1
|
Akkiraju AG, Atcha KR, Sagurthi SR. Cloning, Purification, and Biophysical Characterization of FemB Protein from Methicillin-Resistant Staphylococcus aureus and Inhibitors Screening. Appl Biochem Biotechnol 2024; 196:4974-4992. [PMID: 37991634 DOI: 10.1007/s12010-023-04780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Methicillin-resistant Staphylococcus aureus has emerged as a leading cause of nosocomial, community acquired infections worldwide. Earlier investigations revealed that mecA-encoded FEM proteins play a role in antimicrobial resistance by developing unique peptidoglycan cross-linking which helps in the formation of protective cell membrane. In view to this, present study focused on expression, purification FEM proteins, and FemB biophysical characterization with the aid of in silico and in vitro approaches. Furthermore, we carried out biological screening assays and identified the novel potent 1,2,3-triazole conjugated 1,3,4-oxadiazole hybrid molecule which could inhibit the MRSA than the proven oxacillin.
Collapse
Affiliation(s)
- Anjini Gayatri Akkiraju
- Molecular Medicine Lab, Dept. of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500007, India
| | - Krishnam Raju Atcha
- Department of Chemistry, Nizam College, Osmania University, Hyderabad, Telangana, 500001, India
| | - Someswar Rao Sagurthi
- Molecular Medicine Lab, Dept. of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
2
|
Rathi R. Potential inhibitors of FemC to combat Staphylococcus aureus: virtual screening, molecular docking, dynamics simulation, and MM-PBSA analysis. J Biomol Struct Dyn 2023; 41:10495-10506. [PMID: 36524526 DOI: 10.1080/07391102.2022.2157328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
FemC is a methicillin resistance factor involved in the alterations of peptidoglycan and glutamine synthesis in Staphylococcus aureus. To identify the potent antibacterial agents, antibacterial molecules were screened against the predicted and validated FemC model. Based on docking scores, presence of essential interactions with active site residues of FemC, pharmacokinetic, and ADMET properties, six candidates were shortlisted and subjected to molecular dynamics to evaluate the stability of FemC-ligand complexes. Further, per residue decomposition analysis and Molecular Mechanics/Poisson-Boltzmann Surface Area (MMPBSA) analysis confirmed that S15, M16, S17, R31, R43, Q47, K48 and R49 of FemC played a vital role in the formation of lower energy stable FemC-inhibitor(s) complexes. Therefore, in the present study, the reported six molecules (Z317461228, Z92241701, Z30923155, Z30202349, Z2609517102 and Z92470167) may pave the path to design the scaffold of novel potent antimicrobials against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravi Rathi
- Amity School of Applied Sciences, Amity University Haryana, Gurgaon, Haryana, India
| |
Collapse
|
3
|
Akkiraju AG, Badugu A, Das A, Sagurthi SR. Molecular docking-based screening of methicillin-resistant Staphylococcus aureus FEM proteins with FDA-approved drugs. Bioinformation 2023; 19:1035-1042. [PMID: 38046517 PMCID: PMC10692981 DOI: 10.6026/973206300191035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/05/2023] Open
Abstract
Antibiotic resistance stands as one of the most significant public health challenges in recent decades. FEM proteins are responsible for the synthesis of pentaglycine cross-bridge, a primary constituent of bacterial peptidoglycan polymer crosslinking during cell wall biosynthesis. Since they are necessary for bacterial survival and antibiotic resistance, they were considered as significant antibacterial targets. We report herein, the virtual screening and selection of FDA-approved drugs and their potent similar molecules as FEM protein inhibitors and analyzed for inhibiting affinity and their ADMET pharmacokinetic properties. This data provide a foundation for the development and optimization of structurally innovative antimicrobial drugs.
Collapse
Affiliation(s)
- Anjini Gayatri Akkiraju
- Molecular Medicine Lab, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500007, India
| | - Aishwaraya Badugu
- Molecular Medicine Lab, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500007, India
| | - Aditi Das
- Molecular Medicine Lab, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500007, India
| | - Someswar Rao Sagurthi
- Molecular Medicine Lab, Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500007, India
| |
Collapse
|
4
|
Dalal V, Kumari R. Screening and Identification of Natural Product‐Like Compounds as Potential Antibacterial Agents Targeting FemC of
Staphylococcus aureus
: An in‐Silico Approach. ChemistrySelect 2022. [DOI: 10.1002/slct.202201728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vikram Dalal
- Department of Anesthesiology Washington University in St. Louis Missouri 63110 USA
| | - Reena Kumari
- Department of Mathematics and Statistics Swami Vivekanand Subharti University Meerut 250005 India
| |
Collapse
|
5
|
Apostolos AJ, Kelly JJ, Ongwae GM, Pires MM. Structure Activity Relationship of the Stem Peptide in Sortase A Mediated Ligation from Staphylococcus aureus. Chembiochem 2022; 23:e202200412. [PMID: 36018606 PMCID: PMC9632411 DOI: 10.1002/cbic.202200412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/24/2022] [Indexed: 01/11/2023]
Abstract
The surfaces of most Gram-positive bacterial cells, including that of Staphylococcus aureus (S. aureus), are heavily decorated with proteins that coordinate cellular interactions with the extracellular space. In S. aureus, sortase A is the principal enzyme responsible for covalently anchoring proteins, which display the sorting signal LPXTG, onto the peptidoglycan (PG) matrix. Considerable efforts have been made to understand the role of this signal peptide in the sortase-mediated reaction. In contrast, much less is known about how the primary structure of the other substrate involved in the reaction (PG stem peptide) could impact sortase activity. To assess the sortase activity, a library of synthetic analogs of the stem peptide that mimic naturally existing variations found in the S. aureus PG primary sequence were evaluated. Using a combination of two unique assays, we showed that there is broad tolerability of substrate variations that are effectively processed by sortase A. While some of these stem peptide derivatives are naturally found in mature PG, they are not known to be present in the PG precursor, lipid II. These results suggest that sortase A could process both lipid II and mature PG as acyl-acceptor strands that might reside near the membrane, which has not been previously described.
Collapse
Affiliation(s)
| | - Joey J. Kelly
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - George M. Ongwae
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| | - Marcos M. Pires
- Department of ChemistryUniversity of VirginiaCharlottesville, VA22904USA
| |
Collapse
|
6
|
An Interplay of Multiple Positive and Negative Factors Governs Methicillin Resistance in Staphylococcus aureus. Microbiol Mol Biol Rev 2022; 86:e0015921. [PMID: 35420454 PMCID: PMC9199415 DOI: 10.1128/mmbr.00159-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of resistance to β-lactam antibiotics has made Staphylococcus aureus a clinical burden on a global scale. MRSA (methicillin-resistant S. aureus) is commonly known as a superbug. The ability of MRSA to proliferate in the presence of β-lactams is attributed to the acquisition of mecA, which encodes the alternative penicillin binding protein, PBP2A, which is insensitive to the antibiotics. Most MRSA isolates exhibit low-level β-lactam resistance, whereby additional genetic adjustments are required to develop high-level resistance. Although several genetic factors that potentiate or are required for high-level resistance have been identified, how these interact at the mechanistic level has remained elusive. Here, we discuss the development of resistance and assess the role of the associated components in tailoring physiology to accommodate incoming mecA.
Collapse
|
7
|
Impact of crossbridge structure on peptidoglycan crosslinking: A synthetic stem peptide approach. Methods Enzymol 2022; 665:259-279. [PMID: 35379437 DOI: 10.1016/bs.mie.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall, whose main component is peptidoglycan (PG), provides cellular rigidity and prevents lysis from osmotic pressure. Moreover, the cell wall is the main interface between the external environment and internal cellular components. Given its essentiality, many antibiotics target enzymes related to the biosynthesis of cell wall. Of these enzymes, transpeptidases (TPs) are central to proper cell wall assembly and their inactivation is the mechanism of action of many antibiotics including β-lactams. TPs are responsible for stitching together strands of PG to make the crosslinked meshwork of the cell wall. This chapter focuses on the use of solid-phase peptide synthesis to build PG analogs that become site-selectively incorporated into the cell wall of live bacterial cells. This method allows for the design of fluorescent handles on PG probes that will enable the interrogation of substrate preferences of TPs (e.g., amidation at the glutamic acid residue, crossbridge presence) by analyzing the level of probe incorporation within the native cell wall of live bacterial cells.
