1
|
Wang S, Verma SK, Hakeem Said I, Thomsen L, Ullrich MS, Kuhnert N. Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microb Cell Fact 2018; 17:110. [PMID: 29986707 PMCID: PMC6036692 DOI: 10.1186/s12934-018-0957-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/02/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Marine diatoms have a higher fucoxanthin content in comparison to macroalgae. Fucoxanthin features many potent bioactive properties, particularly anti-obesity properties. Despite the great potential for harvesting larger amounts of fucoxanthin, the impacts of light quality (light source, intensity, and photoperiod) on fucoxanthin production and the essential proteins involved in fucoxanthin biosynthesis in marine diatoms remain unclear. RESULTS In the present study, Cylindrotheca closterium was selected from four different species of diatoms based on its high fucoxanthin content and productivity. Optimal light conditions (light source, intensity, and regime) were determined by a "Design of Experiment" approach (software MODDE Pro 11 was used). The model indicated that an 18/6 light/darkness regime increased fucoxanthin productivity remarkably as opposed to a 12/12 or 24/0 regime. Eventually, blue light-emitting diode light, as an alternative to fluorescent light, at 100 μmol/m2/s and 18/6 light/darkness regime yielded maximum fucoxanthin productivity and minimal energy consumption. The fucoxanthin production of C. closterium under the predicted optimal light conditions was assessed both in bottle and bag photobioreactors (PBRs). The high fucoxanthin content (25.5 mg/g) obtained from bag PBRs demonstrated the feasibility of large-scale production. The proteomes of C. closterium under the most favorable and unfavorable fucoxanthin biosynthesis light/darkness regimes (18/6 and 24/0, respectively) were compared to identify the essential proteins associated with fucoxanthin accumulation by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Six proteins that were up-regulated in the 18/6 regime but down-regulated in the 24/0 were identified as important chloroplastic proteins involved in photosynthesis, energy metabolism, and cellular processes. CONCLUSIONS Blue light-emitting diode light at 100 μmol/m2/s and 18/6 light/darkness regime induced maximum fucoxanthin productivity in C. closterium and minimized energy consumption. The high fucoxanthin production in the bag photobioreactor under optimal light conditions demonstrated the possibility of commercialization. Proteomics suggests that fucoxanthin biosynthesis is intimately associated with the photosynthetic efficiency of the diatom, providing another technical and bioengineering outlook on fucoxanthin enhancement.
Collapse
Affiliation(s)
- Song Wang
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Sujit K. Verma
- Department of Life Science and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Inamullah Hakeem Said
- Department of Life Science and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Laurenz Thomsen
- Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Matthias S. Ullrich
- Department of Life Science and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Nikolai Kuhnert
- Department of Life Science and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
2
|
Böhnke S, Perner M. Unraveling RubisCO Form I and Form II Regulation in an Uncultured Organism from a Deep-Sea Hydrothermal Vent via Metagenomic and Mutagenesis Studies. Front Microbiol 2017; 8:1303. [PMID: 28747908 PMCID: PMC5506194 DOI: 10.3389/fmicb.2017.01303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/28/2017] [Indexed: 12/04/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the first major step of carbon fixation in the Calvin-Benson-Bassham (CBB) cycle. This autotrophic CO2 fixation cycle accounts for almost all the assimilated carbon on Earth. Due to the primary role that RubisCO plays in autotrophic carbon fixation, it is important to understand how its gene expression is regulated and the enzyme is activated. Since the majority of all microorganisms are currently not culturable, we used a metagenomic approach to identify genes and enzymes associated with RubisCO expression. The investigated metagenomic DNA fragment originates from the deep-sea hydrothermal vent field Nibelungen at 8°18′ S along the Mid-Atlantic Ridge. It is 13,046 bp and resembles genes from Thiomicrospira crunogena. The fragment encodes nine open reading frames (ORFs) which include two types of RubisCO, form I (CbbL/S) and form II (CbbM), two LysR transcriptional regulators (LysR1 and LysR2), two von Willebrand factor type A (CbbO-m and CbbO-1), and two AAA+ ATPases (CbbQ-m and CbbQ-1), expected to function as RubisCO activating enzymes. In silico analyses uncovered several putative LysR binding sites and promoter structures. Functions of some of these DNA motifs were experimentally confirmed. For example, according to mobility shift assays LysR1’s binding ability to the intergenic region of lysR1 and cbbL appears to be intensified when CbbL or LysR2 are present. Binding of LysR2 upstream of cbbM appears to be intensified if CbbM is present. Our study suggests that CbbQ-m and CbbO-m activate CbbL and that LysR1 and LysR2 proteins promote CbbQ-m/CbbO-m expression. CbbO-1 seems to activate CbbM and CbbM itself appears to contribute to intensifying LysR’s binding ability and thus its own transcriptional regulation. CbbM furthermore appears to impair cbbL expression. A model summarizes the findings and predicts putative interactions of the different proteins influencing RubisCO gene regulation and expression.
Collapse
Affiliation(s)
- Stefanie Böhnke
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| | - Mirjam Perner
- Molecular Biology of Microbial Consortia, Biocenter Klein Flottbek, University of HamburgHamburg, Germany
| |
Collapse
|
3
|
Abstract
Biological carbon dioxide fixation is an essential and crucial process catalyzed by both prokaryotic and eukaryotic organisms to allow ubiquitous atmospheric CO2 to be reduced to usable forms of organic carbon. This process, especially the Calvin-Bassham-Benson (CBB) pathway of CO2 fixation, provides the bulk of organic carbon found on earth. The enzyme ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) performs the key and rate-limiting step whereby CO2 is reduced and incorporated into a precursor organic metabolite. This is a highly regulated process in diverse organisms, with the expression of genes that comprise the CBB pathway (the cbb genes), including RubisCO, specifically controlled by the master transcriptional regulator protein CbbR. Many organisms have two or more cbb operons that either are regulated by a single CbbR or employ a specific CbbR for each cbb operon. CbbR family members are versatile and accommodate and bind many different effector metabolites that influence CbbR's ability to control cbb transcription. Moreover, two members of the CbbR family are further posttranslationally modified via interactions with other transcriptional regulator proteins from two-component regulatory systems, thus augmenting CbbR-dependent control and optimizing expression of specific cbb operons. In addition to interactions with small effector metabolites and other regulator proteins, CbbR proteins may be selected that are constitutively active and, in some instances, elevate the level of cbb expression relative to wild-type CbbR. Optimizing CbbR-dependent control is an important consideration for potentially using microbes to convert CO2 to useful bioproducts.
