domain, indicating that this particular HlyA region affects HlyC stability. We did not detect HlyC in cell lysates from hlyC mutants with different abilities to acylate pro-HlyA, suggesting that the degradation of HlyC is not related to the HlyA acylation process. The protease systems ClpAP, ClpXP, and FtsH were found to be responsible for the HlyA-dependent processing of HlyC.
Collapse
Affiliation(s)
- C Guzman-Verri
- Microbiology & Tumorbiology Center, Box 280, Karolinska Institute, S-171-77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Kizil G, Todd I, Atta M, Borriello SP, Ait-Tahar K, Ala'Aldeen DA. Identification and characterization of TspA, a major CD4(+) T-cell- and B-cell-stimulating Neisseria-specific antigen. Infect Immun 1999; 67:3533-41. [PMID: 10377136 PMCID: PMC116541 DOI: 10.1128/iai.67.7.3533-3541.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In search for novel T-cell immunogens involved in protection against invasive meningococcal disease, we screened fractionated proteins of Neisseria meningitidis (strain SD, B:15:P1.16) by using peripheral blood mononuclear cells (PBMCs) and specific T-cell lines obtained from normal individuals and patients convalescing from N. meningitidis infection. Proteins of iron-depleted meningococci produced higher PBMC proliferation indices than proteins of iron-replete organisms, indicating that iron-regulated proteins are T-cell immunogens. Insoluble proteins of the iron-depleted cells, which produced better T-cell stimulation than soluble ones, were fractionated by using sodium dodecyl sulfate-polyacrylamide gels and recovered as five fractions (F1 to F5) corresponding to decreasing molecular weight ranges. The proteins were purified (by elution and precipitation) or electroblotted onto nitrocellulose membranes (dissolved and precipitated) before use in further T-cell proliferation assays. One of the fractions (F1), containing high-molecular-mass proteins (>130 kDa), consistently showed the strongest T-cell proliferation responses in all of the T-cell lines examined. F1 proteins were subdivided into four smaller fractions (F1A to F1D) which were reexamined in T-cell proliferation assays, and F1C induced the strongest responses in patients' T-cell lines. Rabbit polyclonal antibodies to F1C components were used to screen a genomic expression library of N. meningitidis. Two major clones (C1 and C24) of recombinant meningococcal DNA were identified and fully sequenced. Sequence analysis showed that C24 (1,874 bp) consisted of a single open reading frame (ORF), which was included in clone C1 (2, 778 bp). The strong CD4(+) T-cell-stimulating effect of the polypeptide product of this ORF (named TspA) was confirmed, using a patient T-cell line. Immunogenicity for B cells was confirmed by showing that convalescent patients' serum antibodies recognized TspA on Western blots. Additional genetic sequence downstream of C24 was obtained from the meningococcal genomic sequence database (Sanger Centre), enabling the whole gene of 2,761 bp to be reconstructed. The DNA and deduced amino acid sequence data for tspA failed to show significant homology to any known gene, except for a corresponding (uncharacterized) gene in Neisseria gonorrhoeae genome sequences, suggesting that tspA is unique to the genus Neisseria. The DNA and deduced amino acid sequence of the second ORF of clone C1 showed significant homology to gloA, encoding glyoxalase I enzyme, of Salmonella typhimurium and Escherichia coli. Thus, we have identified a novel neisserial protein (TspA) which proved to be a strong CD4(+) T-cell- and B-cell-stimulating immunogen with potential as a possible vaccine candidate.
Collapse
Affiliation(s)
- G Kizil
- Meningococcal Research Group, Divisions of Microbiology, School of Clinical Laboratory Sciences, University of Nottingham Faculty of Medicine and Health Sciences, Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | |
Collapse
|
42
|
Oresnik IJ, Twelker S, Hynes MF. Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl Environ Microbiol 1999; 65:2833-40. [PMID: 10388672 PMCID: PMC91425 DOI: 10.1128/aem.65.7.2833-2840.1999] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3-kb region containing the determinant for bacteriocin activity from Rhizobium leguminosarum 248 was isolated and characterized by Tn5 insertional mutagenesis and DNA sequencing. Southern hybridizations showed that this bacteriocin was encoded on the plasmid pRL1JI and that homologous loci were not found in other unrelated R. leguminosarum strains. Tn5 insertional mutagenesis showed that mutations in the C-terminal half of the bacteriocin open reading frame apparently did not abolish bacteriocin activity. Analysis of the deduced amino acid sequence revealed that, similarly to RTX proteins (such as hemolysin and leukotoxin), this protein contains a characteristic nonapeptide repeated up to 18 times within the protein. In addition, a novel 19- to 25-amino-acid motif that occurred every 130 amino acids was detected. Bacteriocin bioactivity was correlated with the presence of a protein of approximately 100 kDa in the culture supernatants, and the bacteriocin bioactivity demonstrated a calcium dependence in both R. leguminosarum and Sinorhizobium meliloti. A mutant of strain 248 unable to produce this bacteriocin was found to have a statistically significant reduction in competitiveness for nodule occupancy compared to two test strains in coinoculation assays. However, this strain was unable to compete any more successfully with a third test strain, 3841, than was wild-type 248.