Collapse
|
8
|
|
9
|
Rahman S, Das AK. Integrated Multi-omics, Virtual Screening and Molecular Docking Analysis of Methicillin-Resistant Staphylococcus aureus USA300 for the Identification of Potential Therapeutic Targets: An In-Silico Approach. Int J Pept Res Ther 2021; 27:2735-2755. [PMID: 34548853 PMCID: PMC8446483 DOI: 10.1007/s10989-021-10287-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus infection is a leading cause of mortality and morbidity in community, hospital and live-stock sectors, especially with the widespread emergence of methicillin-resistant S. aureus (MRSA) strains. To identify new drug molecules to treat MRSA patients, we have undertaken to search essential proteins that are indispensable for their survival but non-homologous to human host proteins. The current study utilizes a subtractive genome and proteome approach to screen the possible therapeutic targets against S. aureus USA300. Bacterial essential genes are obtained from the DEG database and are compared to avoid cross-reactivity with human host genes. In silico analysis shows 198 proteins that may be considered as therapeutic candidates. Depending on their sub-cellular localization, proteins are grouped as either vaccine or drug targets or both. Extracellular proteins such as cell division proteins (Q2FZ91, Q2FZ95), penicillin-binding proteins (Q2FZ94, Q2FYI0) of the bacterial cell wall, phosphoglucomutase (Q2FE11) and lipoteichoic acid synthase (Q2FIS2) are considered as vaccine targets, and their epitopes have been mapped. Altogether, 53 drug targets are identified, which have shown similarity with the drug targets available in the DrugBank database. Predicted drug targets belong to the common metabolic pathways of MRSA, such as fatty acid biosynthesis, folate biosynthesis, peptidoglycan biosynthesis, ribosome, etc. Protein-protein interaction analysis emphasizing peptidoglycan biosynthesis reveals the connection between penicillin-binding proteins, mur-family proteins and FemXAB proteins. In this study, staphylococcal FemA protein (P0A0A5) is subjected to structure-based virtual screening for the drug repurposing approach. There are 20 residues missing in the crystal structure of FemA, and 12 of these residues are located at the catalytic site. The missing residues are modelled, and stereochemistry is checked. FDA approved drugs available in the DrugBank database have been used in virtual screening with FemA in search of potential repurposed molecules. This approach provides us with 10 drugs that may be used in the treatment of methicillin-resistant staphylococcal mediated diseases. AutoDock 4.2 is used for in silico screening and shows a comparable inhibition constant (Ki) for all 10 FDA-approved drugs towards FemA. Most of these drugs are used in the treatment of various cancers, migraines and leukaemia. Protein-drug interaction analysis shows that the drugs mostly interact with hydrophobic residues of FemA. Moreover, Tyr328 and Lys383 contribute largely to hydrogen bondings during interactions. All interacting amino acids that bind to the drugs are part of the active site cavity of FemA. Supplementary Information The online version contains supplementary material available at 10.1007/s10989-021-10287-9.
Collapse
Affiliation(s)
- Shakilur Rahman
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| |
Collapse
|
10
|
Structural, molecular docking computational studies and in-vitro evidence for antibacterial activity of mixed ligand complexes. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130481] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Zhuang Y, Ren L, Zhang S, Wei X, Yang K, Dai K. Antibacterial effect of a copper-containing titanium alloy against implant-associated infection induced by methicillin-resistant Staphylococcus aureus. Acta Biomater 2021; 119:472-484. [PMID: 33091623 DOI: 10.1016/j.actbio.2020.10.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023]
Abstract
Implant-associated infection (IAI) induced by methicillin-resistant Staphylococcus aureus (MRSA) is a devastating complication in the orthopedic clinic. Traditional implant materials, such as Ti6Al4V, are vulnerable to microbial infection. In this study, we fabricated a copper (Cu)-containing titanium alloy (Ti6Al4V-Cu) for the prevention and treatment of MRSA-induced IAI. The material characteristics, antibacterial activity, and biocompatibility of Ti6Al4V-Cu were systematically investigated and compared with those of Ti6Al4V. Ti6Al4V-Cu provided stable and continuous Cu2+ release, at a rate of 0.106 mg/cm2/d. Its antibacterial performance against MRSA in vitro was confirmed by plate counting analysis, crystal violet staining, and scanning electron microscopic observations. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis demonstrated that Ti6Al4V-Cu suppressed biofilm formation, virulence, and antibiotic-resistance of MRSA. The in vivo anti-MRSA effect was investigated in a rat IAI model. Implants were contaminated with MRSA solution, implanted into the femur, and left for 6 weeks. Severe IAI developed in the Ti6Al4V group, with increased radiological score (9.6 ± 1.3) and high histological score (10.1 ± 1.9). However, no sign of infection was found in the Ti6Al4V-Cu group, as indicated by decreased radiological score (1.3 ± 0.4) and low histological score (2.3 ± 0.5). In addition, Ti6Al4V-Cu had favorable biocompatibility both in vitro and in vivo. In summary, Ti6Al4V-Cu is a promising implant material to protect against MRSA-induced IAI.
Collapse
|
12
|
Willing S, Dyer E, Schneewind O, Missiakas D. FmhA and FmhC of Staphylococcus aureus incorporate serine residues into peptidoglycan cross-bridges. J Biol Chem 2020; 295:13664-13676. [PMID: 32759309 PMCID: PMC7521636 DOI: 10.1074/jbc.ra120.014371] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Staphylococcal peptidoglycan is characterized by pentaglycine cross-bridges that are cross-linked between adjacent wall peptides by penicillin-binding proteins to confer robustness and flexibility. In Staphylococcus aureus, pentaglycine cross-bridges are synthesized by three proteins: FemX adds the first glycine, and the homodimers FemA and FemB sequentially add two Gly-Gly dipeptides. Occasionally, serine residues are also incorporated into the cross-bridges by enzymes that have heretofore not been identified. Here, we show that the FemA/FemB homologues FmhA and FmhC pair with FemA and FemB to incorporate Gly-Ser dipeptides into cross-bridges and to confer resistance to lysostaphin, a secreted bacteriocin that cleaves the pentaglycine cross-bridge. FmhA incorporates serine residues at positions 3 and 5 of the cross-bridge. In contrast, FmhC incorporates a single serine at position 5. Serine incorporation also lowers resistance toward oxacillin, an antibiotic that targets penicillin-binding proteins, in both methicillin-sensitive and methicillin-resistant strains of S. aureus FmhC is encoded by a gene immediately adjacent to lytN, which specifies a hydrolase that cleaves the bond between the fifth glycine of cross-bridges and the alanine of the adjacent stem peptide. In this manner, LytN facilitates the separation of daughter cells. Cell wall damage induced upon lytN overexpression can be alleviated by overexpression of fmhC. Together, these observations suggest that FmhA and FmhC generate peptidoglycan cross-bridges with unique serine patterns that provide protection from endogenous murein hydrolases governing cell division and from bacteriocins produced by microbial competitors.
Collapse
Affiliation(s)
- Stephanie Willing
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Emma Dyer
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA; Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Lemont, Illinois, USA.
| |
Collapse
|
13
|
Apostolos AJ, Pidgeon SE, Pires MM. Remodeling of Cross-bridges Controls Peptidoglycan Cross-linking Levels in Bacterial Cell Walls. ACS Chem Biol 2020; 15:1261-1267. [PMID: 32167281 DOI: 10.1021/acschembio.0c00002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell walls are barriers found in almost all known bacterial cells. These structures establish a controlled interface between the external environment and vital cellular components. A primary component of cell wall is a highly cross-linked matrix called peptidoglycan (PG). PG cross-linking, carried out by transglycosylases and transpeptidases, is necessary for proper cell wall assembly. Transpeptidases, targets of β-lactam antibiotics, stitch together two neighboring PG stem peptides (acyl-donor and acyl-acceptor strands). We recently described a novel class of cellular PG probes that were processed exclusively as acyl-donor strands. Herein, we have accessed the other half of the transpeptidase reaction by developing probes that are processed exclusively as acyl-acceptor strands. The critical nature of the cross-bridge on the PG peptide was demonstrated in live bacterial cells, and surprising promiscuity in cross-bridge primary sequence was found in various bacterial species. Additionally, acyl-acceptor probes provided insight into how chemical remodeling of the PG cross-bridge (e.g., amidation) can modulate cross-linking levels, thus establishing a physiological role of PG structural variations. Together, the acyl-donor and -acceptor probes will provide a versatile platform to interrogate PG cross-linking in physiologically relevant settings.
Collapse
Affiliation(s)
- Alexis J. Apostolos
- Department of Chemistry, University of Virginia, Charlotesville, Virginia 22904, United States
| | - Sean E. Pidgeon
- Department of Chemistry, University of Virginia, Charlotesville, Virginia 22904, United States
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlotesville, Virginia 22904, United States
| |
Collapse
|
14
|
Small-Molecule Acetylation by GCN5-Related N-Acetyltransferases in Bacteria. Microbiol Mol Biol Rev 2020; 84:84/2/e00090-19. [PMID: 32295819 DOI: 10.1128/mmbr.00090-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acetylation is a conserved modification used to regulate a variety of cellular pathways, such as gene expression, protein synthesis, detoxification, and virulence. Acetyltransferase enzymes transfer an acetyl moiety, usually from acetyl coenzyme A (AcCoA), onto a target substrate, thereby modulating activity or stability. Members of the GCN5- N -acetyltransferase (GNAT) protein superfamily are found in all domains of life and are characterized by a core structural domain architecture. These enzymes can modify primary amines of small molecules or of lysyl residues of proteins. From the initial discovery of antibiotic acetylation, GNATs have been shown to modify a myriad of small-molecule substrates, including tRNAs, polyamines, cell wall components, and other toxins. This review focuses on the literature on small-molecule substrates of GNATs in bacteria, including structural examples, to understand ligand binding and catalysis. Understanding the plethora and versatility of substrates helps frame the role of acetylation within the larger context of bacterial cellular physiology.