Collapse
|
4
|
Axen SD, Erbilgin O, Kerfeld CA. A taxonomy of bacterial microcompartment loci constructed by a novel scoring method. PLoS Comput Biol 2014; 10:e1003898. [PMID: 25340524 PMCID: PMC4207490 DOI: 10.1371/journal.pcbi.1003898] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/09/2014] [Indexed: 01/21/2023] Open
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles involved in both autotrophic and heterotrophic metabolism. All BMCs share homologous shell proteins but differ in their complement of enzymes; these are typically encoded adjacent to shell protein genes in genetic loci, or operons. To enable the identification and prediction of functional (sub)types of BMCs, we developed LoClass, an algorithm that finds putative BMC loci and inventories, weights, and compares their constituent pfam domains to construct a locus similarity network and predict locus (sub)types. In addition to using LoClass to analyze sequences in the Non-redundant Protein Database, we compared predicted BMC loci found in seven candidate bacterial phyla (six from single-cell genomic studies) to the LoClass taxonomy. Together, these analyses resulted in the identification of 23 different types of BMCs encoded in 30 distinct locus (sub)types found in 23 bacterial phyla. These include the two carboxysome types and a divergent set of metabolosomes, BMCs that share a common catalytic core and process distinct substrates via specific signature enzymes. Furthermore, many Candidate BMCs were found that lack one or more core metabolosome components, including one that is predicted to represent an entirely new paradigm for BMC-associated metabolism, joining the carboxysome and metabolosome. By placing these results in a phylogenetic context, we provide a framework for understanding the horizontal transfer of these loci, a starting point for studies aimed at understanding the evolution of BMCs. This comprehensive taxonomy of BMC loci, based on their constituent protein domains, foregrounds the functional diversity of BMCs and provides a reference for interpreting the role of BMC gene clusters encoded in isolate, single cell, and metagenomic data. Many loci encode ancillary functions such as transporters or genes for cofactor assembly; this expanded vocabulary of BMC-related functions should be useful for design of genetic modules for introducing BMCs in bioengineering applications. Some enzymatic transformations have undesirable side reactions, produce toxic or volatile intermediates, or are inefficient; these shortcomings can be alleviated through their sequestration with their substrates in a confined space, as in the membrane-bound organelles of eukaryotes. Recently, it was discovered that bacteria also form organelles–bacterial microcompartments (BMCs)–composed of a protein shell that surrounds functionally related enzymes. BMCs long evaded detection because they typically form only in the presence of the substrate they metabolize, and they can only be visualized by electron microscopy. A few BMCs have been experimentally characterized; they have diverse functions in CO2 fixation, pathogenesis, and niche colonization. While the encapsulated enzymes differ among functionally distinct BMCs, the shell architecture is conserved. This enables their detection computationally, as genes for shell proteins are typically nearby genes for the encapsulated enzymes. We developed a novel algorithm to comprehensively identify and categorize BMCs in sequenced bacterial genomes. We show that BMCs are often encoded adjacent to genes that play supporting roles to the organelle's function. Our results provide the first glimpse of the extent of BMC metabolic diversity and will inform design of genetic modules encoding BMCs for introduction of new metabolic functions in a plug-and-play approach.
Collapse
Affiliation(s)
- Seth D. Axen
- DOE Joint Genome Institute, Walnut Creek, California, United States of America
| | - Onur Erbilgin
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Cheryl A. Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Berkeley Synthetic Biology Institute, Berkeley, California, United States of America
- * E-mail: ,
| |
Collapse
|
5
|
Esparza M, Cárdenas JP, Bowien B, Jedlicki E, Holmes DS. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans. BMC Microbiol 2010; 10:229. [PMID: 20799944 PMCID: PMC2942843 DOI: 10.1186/1471-2180-10-229] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/27/2010] [Indexed: 11/10/2022] Open
Abstract
Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2). Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4) in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB) cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39) and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA) were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs) confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19). Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II RubisCO could promote the ability of A. ferrooxidans to fix CO2 at different concentrations of CO2. Conclusions A. ferrooxidans has features of cbb gene organization for CO2-assimilating functions that are characteristic of obligate chemolithoautotrophs and distinguish this group from facultative autotrophs. The most conspicuous difference is a separate operon for the cbbP gene. It is hypothesized that this organization may provide greater flexibility in the regulation of expression of genes involved in inorganic carbon assimilation.
Collapse
Affiliation(s)
- Mario Esparza
- Center for Bioinformatics and Genome Biology, MIFAB, Fundación Ciencia para la Vida and Depto. de Ciencias Biologicas, Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Toyoda K, Yoshizawa Y, Arai H, Ishii M, Igarashi Y. The role of two CbbRs in the transcriptional regulation of three ribulose-1,5-bisphosphate carboxylase/oxygenase genes in Hydrogenovibrio marinus strain MH-110. MICROBIOLOGY-SGM 2005; 151:3615-3625. [PMID: 16272383 DOI: 10.1099/mic.0.28056-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Hydrogenovibrio marinus MH-110 possesses three different sets of genes for ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO): two form I (cbbLS-1 and cbbLS-2) and one form II (cbbM). We have previously shown that the expression of these RubisCO genes is dependent on the ambient CO2 concentration. LysR-type transcriptional regulators, designated CbbR1 and CbbRm, are encoded upstream of the cbbLS-1 and cbbM genes, respectively. In this study, we revealed by gel shift assay that CbbR1 and CbbRm bind with higher affinity to the promoter regions of cbbLS-1 and cbbM, respectively, and with lower affinity to the other RubisCO gene promoters. The expression patterns of the three RubisCOs in the cbbR1 and the cbbRm gene mutants showed that CbbR1 and CbbRm were required to activate the expression of cbbLS-1 and cbbM, respectively, and that neither CbbR1 nor CbbRm was required for the expression of cbbLS-2. The expression of cbbLS-1 was significantly enhanced under high-CO2 conditions in the cbbRm mutant, in which the expression of cbbM was decreased. Although cbbLS-2 was not expressed under high-CO2 conditions in the wild-type strain or the single cbbR mutants, the expression of cbbLS-2 was observed in the cbbR1 cbbRm double mutant, in which the expression of both cbbLS-1 and cbbM was decreased. These results indicate that there is an interactive regulation among the three RubisCO genes.
Collapse
Affiliation(s)
- Koichi Toyoda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoichi Yoshizawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroyuki Arai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Masaharu Ishii
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Igarashi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Rawlings DE. Characteristics and adaptability of iron- and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microb Cell Fact 2005; 4:13. [PMID: 15877814 PMCID: PMC1142338 DOI: 10.1186/1475-2859-4-13] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 05/06/2005] [Indexed: 12/21/2022] Open
Abstract
Microorganisms are used in large-scale heap or tank aeration processes for the commercial extraction of a variety of metals from their ores or concentrates. These include copper, cobalt, gold and, in the past, uranium. The metal solubilization processes are considered to be largely chemical with the microorganisms providing the chemicals and the space (exopolysaccharide layer) where the mineral dissolution reactions occur. Temperatures at which these processes are carried out can vary from ambient to 80 degrees C and the types of organisms present depends to a large extent on the process temperature used. Irrespective of the operation temperature, biomining microbes have several characteristics in common. One shared characteristic is their ability to produce the ferric iron and sulfuric acid required to degrade the mineral and facilitate metal recovery. Other characteristics are their ability to grow autotrophically, their acid-tolerance and their inherent metal resistance or ability to acquire metal resistance. Although the microorganisms that drive the process have the above properties in common, biomining microbes usually occur in consortia in which cross-feeding may occur such that a combination of microbes including some with heterotrophic tendencies may contribute to the efficiency of the process. The remarkable adaptability of these organisms is assisted by several of the processes being continuous-flow systems that enable the continual selection of microorganisms that are more efficient at mineral degradation. Adaptability is also assisted by the processes being open and non-sterile thereby permitting new organisms to enter. This openness allows for the possibility of new genes that improve cell fitness to be selected from the horizontal gene pool. Characteristics that biomining microorganisms have in common and examples of their remarkable adaptability are described.