Collapse
Affiliation(s)
- I J Oresnik
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
43
|
Lee SJ, Gray MC, Guo L, Sebo P, Hewlett EL. Epitope mapping of monoclonal antibodies against Bordetella pertussis adenylate cyclase toxin. Infect Immun 1999; 67:2090-5. [PMID: 10225859 PMCID: PMC115942 DOI: 10.1128/iai.67.5.2090-2095.1999] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenylate cyclase (AC) toxin from Bordetella pertussis is a 177-kDa repeats-in-toxin (RTX) family protein that consists of four principal domains; the catalytic domain, the hydrophobic domain, the glycine/aspartate-rich repeat domain, and the secretion signal domain. Epitope mapping of 12 monoclonal antibodies (MAbs) directed against AC toxin was conducted to identify regions important for the functional activities of this toxin. A previously developed panel of in-frame deletion mutants of AC toxin was used to localize MAb-specific epitopes on the toxin. The epitopes of these 12 MAbs were located throughout the toxin molecule, recognizing all major domains. Two MAbs recognized a single epitope on the distal portion of the catalytic domain, two reacted with the C-terminal 217 amino acids, one bound to the hydrophobic domain, and one bound to either the hydrophobic domain or the functionally unidentified region adjacent to it. The remaining six MAbs recognized the glycine/aspartate-rich repeat region. To localize these six MAbs, different peptides derived from the repeat region were constructed. Two of the six MAbs appeared to react with the repetitive motif and exhibited cross-reactivity with Escherichia coli hemolysin. The remaining four MAbs appeared to interact with unique epitopes within the repeat region. To evaluate the roles of these epitopes on toxin function, each MAb was screened for its effect on intoxication (cyclic AMP accumulation) and hemolytic activity. The two MAbs recognizing the distal portion of the catalytic domain blocked intoxication of Jurkat cells by AC toxin but had no effect on hemolysis. On the other hand, a MAb directed against a portion of the repeat region caused partial inhibition of AC toxin-induced hemolysis without affecting intoxication. In addition, the MAb recognizing either the hydrophobic domain or the unidentified region adjacent to it inhibited both intoxication and hemolytic activity of AC toxin. These findings extend our understanding of the regions necessary for the complex events required for the biological activities of AC toxin and provide a set of reagents for further study of this novel virulence factor.
Collapse
Affiliation(s)
- S J Lee
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
44
|
Ferreirós C, Criado MT, Gómez JA. The neisserial 37 kDa ferric binding protein (FbpA). Comp Biochem Physiol B Biochem Mol Biol 1999; 123:1-7. [PMID: 10425707 DOI: 10.1016/s0305-0491(99)00044-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The ferric binding protein (FbpA) is one of the major proteins regulated by the level of environmental iron in the genus Neisseria. Its conservation in all species of pathogenic Neisseria has been demonstrated, and the possible role that it plays in the iron uptake mechanisms in these bacteria has been postulated. Similar proteins in Haemophilus influenzae (HitA) and in Serratia marcescens (SfuA) have been described, but relationships with the meningococcal FbpA could not be proven. Although supposedly periplasmic, the exact location of FbpA remains controversial because some molecules, or parts of them, have been found exposed to the bacterial outer surface. The DNA sequence downstream of the fbpA gene has been recently analysed, finding an operon composed of three open reading frames: fbpA, encoding for FbpA; fbpB, that codifies a cytoplasmic permease, and fbpC, that contains the information for a nucleotide binding protein. These proteins would form an iron transport system through the periplasmic space. FbpA is highly antigenic in mice when injected in purified form, shows intraspecies and interspecies antigenic homogenicity, and specific anti-FbpA antibodies are fully cross-reactive; nevertheless, the in vivo induction of anti-FbpA antibodies in man is still polemical. Recent studies reveal that the purified FbpA induces a fair response of bactericidal antibodies in mice.