Collapse
|
15
|
Structural and Functional Dynamics of Staphylococcus aureus Biofilms and Biofilm Matrix Proteins on Different Clinical Materials. Microorganisms 2019; 7:microorganisms7120584. [PMID: 31756969 PMCID: PMC6955704 DOI: 10.3390/microorganisms7120584] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022] Open
Abstract
Medical device-associated staphylococcal infections are a common and challenging problem. However, detailed knowledge of staphylococcal biofilm dynamics on clinically relevant surfaces is still limited. In the present study, biofilm formation of the Staphylococcus aureus ATCC 25923 strain was studied on clinically relevant materials-borosilicate glass, plexiglass, hydroxyapatite, titanium and polystyrene-at 18, 42 and 66 h. Materials with the highest surface roughness and porosity (hydroxyapatite and plexiglass) did not promote biofilm formation as efficiently as some other selected materials. Matrix-associated poly-N-acetyl-β-(1-6)-glucosamine (PNAG) was considered important in young (18 h) biofilms, whereas proteins appeared to play a more important role at later stages of biofilm development. A total of 460 proteins were identified from biofilm matrices formed on the indicated materials and time points-from which, 66 proteins were proposed to form the core surfaceome. At 18 h, the appearance of several r-proteins and glycolytic adhesive moonlighters, possibly via an autolysin (AtlA)-mediated release, was demonstrated in all materials, whereas classical surface adhesins, resistance- and virulence-associated proteins displayed greater variation in their abundances depending on the used material. Hydroxyapatite-associated biofilms were more susceptible to antibiotics than biofilms formed on titanium, but no clear correlation between the tolerance and biofilm age was observed. Thus, other factors, possibly the adhesive moonlighters, could have contributed to the observed chemotolerant phenotype. In addition, a protein-dependent matrix network was observed to be already well-established at the 18 h time point. To the best of our knowledge, this is among the first studies shedding light into matrix-associated surfaceomes of S. aureus biofilms grown on different clinically relevant materials and at different time points.
Collapse
|
16
|
Monteiro JM, Covas G, Rausch D, Filipe SR, Schneider T, Sahl HG, Pinho MG. The pentaglycine bridges of Staphylococcus aureus peptidoglycan are essential for cell integrity. Sci Rep 2019; 9:5010. [PMID: 30899062 PMCID: PMC6428869 DOI: 10.1038/s41598-019-41461-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/07/2019] [Indexed: 02/04/2023] Open
Abstract
Bacterial cells are surrounded by cell wall, whose main component is peptidoglycan (PG), a macromolecule that withstands the internal turgor of the cell. PG composition can vary considerably between species. The Gram-positive pathogen Staphylococcus aureus possesses highly crosslinked PG due to the presence of cross bridges containing five glycines, which are synthesised by the FemXAB protein family. FemX adds the first glycine of the cross bridge, while FemA and FemB add the second and the third, and the fourth and the fifth glycines, respectively. Of these, FemX was reported to be essential. To investigate the essentiality of FemAB, we constructed a conditional S. aureus mutant of the femAB operon. Depletion of femAB was lethal, with cells appearing as pseudomulticellular forms that eventually lyse due to extensive membrane rupture. This deleterious effect was mitigated by drastically increasing the osmolarity of the medium, indicating that pentaglycine crosslinks are required for S. aureus cells to withstand internal turgor. Despite the absence of canonical membrane targeting domains, FemA has been shown to localise at the membrane. To study its mechanism of localisation, we constructed mutants in key residues present in the putative transferase pocket and the α6 helix of FemA, possibly involved in tRNA binding. Mutations in the α6 helix led to a sharp decrease in protein activity in vivo and in vitro but did not impair correct membrane localisation, indicating that FemA activity is not required for localisation. Our data indicates that, contrarily to what was previously thought, S. aureus cells do not survive in the absence of a pentaglycine cross bridge.
Collapse
Affiliation(s)
- João M Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Gonçalo Covas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Daniela Rausch
- Institute of Pharmaceutical Microbiology, University of Bonn, 53115, Bonn, Germany
| | - Sérgio R Filipe
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Tanja Schneider
- Institute of Pharmaceutical Microbiology, University of Bonn, 53115, Bonn, Germany
| | - Hans-Georg Sahl
- Institute of Pharmaceutical Microbiology, University of Bonn, 53115, Bonn, Germany
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
17
|
The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus. Sci Rep 2018; 8:13693. [PMID: 30209409 PMCID: PMC6135852 DOI: 10.1038/s41598-018-32109-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/07/2018] [Indexed: 11/10/2022] Open
Abstract
The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels.
Collapse
|
18
|
Srisuknimit V, Qiao Y, Schaefer K, Kahne D, Walker S. Peptidoglycan Cross-Linking Preferences of Staphylococcus aureus Penicillin-Binding Proteins Have Implications for Treating MRSA Infections. J Am Chem Soc 2017; 139:9791-9794. [PMID: 28691491 PMCID: PMC5613940 DOI: 10.1021/jacs.7b04881] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections are a global public health problem. MRSA strains have acquired a non-native penicillin-binding protein called PBP2a that cross-links peptidoglycan when the native S. aureus PBPs are inhibited by β-lactams. It has been proposed that the native S. aureus PBPs can use cell wall precursors having different glycine branch lengths (penta-, tri-, or monoglycine), while PBP2a can only cross-link peptidoglycan strands bearing a complete pentaglycine branch. This hypothesis has never been tested because the necessary substrates have not been available. Here, we compared the ability of PBP2a and two native S. aureus transpeptidases to cross-link peptidoglycan strands bearing different glycine branches. We show that purified PBP2a can cross-link glycan strands bearing penta- and triglycine, but not monoglycine, and experiments in cells provide support for these findings. Because PBP2a cannot cross-link peptidoglycan containing monoglycine, this study implicates the enzyme (FemA) that extends the monoglycine branch to triglycine on Lipid II as an ideal target for small molecules that restore sensitivity of MRSA to β-lactams.
Collapse
Affiliation(s)
- Veerasak Srisuknimit
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Yuan Qiao
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02138, United States
| | - Kaitlin Schaefer
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Suzanne Walker
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02138, United States
| |
Collapse
|
19
|
Cushnie TPT, O'Driscoll NH, Lamb AJ. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci 2016; 73:4471-4492. [PMID: 27392605 PMCID: PMC11108400 DOI: 10.1007/s00018-016-2302-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/20/2023]
Abstract
Efforts to reduce the global burden of bacterial disease and contend with escalating bacterial resistance are spurring innovation in antibacterial drug and biocide development and related technologies such as photodynamic therapy and photochemical disinfection. Elucidation of the mechanism of action of these new agents and processes can greatly facilitate their development, but it is a complex endeavour. One strategy that has been popular for many years, and which is garnering increasing interest due to recent technological advances in microscopy and a deeper understanding of the molecular events involved, is the examination of treated bacteria for changes to their morphology and ultrastructure. In this review, we take a critical look at this approach. Variables affecting antibacterial-induced alterations are discussed first. These include characteristics of the test organism (e.g. cell wall structure) and incubation conditions (e.g. growth medium osmolarity). The main body of the review then describes the different alterations that can occur. Micrographs depicting these alterations are presented, together with information on agents that induce the change, and the sequence of molecular events that lead to the change. We close by highlighting those morphological and ultrastructural changes which are consistently induced by agents sharing the same mechanism (e.g. spheroplast formation by peptidoglycan synthesis inhibitors) and explaining how changes that are induced by multiple antibacterial classes (e.g. filamentation by DNA synthesis inhibitors, FtsZ disruptors, and other types of agent) can still yield useful mechanistic information. Lastly, recommendations are made regarding future study design and execution.