Collapse
Affiliation(s)
- Douglas E Rawlings
- Department of Microbiology, University of Stellenbosch, Private BagX1, Matieland, 7602, South Africa.
| |
Collapse
|
9
|
Dubbs P, Dubbs JM, Tabita FR. Effector-mediated interaction of CbbRI and CbbRII regulators with target sequences in Rhodobacter capsulatus. J Bacteriol 2004; 186:8026-35. [PMID: 15547275 PMCID: PMC529060 DOI: 10.1128/jb.186.23.8026-8035.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Rhodobacter capsulatus, genes encoding enzymes of the Calvin-Benson-Bassham reductive pentose phosphate pathway are located in the cbb(I) and cbb(II) operons. Each operon contains a divergently transcribed LysR-type transcriptional activator (CbbR(I) and CbbR(II)) that regulates the expression of its cognate cbb promoter in response to an as yet unidentified effector molecule(s). Both CbbR(I) and CbbR(II) were purified, and the ability of a variety of potential effector molecules to induce changes in their DNA binding properties at their target promoters was assessed. The responses of CbbR(I) and CbbR(II) to potential effectors were not identical. In gel mobility shift assays, the affinity of both CbbR(I) and CbbR(II) for their target promoters was enhanced in the presence of ribulose-1,5-bisphosphate (RuBP), phosphoenolpyruvate, 3-phosphoglycerate, 2-phosphoglycolate. ATP, 2-phosphoglycerate, and KH(2)PO(4) were found to enhance only CbbR(I) binding, while fructose-1,6-bisphosphate enhanced the binding of only CbbR(II). The DNase I footprint of CbbR(I) was reduced in the presence of RuBP, while reductions in the CbbR(II) DNase I footprint were induced by fructose-1,6-bisphosphate, 3-phosphoglycerate, and KH(2)PO(4). The current in vitro results plus recent in vivo studies suggest that CbbR-mediated regulation of cbb transcription is controlled by multiple metabolic signals in R. capsulatus. This control reflects not only intracellular levels of Calvin-Benson-Bassham cycle metabolic intermediates but also the fixed (organic) carbon status and energy charge of the cell.
Collapse
Affiliation(s)
- Padungsri Dubbs
- Department of Microbiology, Mahidol University, Payathai, Thailand
| | | | | |
Collapse
|
10
|
Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. Differential protein expression during growth of Acidithiobacillus ferrooxidans on ferrous iron, sulfur compounds, or metal sulfides. Appl Environ Microbiol 2004; 70:4491-8. [PMID: 15294777 PMCID: PMC492426 DOI: 10.1128/aem.70.8.4491-4498.2004] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 04/14/2004] [Indexed: 11/20/2022] Open
Abstract
A set of proteins that changed their levels of synthesis during growth of Acidithiobacillus ferrooxidans ATCC 19859 on metal sulfides, thiosulfate, elemental sulfur, and ferrous iron was characterized by using two-dimensional polyacrylamide gel electrophoresis. N-terminal amino acid sequencing and mass spectrometry analysis of these proteins allowed their identification and the localization of the corresponding genes in the available genomic sequence of A. ferrooxidans ATCC 23270. The genomic context around several of these genes suggests their involvement in the energetic metabolism of A. ferrooxidans. Two groups of proteins could be distinguished. The first consisted of proteins highly upregulated by growth on sulfur compounds (and downregulated by growth on ferrous iron): a 44-kDa outer membrane protein, an exported 21-kDa putative thiosulfate sulfur transferase protein, a 33-kDa putative thiosulfate/sulfate binding protein, a 45-kDa putative capsule polysaccharide export protein, and a putative 16-kDa protein of unknown function. The second group of proteins comprised those downregulated by growth on sulfur (and upregulated by growth on ferrous iron): rusticyanin, a cytochrome c(552), a putative phosphate binding protein (PstS), the small and large subunits of ribulose biphosphate carboxylase, and a 30-kDa putative CbbQ protein, among others. The results suggest in general a separation of the iron and sulfur utilization pathways. Rusticyanin, in addition to being highly expressed on ferrous iron, was also newly synthesized, as determined by metabolic labeling, although at lower levels, during growth on sulfur compounds and iron-free metal sulfides. During growth on metal sulfides containing iron, such as pyrite and chalcopyrite, both proteins upregulated on ferrous iron and those upregulated on sulfur compounds were synthesized, indicating that the two energy-generating pathways are induced simultaneously depending on the kind and concentration of oxidizable substrates available.
Collapse
Affiliation(s)
- Pablo Ramírez
- Laboratorio de Microbiología Molecular y Biotecnología, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
11
|
Wei X, Sayavedra-Soto LA, Arp DJ. The transcription of the cbb operon in Nitrosomonas europaea. Microbiology (Reading) 2004; 150:1869-1879. [PMID: 15184573 DOI: 10.1099/mic.0.26785-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nitrosomonas europaeais an aerobic ammonia-oxidizing bacterium that participates in the C and N cycles.N. europaeautilizes CO2as its predominant carbon source, and is an obligate chemolithotroph, deriving all the reductant required for energy and biosynthesis from the oxidation of ammonia (NH3) to nitrite (). This bacterium fixes carbon via the Calvin–Benson–Bassham (CBB) cycle via a type I ribulose bisphosphate carboxylase/oxygenase (RubisCO). The RubisCO operon is composed of five genes,cbbLSQON. This gene organization is similar to that of the operon for ‘green-like’ type I RubisCOs in other organisms. ThecbbRgene encoding the putative regulatory protein for RubisCO transcription was identified upstream ofcbbL. This study showed that transcription ofcbbgenes was upregulated when the carbon source was limited, whileamo,haoand other energy-harvesting-related genes were downregulated.N. europaearesponds to carbon limitation by prioritizing resources towards key components for carbon assimilation. Unlike the situation foramogenes, NH3was not required for the transcription of thecbbgenes. All fivecbbgenes were only transcribed when an external energy source was provided. In actively growing cells, mRNAs from the five genes in the RubisCO operon were present at different levels, probably due to premature termination of transcription, rapid mRNA processing and mRNA degradation.