Collapse
Affiliation(s)
- C Ferreirós
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Spain.
| | | | | |
Collapse
|
45
|
Nassif X, Pujol C, Tinsley C, Morand P, Eugène E, Marceau M, Perrin A, Pron B, Taha MK. What do we know about the entry of s into the meninges? into the meninges? ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0020-2452(97)83530-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Kuhnert P, Heyberger-Meyer B, Burnens AP, Nicolet J, Frey J. Detection of RTX toxin genes in gram-negative bacteria with a set of specific probes. Appl Environ Microbiol 1997; 63:2258-65. [PMID: 9172345 PMCID: PMC168518 DOI: 10.1128/aem.63.6.2258-2265.1997] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The family of RTX (RTX representing repeats in the structural toxin) toxins is composed of several protein toxins with a characteristic nonapeptide glycine-rich repeat motif. Most of its members were shown to have cytolytic activity. By comparing the genetic relationships of the RTX toxin genes we established a set of 10 gene probes to be used for screening as-yet-unknown RTX toxin genes in bacterial species. The probes include parts of apxIA, apxIIA, and apxIIIA from Actinobacillus pleuropneumoniae, cyaA from Bordetella pertusis, frpA from Neisseria meningitidis, prtC from Erwinia chrysanthemi, hlyA and elyA from Escherichia coli, aaltA from Actinobacillus actinomycetemcomitans and lktA from Pasteurella haemolytica. A panel of pathogenic and nonpathogenic gram-negative bacteria were investigated for the presence of RTX toxin genes. The probes detected all known genes for RTX toxins. Moreover, we found potential RTX toxin genes in several pathogenic bacterial species for which no such toxins are known yet. This indicates that RTX or RTX-like toxins are widely distributed among pathogenic gram-negative bacteria. The probes generated by PCR and the hybridization method were optimized to allow broad-range screening for RTX toxin genes in one step. This included the binding of unlabelled probes to a nylon filter and subsequent hybridization of the filter with labelled genomic DNA of the strain to be tested. The method constitutes a powerful tool for the assessment of the potential pathogenicity of poorly characterized strains intended to be used in biotechnological applications. Moreover, it is useful for the detection of already-known or new RTX toxin genes in bacteria of medical importance.
Collapse
Affiliation(s)
- P Kuhnert
- Institute of Veterinary Bucteriology, University of Berm, Switzerland.
| | | | | | | | | |
Collapse
|
47
|
Forng RY, Ekechukwu CR, Subbarao S, Morse SA, Genco CA. Promoter mapping and transcriptional regulation of the iron-regulated Neisseria gonorrhoeae fbpA gene. J Bacteriol 1997; 179:3047-52. [PMID: 9139927 PMCID: PMC179073 DOI: 10.1128/jb.179.9.3047-3052.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In this study, we have mapped the promoter region of the Neisseria gonorrhoeae ferric iron binding protein-encoding gene fbpA, determined the start point of transcription, and examined the accumulation of fbpA mRNA Primer extension analysis of the fbpA promoter region indicated a single transcriptional start site located 51 bp upstream of the ATG translational start site. Northern blot analysis with a 200-bp fbpA structural gene probe detected one transcript of 1.0 kb in RNAs extracted from gonococcal cultures grown under iron-restricted conditions; the 1.0-kb transcript was observed to accumulate at a steady rate throughout the growth cycle. In comparison, in cultures grown under iron-sufficient conditions, the intensity of the 1.0-kb transcript was reduced considerably. Isolation of total RNA from rifampin-treated cells indicated that the half-life of the 1.0-kb fbpA transcript in cells grown under iron-restricted conditions was 1.2 +/- 0.2 min, while that of the 1.0-kb fbpA transcript obtained from cultures grown under iron-sufficient conditions was 0.5 +/- 0.1 min. Taken together, our results indicate that the fbpA promoter is regulated by iron and that transcription and translation of FbpA are closely linked.
Collapse
Affiliation(s)
- R Y Forng
- Department of Microbiology and Immunology, Morehouse School of Medicine, Atlanta, Georgia 30310-1495, USA
| | | | | | | | | |
Collapse
|
48
|
The immune response to a meningococcal 200 kDa surface exposed protein following carriage and disease. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0888-0786(96)01075-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Ketley JM. Pathogenesis of enteric infection by Campylobacter. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 1):5-21. [PMID: 9025274 DOI: 10.1099/00221287-143-1-5] [Citation(s) in RCA: 248] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Julian M Ketley
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
50
|
Affiliation(s)
- M Virji
- Dept of Paediatrics, University of Oxford, John Radcliffe Hospital, UK.
| |
Collapse
|