Collapse
Affiliation(s)
- T P Tim Cushnie
- Faculty of Medicine, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand.
| | - Noëlle H O'Driscoll
- School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Garthdee Road, Aberdeen, AB10 7GJ, UK
| | - Andrew J Lamb
- School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Garthdee Road, Aberdeen, AB10 7GJ, UK
| |
Collapse
|
20
|
Chan YGY, Frankel MB, Missiakas D, Schneewind O. SagB Glucosaminidase Is a Determinant of Staphylococcus aureus Glycan Chain Length, Antibiotic Susceptibility, and Protein Secretion. J Bacteriol 2016; 198:1123-36. [PMID: 26811319 PMCID: PMC4800868 DOI: 10.1128/jb.00983-15] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/20/2016] [Indexed: 01/18/2023] Open
Abstract
UNLABELLED The envelope of Staphylococcus aureus is comprised of peptidoglycan and its attached secondary polymers, teichoic acid, capsular polysaccharide, and protein. Peptidoglycan synthesis involves polymerization of lipid II precursors into glycan strands that are cross-linked at wall peptides. It is not clear whether peptidoglycan structure is principally determined during polymerization or whether processive enzymes affect cell wall structure and function, for example, by generating conduits for protein secretion. We show here that S. aureus lacking SagB, a membrane-associated N-acetylglucosaminidase, displays growth and cell-morphological defects caused by the exaggerated length of peptidoglycan strands. SagB cleaves polymerized glycan strands to their physiological length and modulates antibiotic resistance in methicillin-resistant S. aureus (MRSA). Deletion of sagB perturbs protein trafficking into and across the envelope, conferring defects in cell wall anchoring and secretion, as well as aberrant excretion of cytoplasmic proteins. IMPORTANCE Staphylococcus aureus is thought to secrete proteins across the plasma membrane via the Sec pathway; however, protein transport across the cell wall envelope has heretofore not been studied. We report that S. aureus sagB mutants generate elongated peptidoglycan strands and display defects in protein secretion as well as aberrant excretion of cytoplasmic proteins. These results suggest that the thick peptidoglycan layer of staphylococci presents a barrier for protein secretion and that SagB appears to extend the Sec pathway across the cell wall envelope.
Collapse
Affiliation(s)
- Yvonne G Y Chan
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Matthew B Frankel
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA Howard Taylor Ricketts Laboratory, Argonne National Laboratory, Argonne, Illinois, USA
| |
Collapse
|
21
|
Krute CN, Bell-Temin H, Miller HK, Rivera FE, Weiss A, Stevens SM, Shaw LN. The membrane protein PrsS mimics σS in protecting Staphylococcus aureus against cell wall-targeting antibiotics and DNA-damaging agents. MICROBIOLOGY-SGM 2015; 161:1136-1148. [PMID: 25741016 DOI: 10.1099/mic.0.000065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/02/2015] [Indexed: 01/10/2023]
Abstract
Staphylococcus aureus possesses a lone extracytoplasmic function (ECF) sigma factor, σ(S). In Bacillus subtilis, the ECF sigma factor, σ(W), is activated through a proteolytic cascade that begins with cleavage of the RsiW anti-sigma factor by a site-1 protease (S1P), PrsW. We have identified a PrsW homologue in S. aureus (termed PrsS) and explored its role in σ(S) regulation. Herein, we demonstrate that although a cognate σ(S) anti-sigma factor currently remains elusive, prsS phenocopies sigS in a wealth of regards. Specifically, prsS expression mimics the upregulation observed for sigS in response to DNA-damaging agents, cell wall-targeting antibiotics and during ex vivo growth in human serum and murine macrophages. prsS mutants also display the same sensitivities of sigS mutants to the DNA-damaging agents methyl methane sulfonate (MMS) and hydrogen peroxide, and the cell wall-targeting antibiotics ampicillin, bacitracin and penicillin-G. These phenotypes appear to be explained by alterations in abundance of proteins involved in drug resistance (Pbp2a, FemB, HmrA) and the response to DNA damage (BmrA, Hpt, Tag). Our findings seem to be mediated by putative proteolytic activity of PrsS, as site-directed mutagenesis of predicted catalytic residues fails to rescue the sensitivity of the mutant to H2O2 and MMS. Finally, a role for PrsS in S. aureus virulence was identified using human and murine models of infection. Collectively, our data indicate that PrsS and σ(S) function in a similar manner, and perhaps mediate virulence and resistance to DNA damage and cell wall-targeting antibiotics, via a common pathway.
Collapse
Affiliation(s)
- Christina N Krute
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Harris Bell-Temin
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Halie K Miller
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Frances E Rivera
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Andy Weiss
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| | - Lindsey N Shaw
- Department of Cell Biology, Microbiology & Molecular Biology, University of South Florida, Tampa, FL, USA
| |
Collapse
|
22
|
Nega M, Dube L, Kull M, Ziebandt AK, Ebner P, Albrecht D, Krismer B, Rosenstein R, Hecker M, Götz F. Secretome analysis revealed adaptive and non-adaptive responses of the Staphylococcus carnosus femB mutant. Proteomics 2015; 15:1268-79. [PMID: 25430637 PMCID: PMC4409834 DOI: 10.1002/pmic.201400343] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/06/2014] [Accepted: 11/25/2014] [Indexed: 11/05/2022]
Abstract
FemABX peptidyl transferases are involved in non-ribosomal pentaglycine interpeptide bridge biosynthesis. Here, we characterized the phenotype of a Staphylococcus carnosus femB deletion mutant, which was affected in growth and showed pleiotropic effects such as enhanced methicillin sensitivity, lysostaphin resistance, cell clustering, and decreased peptidoglycan cross-linking. However, comparative secretome analysis revealed a most striking difference in the massive secretion or release of proteins into the culture supernatant in the femB mutant than the wild type. The secreted proteins can be categorized into typical cytosolic proteins and various murein hydrolases. As the transcription of the murein hydrolase genes was up-regulated in the mutant, they most likely represent an adaption response to the life threatening mutation. Even though the transcription of the cytosolic protein genes was unaltered, their high abundance in the supernatant of the mutant is most likely due to membrane leakage triggered by the weakened murein sacculus and enhanced autolysins.
Collapse
Affiliation(s)
- Mulugeta Nega
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Gram-positive organisms, including the pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis, have dynamic cell envelopes that mediate interactions with the environment and serve as the first line of defense against toxic molecules. Major components of the cell envelope include peptidoglycan (PG), which is a well-established target for antibiotics, teichoic acids (TAs), capsular polysaccharides (CPS), surface proteins, and phospholipids. These components can undergo modification to promote pathogenesis, decrease susceptibility to antibiotics and host immune defenses, and enhance survival in hostile environments. This chapter will cover the structure, biosynthesis, and important functions of major cell envelope components in gram-positive bacteria. Possible targets for new antimicrobials will be noted.
Collapse
|
24
|
Götz F, Yu W, Dube L, Prax M, Ebner P. Excretion of cytosolic proteins (ECP) in bacteria. Int J Med Microbiol 2014; 305:230-7. [PMID: 25596889 DOI: 10.1016/j.ijmm.2014.12.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Excretion of cytosolic proteins (ECP) has been reported in bacteria and eukaryotes. As none of the classical signal peptide (SP) dependent or SP-independent pathways could be associated with ECP, it has been also referred to as 'non-classical protein export'. When microbiologists first began to study this subject in 1990, mainly singular cytoplasmic proteins were investigated, such as GAPDH at the cell surface and in the supernatant of pathogenic streptococci or glutamine synthetase (GlnA) as a major extracellular protein in pathogenic mycobacteria. Later, with the rising popularity of proteomics, it became obvious that the secretome of most bacteria contained a copious amount of cytosolic proteins. In particular ancient proteins such as glycolytic enzymes, chaperones, translation factors or enzymes involved in detoxification of reactive oxygen were found in the supernatants. As the excreted proteins do not possess a common motive, the most widespread opinion is that ECP is due to cell lysis. Indeed, upregulation of autolysins or distortion of the murein structure increased ECP, suggesting that enhanced ECP is some sort of survival strategy to counteract osmotic stress. However, in the meantime there are mounting evidences and hints that speak against cell lysis as a primary mechanism for ECP. Very likely, ECP belongs to the normal life cycle of bacteria and involves a programmed process. This review provides a brief overview of the 'non-classical protein export'.
Collapse
Affiliation(s)
- Friedrich Götz
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany.