Collapse
Affiliation(s)
- Xueming Wei
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Luis A Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| | - Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-2902, USA
| |
Collapse
|
12
|
Ross MK, Pegram RA. [35S]-labeling of the Salmonella typhimurium glutathione pool to assess glutathione-mediated DNA binding by 1,2-dibromoethane. Chem Biol Interact 2003; 146:39-49. [PMID: 12902151 DOI: 10.1016/s0009-2797(03)00071-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biotransformation of drugs and environmental chemicals to reactive intermediates is often studied with the use of radiolabeled compounds that are synthesized by expensive and technically difficult procedures. In general, glutathione (GSH) conjugation serves as a detoxification mechanism, and conjugation of reactive intermediates with GSH is often a surrogate marker of reactive species formation. However, several halogenated alkanes can be bioactivated by GSH to yield highly reactive GSH conjugates, some of which are DNA-reactive (e.g. conjugates of 1,2-dibromoethane). The purpose of this study was to metabolically radiolabel the in vivo GSH pool of Salmonella typhimurium with a [35S]-label and to examine the GSH-mediated bioactivation of a model haloalkane, 1,2-dibromoethane, by measuring the binding of [35S]-label to DNA. The strain of Salmonella used in this study had been transformed previously with the gene that codes for rat glutathione transferase theta 1-1 (GSTT1-1), an enzyme that can catalyze formation of genotoxic GSH conjugates. Bacteria were grown to mid-log phase and then incubated with [35S]-L-cysteine in minimal medium (thio-free) until stationary phase of growth was reached. At this stage, the specific activity of Salmonella GSH was estimated to be 7.1 mCi/mmol by derivatization and subsequent HPLC analysis, and GSTT1-1 enzyme activity was still demonstrable in Salmonella cytosol following growth in a minimal medium. The [35S]-labeled bacteria were then exposed to 1,2-dibromoethane (1 mM), and the Salmonella DNA was subsequently purified to quantify [35S]-binding to DNA. The amount of [35S]-label that was covalently bound to DNA in the GSTT1-1-expressing Salmonella strain (33.2 nmol/mg DNA) was sevenfold greater than that of the control strain that does not express GSTT1-1. Neutral thermal hydrolysis of the DNA yielded a single [35S]-labeled adduct with a similar t(R) as S-[2-(N(7)-guanyl)ethyl]GSH, following HPLC analysis of the hydrolysate. This adduct accounted for 95% of the total [35S]-label bound to DNA. Thus, this [35S]-radiolabeling protocol may prove useful for studying the DNA reactivity of GSH conjugates of other halogenated alkanes in a cellular context that maintains GSH at normal physiological levels. This is also, to our knowledge, the first demonstration of de novo incorporation of [35S]-L-cysteine into the bacterial GSH pool.
Collapse
Affiliation(s)
- Matthew K Ross
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
13
|
Tichi MA, Tabita FR. Metabolic signals that lead to control of CBB gene expression in Rhodobacter capsulatus. J Bacteriol 2002; 184:1905-15. [PMID: 11889097 PMCID: PMC134932 DOI: 10.1128/jb.184.7.1905-1915.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various mutant strains were used to examine the regulation and metabolic control of the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway in Rhodobacter capsulatus. Previously, a ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO)-deficient strain (strain SBI/II) was found to show enhanced levels of cbb(I) and cbb(II) promoter activities during photoheterotrophic growth in the presence of dimethyl sulfoxide. With this strain as the starting point, additional mutations were made in genes encoding phosphoribulokinase and transketolase and in the gene encoding the LysR-type transcriptional activator, CbbR(II). These strains revealed that a product generated by phosphoribulokinase was involved in control of CbbR-mediated cbb gene expression in SBI/II. Additionally, heterologous expression experiments indicated that Rhodobacter sphaeroides CbbR responded to the same metabolic signal in R. capsulatus SBI/II and mutant strain backgrounds.
Collapse
Affiliation(s)
- Mary A Tichi
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
14
|
Terazono K, Hayashi NR, Igarashi Y. CbbR, a LysR-type transcriptional regulator from Hydrogenophilus thermoluteolus, binds two cbb promoter regions. FEMS Microbiol Lett 2001; 198:151-7. [PMID: 11430407 DOI: 10.1111/j.1574-6968.2001.tb10635.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cbbR encoding the LysR-type transcriptional regulator is located downstream of cbbLSQOYA and this gene is located upstream of cbbFPT in divergent transcription. The two promoter regions with LysR-binding sites are located in the cbbL upstream region and in the cbbR-cbbF intergenic region. Electrophoretic mobility shift assays using a cell extract of Escherichia coli harboring a plasmid containing cbbR and the DNA fragments of promoter regions indicated that CbbR binds in both regions. NADPH caused differences in the complex of CbbR and DNA.
Collapse
Affiliation(s)
- K Terazono
- Department of Biotechnology, University of Tokyo, Japan
| | | | | |
Collapse
|
15
|
Shively JM, van Keulen G, Meijer WG. Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 1999; 52:191-230. [PMID: 9891798 DOI: 10.1146/annurev.micro.52.1.191] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last decade has seen significant advances in our understanding of the physiology, ecology, and molecular biology of chemoautotrophic bacteria. Many ecosystems are dependent on CO2 fixation by either free-living or symbiotic chemoautotrophs. CO2 fixation in the chemoautotroph occurs via the Calvin-Benson-Bassham cycle. The cycle is characterized by three unique enzymatic activities: ribulose bisphosphate carboxylase/oxygenase, phosphoribulokinase, and sedoheptulose bisphosphatase. Ribulose bisphosphate carboxylase/oxygenase is commonly found in the cytoplasm, but a number of bacteria package much of the enzyme into polyhedral organelles, the carboxysomes. The carboxysome genes are located adjacent to cbb genes, which are often, but not always, clustered in large operons. The availability of carbon and reduced substrates control the expression of cbb genes in concert with the LysR-type transcriptional regulator, CbbR. Additional regulatory proteins may also be involved. All of these, as well as related topics, are discussed in detail in this review.
Collapse
Affiliation(s)
- J M Shively
- Department of Biological Sciences, Clemson University, South Carolina 29634, USA.
| | | | | |
Collapse
|
16
|
Dubbs JM, Tabita FR. Two functionally distinct regions upstream of the cbbI operon of Rhodobacter sphaeroides regulate gene expression. J Bacteriol 1998; 180:4903-11. [PMID: 9733694 PMCID: PMC107516 DOI: 10.1128/jb.180.18.4903-4911.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/1997] [Accepted: 07/21/1998] [Indexed: 11/20/2022] Open
Abstract
A number of cbbFI::lacZ translational fusion plasmids containing various lengths of sequence 5' to the form I (cbbI) Calvin-Benson-Bassham cycle operon (cbbFIcbbPIcbbAIcbbLIcbbSI) of Rhodobacter sphaeroides were constructed. Expression of beta-galactosidase was monitored under a variety of growth conditions. It was found that 103 bp of sequence upstream of the cbbFI transcription start was sufficient to confer low levels of regulated cbbI promoter expression; this activity was dependent on the presence of an intact cbbR gene. Additionally, R. sphaeroides CbbR was shown to bind to the region between 9 and 100 bp 5' to the cbbFI transcription start. Inclusion of an additional upstream sequence, from 280 to 636 bp 5' to cbbFI, resulted in a significant increase in regulated cbbI promoter expression under all growth conditions tested. A 50-bp region responsible for the majority of this increase occurs between 280 and 330 bp 5' to cbbFI. The additional 306 bp of upstream sequence from 330 to 636 bp also appears to play a positive regulatory role. A 4-bp deletion 281 to 284 bp 5' to cbbFI significantly reduced cbbI expression while the proper regulatory pattern was retained. These studies provide evidence for the presence of two functionally distinct regions of the cbbI promoter, with the distal domain providing significant regulated promoter activity that adheres to the normal pattern of expression.