| | - Wenqi Yu
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Linda Dube
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Marcel Prax
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| | - Patrick Ebner
- Microbial Genetics, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
25
|
Burda WN, Miller HK, Krute CN, Leighton SL, Carroll RK, Shaw LN. Investigating the genetic regulation of the ECF sigma factor σS in Staphylococcus aureus. BMC Microbiol 2014; 14:280. [PMID: 25433799 PMCID: PMC4265319 DOI: 10.1186/s12866-014-0280-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/30/2014] [Indexed: 01/06/2023] Open
Abstract
Background We previously identified an ECF sigma factor, σS, that is important in the stress and virulence response of Staphylococcus aureus. Transcriptional profiling of sigS revealed that it is differentially expressed in many laboratory and clinical isolates, suggesting the existence of regulatory networks that modulates its expression. Results To identify regulators of sigS, we performed a pull down assay using S. aureus lysates and the sigS promoter. Through this we identified CymR as a negative effector of sigS expression. Electrophoretic mobility shift assays (EMSAs) revealed that CymR directly binds to the sigS promoter and negatively effects transcription. To more globally explore genetic regulation of sigS, a Tn551 transposon screen was performed, and identified insertions in genes that are involved in amino acid biosynthesis, DNA replication, recombination and repair pathways, and transcriptional regulators. In efforts to identify gain of function mutations, methyl nitro-nitrosoguanidine mutagenesis was performed on a sigS-lacZ reporter fusion strain. From this a number of clones displaying sigS upregulation were subject to whole genome sequencing, leading to the identification of the lactose phosphotransferase repressor, lacR, and the membrane histidine kinase, kdpD, as central regulators of sigS expression. Again using EMSAs we determined that LacR is an indirect regulator of sigS expression, while the response regulator, KdpE, directly binds to the promoter region of sigS. Conclusions Collectively, our work suggests a complex regulatory network exists in S. aureus that modulates expression of the ECF sigma factor, σS. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0280-9) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Barreto HM, de Lima IS, Coelho KMRN, Osório LR, de Almeida Mourão R, Santos BHCD, Coutinho HDM, de Abreu APL, de Medeiros MDGF, Citó AMDGL, Lopes JAD. Effect of Lippia origanoides H.B.K. essential oil in the resistance to aminoglycosides in methicillin resistant Staphylococcus aureus. Eur J Integr Med 2014. [DOI: 10.1016/j.eujim.2014.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Christiansen MT, Kaas RS, Chaudhuri RR, Holmes MA, Hasman H, Aarestrup FM. Genome-wide high-throughput screening to investigate essential genes involved in methicillin-resistant Staphylococcus aureus Sequence Type 398 survival. PLoS One 2014; 9:e89018. [PMID: 24563689 PMCID: PMC3923074 DOI: 10.1371/journal.pone.0089018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) Sequence Type 398 (ST398) is an opportunistic pathogen that is able to colonize and cause disease in several animal species including humans. To better understand the adaptation, evolution, transmission and pathogenic capacity, further investigations into the importance of the different genes harboured by LA-MRSA ST398 are required. In this study we generated a genome-wide transposon mutant library in an LA-MRSA ST398 isolate to evaluate genes important for bacterial survival in laboratory and host-specific environments. The transposon mutant library consisted of approximately 1 million mutants with around 140,000 unique insertion sites and an average number of unique inserts per gene of 44.8. We identified LA-MRSA ST398 essential genes comparable to other high-throughput S. aureus essential gene studies. As ST398 is the most common MRSA isolated from pigs, the transposon mutant library was screened in whole porcine blood. Twenty-four genes were specifically identified as important for bacterial survival in porcine blood. Mutations in 23 of these genes resulted in attenuated bacterial fitness. Seven of the 23 genes were of unknown function, whereas 16 genes were annotated with functions predominantly related to carbon metabolism, pH shock and a variety of regulations and only indirectly to virulence factors. Mutations in one gene of unknown function resulted in a hypercompetitive mutant. Further evaluation of these genes is required to determine their specific relevance in blood survival.
Collapse
Affiliation(s)
- Mette T. Christiansen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail: (MTC); (FMA)
| | - Rolf S. Kaas
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Roy R. Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Henrik Hasman
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
- * E-mail: (MTC); (FMA)
| |
Collapse
|
28
|
The giant protein Ebh is a determinant of Staphylococcus aureus cell size and complement resistance. J Bacteriol 2013; 196:971-81. [PMID: 24363342 DOI: 10.1128/jb.01366-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus USA300, the clonal type associated with epidemic community-acquired methicillin-resistant S. aureus (MRSA) infections, displays the giant protein Ebh on its surface. Mutations that disrupt the ebh reading frame increase the volume of staphylococcal cells and alter the cross wall, a membrane-enclosed peptidoglycan synthesis and assembly compartment. S. aureus ebh variants display increased sensitivity to oxacillin (methicillin) as well as susceptibility to complement-mediated killing. Mutations in ebh are associated with reduced survival of mutant staphylococci in blood and diminished virulence in mice. We propose that Ebh, following its secretion into the cross wall, contributes to the characteristic cell growth and envelope assembly pathways of S. aureus, thereby enabling complement resistance and the pathogenesis of staphylococcal infections.
Collapse
|
29
|
Roemer T, Schneider T, Pinho MG. Auxiliary factors: a chink in the armor of MRSA resistance to β-lactam antibiotics. Curr Opin Microbiol 2013; 16:538-48. [PMID: 23895826 DOI: 10.1016/j.mib.2013.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 12/20/2022]
Abstract
Combination agents provide an important orthogonal approach to treat infectious diseases, particularly those caused by drug resistant pathogens. Indeed, applying a biologically 'rational' and systems-level paradigm to discover potent, selective, and synergistic agents would augment current (and arguably overly relied upon) empirical and serendipitous approaches to such discovery efforts. Here, we review the cellular mechanisms of β-lactam drug resistance and tolerance achieved amongst methicillin-resistant Staphylococcus aureus (MRSA) as well as their molecular targets and strategies to identify cognate inhibitors as potential combination agents to restore β-lactam efficacy against MRSA.
Collapse
Affiliation(s)
- Terry Roemer
- Infectious Disease Research, Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| | | | | |
Collapse
|
30
|
A positive interaction between inhibitors of protein synthesis and cefepime in the fight against methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2013; 32:899-907. [PMID: 23370969 DOI: 10.1007/s10096-013-1824-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
Abstract
Quinupristin-dalfopristin (Q-D) synergizes with cefepime for the treatment of methicillin-resistant Staphylococcus aureus (MRSA). Here, we studied whether the synergism was restricted to MRSA and if it extended to non-beta-lactam cell wall inhibitors or to other inhibitors of protein synthesis. Three MRSA and two methicillin-susceptible S. aureus (MSSA) strains were tested, including an isogenic pair of mecA (-)/mecA (+) S. aureus Newman. The drug interactions were determined by fractional inhibitory concentration (FIC) indices and population analysis profiles. The antibacterial drugs that we used included beta-lactam (cefepime) and non-beta-lactam cell wall inhibitors (D-cycloserine, fosfomycin, vancomycin, teicoplanin), inhibitors of protein synthesis (Q-D, erythromycin, chloramphenicol, tetracycline, linezolid, fusidic acid), and polynucleotide inhibitors (cotrimoxazole, ciprofloxacin). The addition of each protein inhibitor to cefepime was synergistic (FIC ≤ 0.5) or additive (FIC > 0.5 but < 1) against MRSA, but mostly indifferent against MSSA (FIC ≥ 1 but ≤ 4). This segregation was not observed after adding cotrimoxazole or ciprofloxacin to cefepime. Population analysis profiles were performed on plates in the presence of increasing concentrations of the cell wall inhibitors plus 0.25 × minimum inhibitory concentration (MIC) of Q-D. Cefepime combined with Q-D was synergistic against MRSA, but D-cycloserine and glycopeptides were not. Thus, the synergism was specific to beta-lactam antibiotics. Moreover, the synergism was not lost against fem mutants, indicating that it acted at another level. The restriction of the beneficial effect to MRSA suggests that the functionality of penicillin-binding protein 2A (PBP2A) was affected, either directly or indirectly. Further studies are necessary in order to provide a mechanism for this positive interaction.
Collapse
|
31
|
The Staphylococcus aureus Membrane Protein SA2056 Interacts with Peptidoglycan Synthesis Enzymes. Antibiotics (Basel) 2013; 2:11-27. [PMID: 27029289 PMCID: PMC4790295 DOI: 10.3390/antibiotics2010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/12/2022] Open
Abstract
The yet uncharacterized membrane protein SA2056 belongs to the ubiquitous RND (Resistance-Nodulation-cell Division) family of transmembrane efflux transporters. The sa2056 gene is located downstream of femX, the gene encoding the essential, non-ribosomal peptidyl-transferase adding the first glycine in the staphylococcal cell wall pentaglycine interpeptide. Due to its proximity to and weak co-transcription with femX, we assumed that sa2056 may somehow be involved in peptidoglycan synthesis. Specific antibodies against SA2056 showed that this protein is expressed during growth and present in the membrane fraction of cell preparations. Using a bacterial two hybrid system, SA2056 was shown to interact (i) with itself, (ii) with FemB, which adds glycines 4 and 5 to the peptidoglycan interpeptide and (iii) with the essential penicillin binding proteins, PBP1 and PBP2, required for cell division and incorporation of the peptidoglycan into the cell wall. Unexpectedly, deletion of sa2056 led to no phenotype regarding growth, antibiotic resistances or cell morphology; nor did sa2056 deletion in combination with femB inactivation alter β-lactam and lysostaphin sensitivity and resistance, respectively, pointing to possible redundancy in the cell wall synthesis pathway. These results suggest an accessory role of SA2056 in S. aureus peptidoglycan synthesis, broadening the range of biological functions of RND proteins.
Collapse
|
32
|
Uniformity of glycyl bridge lengths in the mature cell walls of fem mutants of methicillin-resistant Staphylococcus aureus. J Bacteriol 2013; 195:1421-7. [PMID: 23335411 DOI: 10.1128/jb.01471-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Peptidoglycan (PG) composition in intact cells of methicillin-resistant Staphylococcus aureus (MRSA) and its isogenic Fem mutants has been characterized by measuring the glycine content of PG bridge structures by solid-state nuclear magnetic resonance (NMR). The glycine content estimated from integrated intensities (rather than peak heights) in the cell walls of whole cells was increased by approximately 30% for the FemA mutant and was reduced by 25% for the FemB mutant relative to expected values for homogeneous structures. In contrast, the expected compositions were observed in isolated cell walls of the same mutants. For FemA mutant whole cells, the increase was due to the presence of triglycyl bridge PG units (confirmed directly by mass spectrometric analysis), which constituted 10% of the total PG. These species were coalesced in some sort of a lattice or aggregate with spatial proximity to other PG bridges. This result suggests that the triglycyl-bridged PG units form a PG-like structure that is not incorporated into the mature cell wall.
Collapse
|
33
|
Zhao Y, Verma V, Belcheva A, Singh A, Fridman M, Golemi-Kotra D. Staphylococcus aureus methicillin-resistance factor fmtA is regulated by the global regulator SarA. PLoS One 2012; 7:e43998. [PMID: 22952845 PMCID: PMC3431356 DOI: 10.1371/journal.pone.0043998] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/26/2012] [Indexed: 11/30/2022] Open
Abstract
fmtA encodes a low-affinity penicillin binding protein in Staphylococcus aureus. It is part of the core cell wall stimulon and is involved in methicillin resistance in S. aureus. Here, we report that the transcription factor, SarA, a pleiotropic regulator of virulence genes in S. aureus, regulates the expression of fmtA. In vitro binding studies with purified SarA revealed that it binds to specific sites within the 541-bp promoter region of fmtA. Mutation of a key residue of the regulatory activity of SarA (Arg90) abolished binding of SarA to the fmtA promoter, suggesting that SarA binds specifically to the fmtA promoter region. In vivo analysis of the fmtA promoter using a lux operon reporter fusion show high level expression following oxacillin induction, which was abrogated in a sarA mutant strain. These data suggest that SarA is essential for the induction of fmtA expression by cell wall-specific antibiotics. Further, in vitro transcription studies show that SarA enhances fmtA transcription and suggest that regulation of fmtA could be via a SigA-dependent mechanism. Overall, our results show that SarA plays a direct role in the regulation of fmtA expression via binding to the fmtA promoter.
Collapse
Affiliation(s)
- Yinglu Zhao
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Vidhu Verma
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | | | - Atul Singh
- Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Michael Fridman
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Dasantila Golemi-Kotra
- Department of Biology, York University, Toronto, Ontario, Canada
- Department of Chemistry, York University, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Broadening the spectrum of β-lactam antibiotics through inhibition of signal peptidase type I. Antimicrob Agents Chemother 2012; 56:4662-70. [PMID: 22710113 DOI: 10.1128/aac.00726-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all β-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of β-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to β-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with β-lactams by preventing the signal peptidase-mediated secretion of proteins required for β-lactam resistance. Combinations of SpsB inhibitors and β-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to β-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.
Collapse
|
35
|
Frankel MB, Schneewind O. Determinants of murein hydrolase targeting to cross-wall of Staphylococcus aureus peptidoglycan. J Biol Chem 2012; 287:10460-10471. [PMID: 22303016 DOI: 10.1074/jbc.m111.336404] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cells of eukaryotic or prokaryotic origin express proteins with LysM domains that associate with the cell wall envelope of bacteria. The molecular properties that enable LysM domains to interact with microbial cell walls are not yet established. Staphylococcus aureus, a spherical microbe, secretes two murein hydrolases with LysM domains, Sle1 and LytN. We show here that the LysM domains of Sle1 and LytN direct murein hydrolases to the staphylococcal envelope in the vicinity of the cross-wall, the mid-cell compartment for peptidoglycan synthesis. LysM domains associate with the repeating disaccharide β-N-acetylmuramic acid, (1→4)-β-N-acetylglucosamine of staphylococcal peptidoglycan. Modification of N-acetylmuramic acid with wall teichoic acid, a ribitol-phosphate polymer tethered to murein linkage units, prevents the LysM domain from binding to peptidoglycan. The localization of LytN and Sle1 to the cross-wall is abolished in staphylococcal tagO mutants, which are defective for wall teichoic acid synthesis. We propose a model whereby the LysM domain ensures septal localization of LytN and Sle1 followed by processive cleavage of peptidoglycan, thereby exposing new LysM binding sites in the cross-wall and separating bacterial cells.
Collapse
Affiliation(s)
- Matthew B Frankel
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
36
|
Monteiro R, Vitorino R, Domingues P, Radhouani H, Carvalho C, Poeta P, Torres C, Igrejas G. Proteome of a methicillin-resistant Staphylococcus aureus clinical strain of sequence type ST398. J Proteomics 2012; 75:2892-915. [PMID: 22245554 DOI: 10.1016/j.jprot.2011.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 10/14/2022]
Abstract
Proteomics is a powerful tool to analyze the differences in gene expression of bacterial strains. Staphylococcus aureus has long been recognized as an important pathogen in human disease. In order to investigate this pathogen, the proteome of a clinical methicillin-resistant S. aureus (MRSA) strain of the sequence type ST398 was determined using 2-DE. Using 2-DE we obtained a total of 105 spots the MRSA strain. Furthermore in correlation with bioinformatic databases, they allowed accurate identification and characterization of proteins, resulting in 227 identified proteins. There were found proteins related to basic function of the cell, but also proteins related to virulence like catalase, specific of S. aureus species, and proteins related to antibiotic resistance. Proteins associated with antibiotic resistance or virulence factors are related to genomic databases. The most abundant classes identified involved glycolysis, energy production, one-carbon metabolism, and oxidation-reduction process, all of which reflect an active metabolism. These results highlight the importance of proteomics to deepen in the knowledge of protein expression of MRSA strain of the lineage ST398, microorganism with diverse and important resistance mechanisms. With this proteome map we have an essential tool for a better understanding of this pathogen and providing new data for protein databases. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- R Monteiro
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Münch D, Roemer T, Lee SH, Engeser M, Sahl HG, Schneider T. Identification and in vitro analysis of the GatD/MurT enzyme-complex catalyzing lipid II amidation in Staphylococcus aureus. PLoS Pathog 2012; 8:e1002509. [PMID: 22291598 PMCID: PMC3266927 DOI: 10.1371/journal.ppat.1002509] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 12/14/2011] [Indexed: 12/04/2022] Open
Abstract
The peptidoglycan of Staphylococcus aureus is characterized by a high degree of crosslinking and almost completely lacks free carboxyl groups, due to amidation of the D-glutamic acid in the stem peptide. Amidation of peptidoglycan has been proposed to play a decisive role in polymerization of cell wall building blocks, correlating with the crosslinking of neighboring peptidoglycan stem peptides. Mutants with a reduced degree of amidation are less viable and show increased susceptibility to methicillin. We identified the enzymes catalyzing the formation of D-glutamine in position 2 of the stem peptide. We provide biochemical evidence that the reaction is catalyzed by a glutamine amidotransferase-like protein and a Mur ligase homologue, encoded by SA1707 and SA1708, respectively. Both proteins, for which we propose the designation GatD and MurT, are required for amidation and appear to form a physically stable bi-enzyme complex. To investigate the reaction in vitro we purified recombinant GatD and MurT His-tag fusion proteins and their potential substrates, i.e. UDP-MurNAc-pentapeptide, as well as the membrane-bound cell wall precursors lipid I, lipid II and lipid II-Gly₅. In vitro amidation occurred with all bactoprenol-bound intermediates, suggesting that in vivo lipid II and/or lipid II-Gly₅ may be substrates for GatD/MurT. Inactivation of the GatD active site abolished lipid II amidation. Both, murT and gatD are organized in an operon and are essential genes of S. aureus. BLAST analysis revealed the presence of homologous transcriptional units in a number of gram-positive pathogens, e.g. Mycobacterium tuberculosis, Streptococcus pneumonia and Clostridium perfringens, all known to have a D-iso-glutamine containing PG. A less negatively charged PG reduces susceptibility towards defensins and may play a general role in innate immune signaling.