Collapse
Affiliation(s)
- J M Dubbs
- Department of Microbiology and the Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|
17
|
Paoli GC, Vichivanives P, Tabita FR. Physiological control and regulation of the Rhodobacter capsulatus cbb operons. J Bacteriol 1998; 180:4258-69. [PMID: 9696777 PMCID: PMC107425 DOI: 10.1128/jb.180.16.4258-4269.1998] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/1998] [Accepted: 06/03/1998] [Indexed: 11/20/2022] Open
Abstract
The genes encoding enzymes of the Calvin-Benson-Bassham (CBB) reductive pentose phosphate pathway in Rhodobacter capsulatus are organized in at least two operons, each preceded by a separate cbbR gene, encoding potential LysR-type transcriptional activators. As a prelude to studies of cbb gene regulation in R. capsulatus, the nucleotide sequence of a 4,537-bp region, which included cbbRII, was determined. This region contained the following open reading frames: a partial pgm gene (encoding phosphoglucomutase) and a complete qor gene (encoding NADPH:quinone oxidoreductase), followed by cbbRII, cbbF (encoding fructose 1,6-bisphosphatase), cbbP (encoding phosphoribulokinase), and part of cbbT (encoding transketolase). Physiological control of the CBB pathway and regulation of the R. capsulatus cbb genes were studied by using a combination of mutant strains and promoter fusion constructs. Characterization of mutant strains revealed that either form I or form II ribulose 1, 5-bisphosphate carboxylase/oxygenase (RubisCO), encoded by the cbbLS and cbbM genes, respectively, could support photoheterotrophic and autotrophic growth. A strain with disruptions in both cbbL and cbbM could not grow autotrophically and grew photoheterotrophically only when dimethyl sulfoxide was added to the culture medium. Disruption of cbbP resulted in a strain that did not synthesize form II RubisCO and had a phenotype similar to that observed in the RubisCO-minus strain, suggesting that there is only one cbbP gene in R. capsulatus and that this gene is cotranscribed with cbbM. Analysis of RubisCO activity and synthesis in strains with disruptions in either cbbRI or cbbRII, and beta-galactosidase determinations from wild-type and mutant strains containing cbbIp- and cbbIIp-lacZ fusion constructs, indicated that the cbbI and cbbII operons of R. capsulatus are within separate CbbR regulons.
Collapse
Affiliation(s)
- G C Paoli
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | |
Collapse
|
18
|
van Keulen G, Girbal L, van den Bergh ER, Dijkhuizen L, Meijer WG. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J Bacteriol 1998; 180:1411-7. [PMID: 9515907 PMCID: PMC107038 DOI: 10.1128/jb.180.6.1411-1417.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autotrophic growth of Xanthobacter flavus is dependent on the fixation of carbon dioxide via the Calvin cycle and on the oxidation of simple organic and inorganic compounds to provide the cell with energy. Maximal induction of the cbb and gap-pgk operons encoding enzymes of the Calvin cycle occurs in the absence of multicarbon substrates and the presence of methanol, formate, hydrogen, or thiosulfate. The LysR-type transcriptional regulator CbbR regulates the expression of the cbb and gap-pgk operons, but it is unknown to what cellular signal CbbR responds. In order to study the effects of low-molecular-weight compounds on the DNA-binding characteristics of CbbR, the protein was expressed in Escherichia coli and subsequently purified to homogeneity. CbbR of X. flavus is a dimer of 36-kDa subunits. DNA-binding assays suggested that two CbbR molecules bind to a 51-bp DNA fragment on which two inverted repeats containing the LysR motif are located. The addition of 200 microM NADPH, but not NADH, resulted in a threefold increase in DNA binding. The apparent K(dNADPH) of CbbR was determined to be 75 microM. By using circular permutated DNA fragments, it was shown that CbbR introduces a 64 degree bend in the DNA. The presence of NADPH in the DNA-bending assay resulted in a relaxation of the DNA bend by 9 degree. From the results of these in vitro experiments, we conclude that CbbR responds to NADPH. The in vivo regulation of the cbb and gap-pgk operons may therefore be regulated by the intracellular concentration of NADPH.
Collapse
Affiliation(s)
- G van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
19
|
Paoli GC, Soyer F, Shively J, Tabita FR. Rhodobacter capsulatus genes encoding form I ribulose-1,5-bisphosphate carboxylase/oxygenase (cbbLS) and neighbouring genes were acquired by a horizontal gene transfer. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 1):219-227. [PMID: 9467914 DOI: 10.1099/00221287-144-1-219] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Analysis of the nucleotide sequence of the form I ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) genes (cbbL and cbbS) of the non-sulfur purple bacterium Rhodobacter capsulatus indicated that the deduced amino acid sequence of the large subunit was not closely homologous to the large subunit from related organisms. Indeed, phylogenetic analysis suggested that the large subunit protein (CbbL) more closely resembled the enzyme from alpha/beta/gamma purple bacteria and cyanobacteria and is within a 'green-like' radiation of the RubisCO phylogenetic tree, well separated from CbbL of the related organism Rhodobacter sphaeroides. A cbbQ gene was discovered downstream of cbbS in Rh. capsulatus, a gene arrangement which also appears to be limited to certain organisms containing a 'green-like' RubisCO. Upstream, and divergently transcribed from cbbLSQ, is a gene (cbbRI) that encodes a LysR-type transcriptional activator. Phylogenetic analysis of the deduced amino acid sequence of CbbRI also suggests that this protein is quite distinct from the Rh. sphaeroides CbbR protein, and is even distinct from the previously described CbbRII protein, the gene of which is upstream and divergently transcribed from the cbbII operon of Rh. capsulatus. Interestingly, Rh. capsulatus CbbRI is more closely related to CbbR from bacteria whose RubisCO falls within the 'green-like' radiation of the CbbL tree. These studies suggest that the cbbRI-cbbL-cbbS-cbbQ genes were acquired by Rh. capsulatus via horizontal gene transfer from a bacterial species containing a 'green-like' RubisCO.