Collapse
Affiliation(s)
- Daniela Münch
- Institute of Medical Microbiology, Immunology and Parasitology – Pharmaceutical Microbiology Section, University of Bonn, Bonn, Germany
| | - Terry Roemer
- Department of Infectious Diseases, Merck Research Laboratories, Merck & Co., Kenilworth, New Jersey, United States of America
| | - Sang Ho Lee
- Department of Infectious Diseases, Merck Research Laboratories, Merck & Co., Kenilworth, New Jersey, United States of America
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany
| | - Hans Georg Sahl
- Institute of Medical Microbiology, Immunology and Parasitology – Pharmaceutical Microbiology Section, University of Bonn, Bonn, Germany
| | - Tanja Schneider
- Institute of Medical Microbiology, Immunology and Parasitology – Pharmaceutical Microbiology Section, University of Bonn, Bonn, Germany
| |
Collapse
|
38
|
Hanaki KI, Sekiguchi JI, Shimada K, Sato A, Watari H, Kojima T, Miyoshi-Akiyama T, Kirikae T. Loop-mediated isothermal amplification assays for identification of antiseptic- and methicillin-resistant Staphylococcus aureus. J Microbiol Methods 2011; 84:251-4. [DOI: 10.1016/j.mimet.2010.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 11/16/2022]
|
39
|
Sharif S, Kim SJ, Labischinski H, Schaefer J. Characterization of peptidoglycan in fem-deletion mutants of methicillin-resistant Staphylococcus aureus by solid-state NMR. Biochemistry 2009; 48:3100-8. [PMID: 19309106 PMCID: PMC2785074 DOI: 10.1021/bi801750u] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Compositional analysis of the peptidoglycan (PG) of a wild-type methicillin-resistant Staphylococcus aureus and its fem-deletion mutants has been performed on whole cells and cell walls using stable-isotope labeling and rotational-echo double-resonance NMR. The labels included [1-(13)C,(15)N]glycine and l-[epsilon-(15)N]lysine (for a direct measure of the number of glycyl residues in the bridging segment), [1-(13)C]glycine and l-[epsilon-(15)N]lysine (concentration of bridge links), and d-[1-(13)C]alanine and [(15)N]glycine (concentrations of cross-links and wall teichoic acids). The bridging segment length changed from 5.0 glycyl residues (wild-type strain) to 2.5 +/- 0.1 (FemB) with modest changes in cross-link and bridge-link concentrations. This accurate in situ measurement for the FemB mutant indicates a heterogeneous PG structure with 25% monoglycyl and 75% triglycyl bridges. When the bridging segment was reduced to a single glycyl residue 1.0 +/- 0.1 (FemA), the level of cross-linking decreased by more than 20%, resulting in a high concentration of open N-terminal glycyl segments.
Collapse
Affiliation(s)
- Shasad Sharif
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| | - Sung Joon Kim
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| | - Harald Labischinski
- MerLion Pharmaceuticals GmbH, Robert-Rössle-Straβe 10, 13125 Berlin, Germany
| | - Jacob Schaefer
- Department of Chemistry, Washington University, One Brookings Drive, St. Louis, MO 63130
| |
Collapse
|
40
|
Shimazu K, Takahashi Y, Uchikawa Y, Shimazu Y, Yajima A, Takashima E, Aoba T, Konishi K. Identification of the Streptococcus gordonii glmM gene encoding phosphoglucosamine mutase and its role in bacterial cell morphology, biofilm formation, and sensitivity to antibiotics. ACTA ACUST UNITED AC 2008; 53:166-77. [PMID: 18462386 DOI: 10.1111/j.1574-695x.2008.00410.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Phosphoglucosamine mutase (EC 5.4.2.10) catalyzes the interconversion of glucosamine-6-phosphate into glucosamine-1-phosphate, an essential step in the biosynthetic pathway leading to the formation of peptidoglycan precursor uridine 5'-diphospho-N-acetylglucosamine. The gene (glmM) of Escherichia coli encoding the enzyme has been identified previously. We have now identified a glmM homolog in Streptococcus gordonii, an early colonizer on the human tooth and an important cause of infective endocarditis, and have confirmed that the gene encodes phosphoglucosamine mutase by assaying the enzymatic activity of the recombinant GlmM protein. Insertional glmM mutant of S. gordonii did not produce GlmM, and had a growth rate that was approximately half that of the wild type. Morphological analyses clearly indicated that the glmM mutation causes marked elongation of the streptococcal chains, enlargement of bacterial cells, and increased roughness of the bacterial cell surface. Furthermore, the glmM mutation reduces biofilm formation and increases sensitivity to penicillins relative to wild type. All of these phenotypic changes were also observed in a glmM deletion mutant, and were restored by the complementation with plasmid-borne glmM. These results suggest that, in S. gordonii, mutations in glmM appear to influence bacterial cell growth and morphology, biofilm formation, and sensitivity to penicillins.
Collapse
Affiliation(s)
- Kisaki Shimazu
- Department of Pediatric Dentistry, Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Mainardi JL, Villet R, Bugg TD, Mayer C, Arthur M. Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. FEMS Microbiol Rev 2008; 32:386-408. [PMID: 18266857 DOI: 10.1111/j.1574-6976.2007.00097.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Acquisition of resistance to the two classes of antibiotics therapeutically used against Gram-positive bacteria, the glycopeptides and the beta-lactams, has revealed an unexpected flexibility in the peptidoglycan assembly pathway. Glycopeptides select for diversification of the fifth position of stem pentapeptides because replacement of D-Ala by D-lactate or D-Ser at this position prevents binding of the drugs to peptidoglycan precursors. The substitution is generally well tolerated by the classical D,D-transpeptidases belonging to the penicillin-binding protein family, except by low-affinity enzymes. Total elimination of the fifth residue by a D,D-carboxypeptidase requires a novel cross-linking enzyme able to process the resulting tetrapeptide stems. This enzyme, an L,D-transpeptidase, confers cross-resistance to beta-lactams and glycopeptides. Diversification of the side chain of the precursors, presumably in response to the selective pressure of peptidoglycan endopeptidases, is controlled by aminoacyl transferases of the Fem family that redirect specific aminoacyl-tRNAs from translation to peptidoglycan synthesis. Diversification of the side chains has been accompanied by a parallel divergent evolution of the substrate specificity of the L,D-transpeptidases, in contrast to the D,D-transpeptidases, which display an unexpected broad specificity. This review focuses on the role of antibiotics in selecting or counter-selecting diversification of the structure of peptidoglycan precursors and their mode of polymerization.
Collapse
Affiliation(s)
- Jean-Luc Mainardi
- INSERM, U872, LRMA, Centre de Recherche des Cordeliers, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 2008; 32:361-85. [PMID: 18248419 DOI: 10.1111/j.1574-6976.2007.00095.x] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A number of ways and means have evolved to provide resistance to eubacteria challenged by beta-lactams. This review is focused on pathogens that resist by expressing low-affinity targets for these antibiotics, the penicillin-binding proteins (PBPs). Even within this narrow focus, a great variety of strategies have been uncovered such as the acquisition of an additional low-affinity PBP, the overexpression of an endogenous low-affinity PBP, the alteration of endogenous PBPs by point mutations or homologous recombination or a combination of the above.
Collapse
Affiliation(s)
- André Zapun
- Laboratoire d'Ingénierie des Macromolécules, Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075-CNRS, CEA, Université Joseph Fourier, Grenoble, France
| | | | | |
Collapse
|
43
|
Staphylococcus aureus clinical isolate with high-level methicillin resistance with an lytH mutation caused by IS1182 insertion. Antimicrob Agents Chemother 2007; 52:643-7. [PMID: 18070966 DOI: 10.1128/aac.00395-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that deficiency of the lytH gene, whose product is homologous to lytic enzymes, caused the elevation of methicillin resistance in Staphylococcus aureus strain SR17238, a strain of S. aureus with a low level of resistance to methicillin (low-level MRSA) (J. Bacteriol. 179:6294-6301, 1997). In this study, we demonstrated that deficiency of lytH caused the same phenomenon in four other clinical isolates of low-level MRSA, suggesting this deficiency to exist in clinical isolates. We therefore searched the region including lytH in 127 clinical isolates of MRSA by PCR and found one strain, SR17164 (methicillin MIC, 1,600 microg/ml), in which the lytH gene was inactivated by insertion sequence IS1182. lytH::IS1182 was replaced with intact lytH in this strain by integration and excision of the plasmid carrying the lytH region. Recombinants with intact lytH genes showed methicillin MICs of 800 microg/ml, twofold lower than those of the recombinants with lytH::IS1182 and the parent. In addition, S. aureus SR17164, which has a high level of methicillin resistance, had properties similar to those caused by lytH deficiency; that is, the resistance levels of strain SR17164 and lytH-deficient variants from strain SR17238 were not significantly affected by llm inactivation, which greatly lowered resistance levels in most other high-level MRSA strains. These findings suggest that lytH inactivation contributed, to some extent, to the resistance level of S. aureus SR17164. To the best of our knowledge, this strain is the first clinical isolate of MRSA for which the genetic base for high-level resistance has been clarified.