Collapse
Affiliation(s)
- George C Paoli
- The Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - Ferda Soyer
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Jessup Shively
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - F Robert Tabita
- The Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
20
|
Kusian B, Bowien B. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 1997; 21:135-55. [PMID: 9348665 DOI: 10.1111/j.1574-6976.1997.tb00348.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Calvin-Benson-Bassham cycle constitutes the principal route of CO2 assimilation in aerobic chemoautotrophic and in anaerobic phototrophic purple bacteria. Most of the enzymes of the cycle are found to be encoded by cbb genes. Despite some conservation of the internal gene arrangement cbb gene clusters of the various organisms differ in size and operon organization. The cbb operons of facultative autotrophs are more strictly regulated than those of obligate autotrophs. The major control is exerted by the cbbR gene, which codes for a transcriptional activator of the LysR family. This gene is typically located immediately upstream of and in divergent orientation to the regulated cbb operon, forming a control region for both transcriptional units. Recent studies suggest that additional protein factors are involved in the regulation. Although the metabolic signal(s) received by the regulatory components of the operons is (are) still unknown, the redox state of the cell is believed to play a key role. It is proposed that the control of the cbb operon expression is integrated into a regulatory network.
Collapse
Affiliation(s)
- B Kusian
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
21
|
Paoli GC, Morgan NS, Tabita FR, Shively JM. Expression of the cbbLcbbS and cbbM genes and distinct organization of the cbb Calvin cycle structural genes of Rhodobacter capsulatus. Arch Microbiol 1995; 164:396-405. [PMID: 8588741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rhodobacter capsulatus fixes CO2 via the Calvin reductive pentose phosphate pathway and, like some other nonsulfur purple bacteria, is known to synthesize two distinct structural forms of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Cosmid clones that hybridized to form I (cbbLcbbS) and form II (cbbM) RubisCO gene probes were isolated from a genomic library of R. capsulatus strain SB1003. Southern blotting and hybridization analysis with gene-specific probes derived from Rhodobacter sphaeroides revealed that R. capsulatus cbbM is clustered with genes encoding other enzymes of the Calvin cycle, including fructose 1,6/sedoheptulose 1,7-bisphosphatase (cbbF), phosphoribulokinase (cbbP), transketolase (cbbT), glyceraldehyde-3-phosphate dehydrogenase (cbbG), and fructose 1,6-bisphosphate aldolase (cbbA), as well as a gene (cbbR) encoding a divergently transcribed LysR-type regulatory protein. Surprisingly, a cosmid clone containing the R. capsulatus form I RubisCO genes (cbbL and cbbS) failed to hybridize to the other cbb structural gene probes, unlike the situation with the closely related organism R. sphaeroides. The form I and form II RubisCO genes were cloned into pUC-derived vectors and were expressed in Escherichia coli to yield active recombinant enzyme in each case. Complementation of a RubisCO-deletion strain of R. sphaeroides to photosynthetic growth by R. capsulatus cbbLcbbS or cbbM was achieved using the broad host-range vector, pRK415, and R. sphaeroides expression vector pRPS-1.
Collapse
Affiliation(s)
- G C Paoli
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
22
|
Paoli GC, Morgan NS, Tabita FR, Shively JM. Expression of thecbbLcbbS andcbbM genes and distinct organization of thecbb Calvin cycle structural genes ofRhodobacter capsulatus. Arch Microbiol 1995. [DOI: 10.1007/bf02529737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Kusian B, Bowien B. Operator binding of the CbbR protein, which activates the duplicate cbb CO2 assimilation operons of Alcaligenes eutrophus. J Bacteriol 1995; 177:6568-74. [PMID: 7592435 PMCID: PMC177510 DOI: 10.1128/jb.177.22.6568-6574.1995] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The regulatory protein CbbR, which activates the transcription of the duplicate, chromosomally and megaplasmid pHG1-borne cbb CO2 assimilation operons of Alcaligenes eutrophus H16, was purified to homogeneity from Escherichia coli after heterologous expression of the cloned cbbR gene. The pure protein occurred as either a 63-kDa dimer at room temperature or a 125-kDa tetramer at 4 degrees C. CbbR bound to the 167-bp cbb control region separating the divergently oriented cbbR gene (defective copy on pHG1) from the cbb operon. DNase I footprinting revealed binding of the protein between position -29 and -74 relative to the transcriptional start point of the cbb operon, with a hypersensitive site at positions -47 and -48, suggesting potential DNA bending. Hydroxyl radical footprinting disclosed the same central binding region. The region was found to consist of two subsites to which the activator apparently bound in a cooperative manner. At higher CbbR concentrations, the binding region extended to position +13. The overlapping arrangement of the operon promoter and CbbR-binding region (operator) suggests an interaction between CbbR and RNA polymerase to cause transcription activation. Transcriptional fusions with fragments carrying 1- or 2-bp insertions within the central region showed no operon promoter activity, although CbbR binding was not prevented by these mutations. Dissection of the central region enabled the differentiation of two apparently independent binding subsites. Strongly increased cbbR promoter activity originating from a fragment that contained only a part of the central region indicated negative autoregulation of cbbR transcription.
Collapse
Affiliation(s)
- B Kusian
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
24
|
Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K. A maize DNA-binding factor with a bZIP motif is induced by low temperature. MOLECULAR & GENERAL GENETICS : MGG 1995; 248:507-17. [PMID: 7476849 DOI: 10.1007/bf02423445] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have isolated a low temperature-induced maize gene, mlip15, via cross hybridization using rice lip19. The longest cDNA isolated comprised 1179 bp and coded for a 135 amino acid bZIP (basic region/leucine zipper) protein. The gene showed 61.4% and 68.9% identity with the rice gene at the DNA and amino acid sequence levels, respectively, and is distinct from other maize genes that code for bZIP proteins. The level of mlip15 transcript was positively regulated by low temperature in the same way as the lip19 transcript. The levels of the transcript were also strongly increased by salt stress and exogenous abscisic acid, and slightly increased by anaerobiosis, but were not affected by heat shock and drought. The mLIP15 protein and truncated derivatives, produced in rabbit reticulocyte lysates or in an Escherichia coli expression system, were able to bind to a fragment of the wheat histone H3 gene promoter. This binding was diminished by addition of a molar excess of the hexamer sequence 5'-ACGTCA-3' found in the promoter and of the G-box-like sequence, but not by the addition of the ocs sequence or a mutated hexamer sequence. The factor bound to a promoter region of the maize Adh1 gene, expression of which is also induced by low temperature. These results lead to the conclusion that mlip15 is a strong candidate for a low temperature-induced transcription factor in maize.