Collapse
|
44
|
Majouri D, Touati A, Achour W, Bouchami O, Ben Hassen A. [Comparison of phenotypic methods with PCR to screening methicillin resistance in coagulase negative staphylococci]. ACTA ACUST UNITED AC 2007; 55:361-5. [PMID: 17905538 DOI: 10.1016/j.patbio.2007.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/29/2007] [Indexed: 11/17/2022]
Abstract
THE AIM OF STUDY Appreciation of the frequency, the level and the genetic support of methicillin resistance. MATERIAL AND METHODS Seventy-three strains of coagulase negative staphylococci isolated from various specimens, from January to June 2004, were studied. The phenotypic detection was carried out by disk diffusion test using oxacillin and cefoxitin disks, by the determination of oxacillin Minimal Inhibitor Concentration (E-test), by the oxacillin screening test at a concentration of 4 mug/ml and by the search of the penicillin binding protein PBP2a using the slide latex agglutination test. The results of these methods were compared to PCR of mecA gene. RESULTS Forty-eight strains carried mecA gene whose 30 were detected by the oxacillin disk, the cefoxitin disk, the oxacillin screening test, the slide latex agglutination test and had a MIC from 24 to 256 mug/ml. Seventeen strains were not detected by oxacillin disk but by cefoxitin disk and the slide latex agglutination test. Among these strains, 13 (76%) had oxacillin MIC from 0.5 to 1,5 mug/ml and not grew on oxacillin agar screening, while 4 (24%) had oxacillin MIC from 6 to 16 mug/ml and grew on this agar. One strain had oxacillin MIC of 0,19 mug/ml and was not detected with any phenotypic method. CONCLUSION The determination of oxacillin MIC, the search of the PBP2a or more simply the cefoxitin disk had permitted to detect the strains mecA gene (+) with resistant and pre-resistant phenotype but not the strain with sensible phenotype (2.1%).
Collapse
Affiliation(s)
- D Majouri
- Laboratoire de microbiologie, centre national de greffe de moelle osseuse, rue Djebel-Lakhdhar, Bab Saadoun, 1006 Tunis, Tunisie
| | | | | | | | | |
Collapse
|
45
|
Gründling A, Missiakas DM, Schneewind O. Staphylococcus aureus mutants with increased lysostaphin resistance. J Bacteriol 2006; 188:6286-97. [PMID: 16923896 PMCID: PMC1595375 DOI: 10.1128/jb.00457-06] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Staphylococcus simulans secretes lysostaphin, a bacteriolytic enzyme that specifically binds to the cell wall envelope of Staphylococcus aureus and cleaves the pentaglycine cross bridges of peptidoglycan, thereby killing staphylococci. The study of S. aureus mutants with resistance to lysostaphin-mediated killing has revealed biosynthetic pathways for cell wall assembly. To identify additional genes involved in cell wall envelope biosynthesis, we have screened a collection of S. aureus strain Newman transposon mutants for lysostaphin resistance. Bursa aurealis insertion in SAV2335, encoding a polytopic membrane protein with predicted protease domain, caused a high degree of lysostaphin resistance, similar to the case for a previously described femAB promoter mutant. In contrast to the case for this femAB mutant, transposon insertion in SAV2335, herein named lyrA (lysostaphin resistance A), did not cause gross alterations of cell wall cross bridges such as truncations of pentaglycine to tri- or monoglycine. Also, inactivation of LyrA in a methicillin-resistant S. aureus strain did not precipitate a decrease in beta-lactam resistance as observed for fem (factor essential for methicillin resistance) mutants. Lysostaphin bound to the cell wall envelopes of lyrA mutants in a manner similar to that for wild-type staphylococci. Lysostaphin resistance of lyrA mutants is attributable to altered cell wall envelope properties and may in part be due to increased abundance of altered cross bridges. Other lyr mutants with intermediate lysostaphin resistance carried bursa aurealis insertions in genes specifying GTP pyrophosphokinase or enzymes of the purine biosynthetic pathway.
Collapse
Affiliation(s)
- Angelika Gründling
- Department of Microbiology, University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
46
|
Tschierske M, Ehlert K, Strandén A, Berger-Bächi B. Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb12583.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
47
|
|
48
|
Schneider T, Senn MM, Berger-Bächi B, Tossi A, Sahl HG, Wiedemann I. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus. Mol Microbiol 2005; 53:675-85. [PMID: 15228543 DOI: 10.1111/j.1365-2958.2004.04149.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Staphylococcus aureus peptidoglycan is cross-linked via a characteristic pentaglycine interpeptide bridge. Genetic analysis had identified three peptidyltransferases, FemA, FemB and FemX, to catalyse the formation of the interpeptide bridge, using glycyl t-RNA as Gly donor. To analyse the pentaglycine bridge formation in vitro, we purified the potential substrates for FemA, FemB and FemX, UDP-MurNAc-pentapeptide, lipid I and lipid II and the staphylococcal t-RNA pool, as well as His-tagged Gly-tRNA-synthetase and His-tagged FemA, FemB and FemX. We found that FemX used lipid II exclusively as acceptor for the first Gly residue. Addition of Gly 2,3 and of Gly 4,5 was catalysed by FemA and FemB, respectively, and both enzymes were specific for lipid II-Gly1 and lipid II-Gly3 as acceptors. None of the FemABX enzymes required the presence of one or two of the other Fem proteins for activity; rather, bridge formation was delayed in the in vitro system when all three enzymes were present. The in vitro assembly system described here will enable detailed analysis of late, membrane-associated steps of S. aureus peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Tanja Schneider
- Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn, D-53105 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Hong HJ, Hutchings MI, Hill LM, Buttner MJ. The role of the novel Fem protein VanK in vancomycin resistance in Streptomyces coelicolor. J Biol Chem 2005; 280:13055-61. [PMID: 15632111 DOI: 10.1074/jbc.m413801200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The non-pathogenic, non-glycopeptide-producing actinomycete Streptomyces coelicolor carries a cluster of seven genes (vanSRJKHAX) that confers inducible, high level resistance to vancomycin. The vanK gene has no counterpart in previously characterized vancomycin resistance clusters, yet vanK is required for vancomycin resistance in S. coelicolor. VanK belongs to the Fem family of enzymes, which add the branch amino acid(s) to the stem pentapeptide of peptidoglycan precursors. Upon exposure to vancomycin, the VanRS two-component system switches on expression of all seven van genes, and the VanHAX enzymes reprogram the cell wall such that precursors terminate D-Ala-D-lactate (Lac) rather than D-Ala-D-Ala, thus conferring resistance to vancomycin, which only binds D-Ala-D-Ala-containing precursors. Here we provide biochemical and genetic evidence that VanK is required for vancomycin resistance because the constitutively expressed FemX enzyme, encoded elsewhere on the chromosome, cannot recognize D-Lac-containing precursors as a substrate, whereas VanK can. Consistent with this view, D-Lac-containing precursors carrying the Gly branch are present in the wild type transiently exposed to vancomycin but are undetectable in a vanK mutant treated in the same way. Further, femX null mutants are viable in the presence of vancomycin but die in its absence. Because only VanK can recognize D-Lac-containing precursors, vancomycin-induced expression of VanHAX in a vanK mutant is lethal, and so vanK is required for vancomycin resistance.
Collapse
Affiliation(s)
- Hee-Jeon Hong
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom.
| | | | | | | |
Collapse
|
50
|
Hong HJ, Hutchings MI, Neu JM, Wright GD, Paget MSB, Buttner MJ. Characterization of an inducible vancomycin resistance system in Streptomyces coelicolor reveals a novel gene (vanK) required for drug resistance. Mol Microbiol 2004; 52:1107-21. [PMID: 15130128 DOI: 10.1111/j.1365-2958.2004.04032.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vancomycin is the front-line therapy for treating problematic infections caused by methicillin-resistant Staphylococcus aureus (MRSA), and the spread of vancomycin resistance is an acute problem. Vancomycin blocks cross-linking between peptidoglycan intermediates by binding to the D-Ala-D-Ala termini of bacterial cell wall precursors, which are the substrate of transglycosylase/transpeptidase. We have characterized a cluster of seven genes (vanSRJKHAX) in Streptomyces coelicolor that confers inducible, high-level vancomycin resistance. vanHAX are orthologous to genes found in vancomycin-resistant enterococci that encode enzymes predicted to reprogramme peptidoglycan biosynthesis such that cell wall precursors terminate in D-Ala-D-Lac rather than D-Ala-D-Ala. vanR and vanS encode a two-component signal transduction system that mediates transcriptional induction of the seven van genes. vanJ and vanK are novel genes that have no counterpart in previously characterized vancomycin resistance clusters from pathogens. VanK is a member of the Fem family of enzymes that add the cross-bridge amino acids to the stem pentapeptide of cell wall precursors, and vanK is essential for vancomycin resistance. The van genes are organized into four transcription units, vanRS, vanJ, vanK and vanHAX, and these transcripts are induced by vancomycin in a vanR-dependent manner. To develop a sensitive bioassay for inducers of the vancomycin resistance system, the promoter of vanJ was fused to a reporter gene conferring resistance to kanamycin. All the inducers identified were glycopeptide antibiotics, but teicoplanin, a membrane-anchored glycopeptide, failed to act as an inducer. Analysis of mutants defective in the vanRS and cseBC cell envelope signal transduction systems revealed significant cross-talk between the two pathways.
Collapse
Affiliation(s)
- Hee-Jeon Hong
- Department of Molecular Microbiology, John Innes Centre, Colney, Norwich NR4 7UH, UK.
| | | | | | | | | | | |
Collapse
|