Collapse
Affiliation(s)
- T Kusano
- Laboratory of Plant Genetic Engineering, Biotechnology Institute, Akita Prefectural College of Agriculture, Japan
| | | | | | | | | |
Collapse
|
25
|
Kusian B, Bednarski R, Husemann M, Bowien B. Characterization of the duplicate ribulose-1,5-bisphosphate carboxylase genes and cbb promoters of Alcaligenes eutrophus. J Bacteriol 1995; 177:4442-50. [PMID: 7543477 PMCID: PMC177195 DOI: 10.1128/jb.177.15.4442-4450.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Autotrophic CO2 fixation via the Calvin carbon reduction cycle in Alcaligenes eutrophus H16 is genetically determined by two highly homologous cbb operons, one of which is located on the chromosome and the other on megaplasmid pHG1 of the organism. An activator gene, cbbR, lies in divergent orientation only 167 bp upstream of the chromosomal operon and controls the expression of both cbb operons. The two 5'-terminal genes of the operons, cbbLS, coding for ribulose-1,5-bisphosphate carboxylase/oxygenase, were sequenced. Mapping of the 5' termini of the 2.1-kb cbbLS transcripts by primer extension and by nuclease S1 treatment revealed a single transcriptional start point at the same relative position for the chromosomal and plasmid-borne cbb operons. The derived cbb operon promoter showed similarity to sigma 70-dependent promoters of Escherichia coli. For the 1.4-kb transcripts of cbbR, the transcriptional start points were different in autotrophic and heterotrophic cells. The two corresponding cbbR promoters overlapped the cbb operon promoter and also displayed similarities to sigma 70-dependent promoters. The deficient cbbR gene located on pHG1 was transcribed as well. A newly constructed double operon fusion vector was used to determine the activities of the cbb promoters. Fusions with fragments carrying the cbb intergenic control regions demonstrated that the cbb operon promoters were strongly regulated in response to autotrophic versus heterotrophic growth conditions. In contrast, the cbbR promoters displayed low constitutive activities. The data suggest that the chromosomal and plasmid-borne cbb promoters of A. eutrophus H16 are functionally equivalent despite minor structural differences.
Collapse
Affiliation(s)
- B Kusian
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | |
Collapse
|
26
|
Yokoyama K, Hayashi NR, Arai H, Chung SY, Igarashi Y, Kodama T. Genes encoding RubisCO in Pseudomonas hydrogenothermophila are followed by a novel cbbQ gene similar to nirQ of the denitrification gene cluster from Pseudomonas species. Gene 1995; 153:75-9. [PMID: 7883189 DOI: 10.1016/0378-1119(94)00808-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cbbL and cbbS genes, encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), were cloned and sequenced from a thermophilic hydrogen-oxidizing bacterium, Pseudomonas hydrogenothermophila strain TH-1. The cbbL gene encoded a 474-amino-acid (aa) protein (53,285 Da); cbbS encoded a 124-aa protein (14,656 Da). An ORF found downstream from the cbbLS genes encoded a 267-aa protein (29,565 Da) which had no similarity to cbbX located downstream from cbbLS from Alcaligenes eutrophus and Xanthobacter flavus. This gene, called cbbQ, was highly similar to the nirQ gene of the denitrification gene cluster from P. aeruginosa and P. stutzeri.
Collapse
Affiliation(s)
- K Yokoyama
- Department of Biotechnology, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Xu HH, Tabita FR. Positive and negative regulation of sequences upstream of the form II cbb CO2 fixation operon of Rhodobacter sphaeroides. J Bacteriol 1994; 176:7299-308. [PMID: 7961502 PMCID: PMC197119 DOI: 10.1128/jb.176.23.7299-7308.1994] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The unlinked form I and form II Calvin cycle CO2 fixation (cbb) operons of the photosynthetic bacterium Rhodobacter sphaeroides are located on different genetic elements, yet both operons are positively regulated by the transcription activator protein CbbR, the product of the cbbR gene located immediately upstream of the form I operon. By employing deletion mutagenesis, and a newly constructed promoter probe vector, the form II operon promoter (cbbFIIp) and three other promoters (Up, Vp, and Wp) were localized within 2.1 kb upstream of the form II operon. Mutations in both cbbR and the first gene of the form I operon (cbbFI) elicited both positive and negative responses when transcriptional fusions controlled by these four promoters were examined. With the exception of Wp, all these upstream promoters were repressed by oxygen. In addition, these promoters were associated with open reading frames of unknown function whose deduced amino acid sequences showed no significant relationship to proteins in current databases. The results of these experiments suggest that the promoter sequences and genes upstream of the form II cbb operon may be intimately involved with control of the cbb regulon of this photosynthetic organism.
Collapse
Affiliation(s)
- H H Xu
- Department of Microbiology, Ohio State University, Columbus 43210-1292
| | | |
Collapse
|
28
|
Lamblin AF, Fuchs JA. Functional analysis of the Escherichia coli K-12 cyn operon transcriptional regulation. J Bacteriol 1994; 176:6613-22. [PMID: 7961413 PMCID: PMC197017 DOI: 10.1128/jb.176.21.6613-6622.1994] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cynTSX operon enables Escherichia coli K-12 to degrade and use cyanate as a sole nitrogen source. The promoter of this operon is positively regulated by cyanate and the CynR protein. CynR, a member of the LysR family of regulatory proteins, binds specifically to a 136-bp DNA fragment containing both the cynR and the cynTSX promoters. In this study, we report the results of DNase I digestion studies showing that CynR protects a 60-bp region on the cynR coding strand and a 56-bp sequence on the cynTSX coding strand. CynR binding was not affected by cyanate or its structural homolog azide, a gratuitous inducer of the operon. However, CynR-induced bending of two different DNA fragments was detected. The amount of bending was decreased by cyanate.
Collapse
Affiliation(s)
- A F Lamblin
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
29
|
Strecker M, Sickinger E, English RS, Shively JM. Calvin cycle genes inNitrobacter vulgarisT3. FEMS Microbiol Lett 1994. [DOI: 10.1111/j.1574-6968.1994.tb07005.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Abstract
Thiobacillus ferrooxidans is a gram-negative, highly acidophilic (pH 1.5 to 2.0), autotrophic bacterium that obtains its energy through the oxidation of ferrous iron or reduced inorganic sulfur compounds. It is usually dominant in the mixed bacterial populations that are used industrially for the extraction of metals such as copper and uranium from their ores. More recently, these bacterial consortia have been used for the biooxidation of refractory gold-bearing arsenopyrite ores prior to the recovery of gold by cyanidation. The commercial use of T. ferrooxidans has led to an increasing interest in the genetics and molecular biology of the bacterium. Initial investigations were aimed at determining whether the unique physiology and specialized habitat of T. ferrooxidans had been accompanied by a high degree of genetic drift from other gram-negative bacteria. Early genetic studies were comparative in nature and concerned the isolation of genes such as nifHDK, glnA, and recA, which are widespread among bacteria. From a molecular biology viewpoint, T. ferrooxidans appears to be a typical member of the proteobacteria. In most instances, cloned gene promoters and protein products have been functional in Escherichia coli. Although T. ferrooxidans has proved difficult to transform with DNA, research on indigenous plasmids and the isolation of the T. ferrooxidans merA gene have resulted in the development of a low-efficiency electroporation system for one strain of T. ferrooxidans. The most recent studies have focused on the molecular genetics of the pathways associated with nitrogen metabolism, carbon dioxide fixation, and components of the energy-producing mechanisms.
Collapse
Affiliation(s)
- D E Rawlings
- Department of Microbiology, University of Cape Town, South Africa
| | | |
Collapse
|
31
|
von Lintig J, Kreusch D, Schröder J. Opine-regulated promoters and LysR-type regulators in the nopaline (noc) and octopine (occ) catabolic regions of Ti plasmids of Agrobacterium tumefaciens. J Bacteriol 1994; 176:495-503. [PMID: 8288543 PMCID: PMC205073 DOI: 10.1128/jb.176.2.495-503.1994] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Essential steps in the uptake and catabolism of the plant tumor metabolites nopaline and octopine in Agrobacterium spp. are performed by proteins encoded in the nopaline catabolic (noc) and octopine catabolic (occ) regions of Ti plasmids. We investigated the opine activation of the genes by using (i) promoter studies of Agrobacterium spp. and (ii) analysis of the promoter interaction with the regulatory proteins NocR (noc) and OccR (occ). The noc region contained two nopaline-induced promoters (Pi1[noc] and Pi2[noc]) and one autogenously regulated promoter (Pr [control of NocR expression]). Pi2 and Pr overlapped and were divergently oriented (Pi2 [noc]). DNA binding studies and DNase I footprints indicated that NocR bound specifically to single binding sites in Pi1[noc] and Pi2/Pr[noc] and that Pi2 and Pr were regulated from the same binding site. The binding was independent of the inducer nopaline, and nopaline caused small changes in the footprint. The promoters in the noc and occ regions shared sequence motif and contained the sequence T-N11-A, which is characteristic for LysR-type-regulated promoters. The occ region contained one octopine-induced and one autogenously regulated promoter (Pi/Pr[occ]) in the same arrangement as Pi2/Pr[noc] in the noc region. Promoter deletions indicated that sequences flanking the OccR binding site determined the extent of induction, although they did not bind OccR. The promoter bound OccR in the absence and presence of octopine. The opine caused a change in the mobility of the DNA-protein complex with the complete promoter. The resected fragments did not reveal this opine-induced shift, and it was also not detectable with the DNA-NocR complexes with the two promoters of the noc region.
Collapse
Affiliation(s)
- J von Lintig
- Institut für Biologie II, Universität Freiburg, Germany
| | | | | |
Collapse
|
32
|
Lamblin AF, Fuchs JA. Expression and purification of the cynR regulatory gene product: CynR is a DNA-binding protein. J Bacteriol 1993; 175:7990-9. [PMID: 8253686 PMCID: PMC206979 DOI: 10.1128/jb.175.24.7990-7999.1993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The CynR protein, a member of the LysR family, positively regulates the Escherichia coli cyn operon and negatively autoregulates its own transcription. By S1 mapping analysis, the in vivo cynR transcription start site was located 63 bp upstream of the cynTSX operon transcription start site. Topologically, the cynR and cynTSX promoters overlap and direct transcription in opposite directions. The CynR translation initiation codon was identified by oligonucleotide-directed mutagenesis, and the CynR coding sequence was cloned under the control of a T7 phage promoter. The CynR protein was stably expressed at a high level with a T7 RNA polymerase-T7 phage promoter system. Purification by ion-exchange chromatography, affinity chromatography, and ammonium sulfate fractionation yielded pure CynR protein. Gel shift assays confirmed that CynR is a DNA-binding protein like the other members of the LysR family. The CynR regulatory protein binds specifically to a 136-bp DNA fragment encompassing both the cynR and the cynTSX promoters.
Collapse
Affiliation(s)
- A F Lamblin
- Department of Biochemistry, University of Minnesota, St. Paul 55108
| | | |
Collapse
|
33
|
van den Bergh ER, Dijkhuizen L, Meijer WG. CbbR, a LysR-type transcriptional activator, is required for expression of the autotrophic CO2 fixation enzymes of Xanthobacter flavus. J Bacteriol 1993; 175:6097-104. [PMID: 8407781 PMCID: PMC206702 DOI: 10.1128/jb.175.19.6097-6104.1993] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Xanthobacter flavus is able to grow autotrophically with the enzymes of the Calvin cycle for the fixation of CO2, which are specified by the cbbLSXFP gene cluster. Previously, the 5' end of an open reading frame (cbbR), displaying a high sequence similarity to the LysR family of regulatory proteins and transcribed divergently from cbbLSXFP, was identified (W. G. Meijer, A. C. Arnberg, H. G. Enequist, P. Terpstra, M. E. Lidstrom, and L. Dijkhuizen, Mol. Gen. Genet. 225:320-330, 1991). This paper reports the complete nucleotide sequence of cbbR and a functional characterization of the gene. The cbbR gene of X. flavus specifies a 333-amino-acid polypeptide, with a molecular weight of 35,971. Downstream from cbbR, the 3' end of an open reading frame displaying a high similarity to ORF60K from Pseudomonas putida and ORF261 from Bacillus subtilis was identified. ORF60K and ORF261 are located at the replication origin of the bacterial chromosome. Inactivation of cbbR, via the insertion of an antibiotic resistance gene, rendered X. flavus unable to grow autotrophically. This was caused not by an inability to oxidize autotrophic substrates (e.g., formate) but by a complete lack of expression of the cbb genes. The expression of the CbbR protein in Escherichia coli was achieved by placing cbbR behind a strong promoter and optimization of the translational signals of cbbR. CbbR binds specifically to two binding sites in the cbbR-cbbL intergenic region.
Collapse
Affiliation(s)
- E R van den Bergh
- Department of Microbiology, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
34
|
Gibson JL, Tabita FR. Nucleotide sequence and functional analysis of cbbR, a positive regulator of the Calvin cycle operons of Rhodobacter sphaeroides. J Bacteriol 1993; 175:5778-84. [PMID: 8376325 PMCID: PMC206655 DOI: 10.1128/jb.175.18.5778-5784.1993] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Structural genes encoding Calvin cycle enzymes in Rhodobacter sphaeroides are duplicated and organized within two physically distinct transcriptional units, the form I and form II cbb operons. Nucleotide sequence determination of the region upstream of the form I operon revealed a divergently transcribed open reading frame, cbbR, that showed significant similarity to the LysR family of transcriptional regulatory proteins. Mutants containing an insertionally inactivated cbbR gene were impaired in photoheterotrophic growth and completely unable to grow photolithoautotrophically with CO2 as the sole carbon source. In the cbbR strain, expression of genes within the form I operon was completely abolished and that of the form II operon was reduced to about 30% of the wild-type level. The cloned cbbR gene complemented the mutant for wild-type growth characteristics, and normal levels of ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) were observed. However, rocket immunoelectrophoresis revealed that the wild-type level of RubisCO was due to overexpression of the form II enzyme, whereas expression of the form I RubisCO was 10% of that of the wild-type strain. The cbbR insertional inactivation did not appear to affect aerobic expression of either CO2 fixation operon, but preliminary evidence suggests that the constitutive expression of the form II operon observed in the cbbR strain may be subject to repression during aerobic growth.
Collapse
Affiliation(s)
- J L Gibson
- Department of Microbiology, Ohio State University, Columbus 3210-1292
| | | |
Collapse
|
35
|
|