1
|
Wei Y, Chen GH, Yaqub M, Kim E, Tillett LE, Joyce LR, Dillon N, Palmer KL, Guan Z. Biosynthesis of mitis group streptococcal glycolipids and their roles in physiology and antibiotic susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621112. [PMID: 39554182 PMCID: PMC11565941 DOI: 10.1101/2024.10.30.621112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Bacterial cell surface components such as lipoteichoic acids (LTAs) play critical roles in host-microbe interactions and alter host responses based on their chemical structures. Mitis group streptococci have commensal and pathogenic interactions with the human host and produce Type IV LTAs that are slightly different in chemical structures between species. To reveal the molecular bases for the intricate interactions between MGS and human hosts, a detailed understanding of the structure and biosynthetic process of MGS LTAs is needed. In this study, we used genomic and lipidomic techniques to elucidate the biosynthetic processes of Type IV LTA and its associated glycolipid anchors, monohexosyl-diacylglycerol and dihexosyl-diacyglycerol, in the infectious endocarditis isolate Streptococcus sp. strain 1643. Through establishing a murine sepsis model, we validated the essentiality of these glycolipids in the full virulence of S. mitis. Additionally, we found that these glycolipids play an important role in protecting the bacteria from antimicrobials. Overall, results obtained through this study both confirm and dispute aspects of the existing model of glycolipids biosynthesis, provide insights into the fundamental roles of bacterial glycolipids, as well as suggest the potential of targeting glycolipids for developing antimicrobial therapeutics.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, Texas, USA
| | - Guan H. Chen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Muneer Yaqub
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Elice Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Lily E Tillett
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Luke R. Joyce
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicholas Dillon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
2
|
Wu X, Han J, Gong G, Koffas MAG, Zha J. Wall teichoic acids: physiology and applications. FEMS Microbiol Rev 2020; 45:6019871. [DOI: 10.1093/femsre/fuaa064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Wall teichoic acids (WTAs) are charged glycopolymers containing phosphodiester-linked polyol units and represent one of the major components of Gram-positive cell envelope. WTAs have important physiological functions in cell division, gene transfer, surface adhesion, drug resistance and biofilm formation, and are critical virulence factors and vital determinants in mediating cell interaction with and tolerance to environmental factors. Here, we first briefly introduce WTA structure, biosynthesis and its regulation, and then summarize in detail four major physiological roles played by WTAs, i.e. WTA-mediated resistance to antimicrobials, virulence to mammalian cells, interaction with bacteriolytic enzymes and regulation of cell metabolism. We also review the applications of WTAs in these fields that are closely related to the human society, including antibacterial drug discovery targeting WTA biosynthesis, development of vaccines and antibodies regarding WTA-mediated pathogenicity, specific and sensitive detection of pathogens in food using WTAs as a surface epitope and regulation of WTA-related pathways for efficient microbial production of useful compounds. We also point out major problems remaining in these fields, and discuss some possible directions in the future exploration of WTA physiology and applications.
Collapse
Affiliation(s)
- Xia Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jing Han
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mattheos A G Koffas
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Jian Zha
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| |
Collapse
|
3
|
Wang X, Zheng X, Huang M, Liu L. A comparative genomic analysis of small-colony variant and wild-type Burkholderia pseudomallei in a patient with bacterial liver abscess. J Glob Antimicrob Resist 2019; 21:16-21. [PMID: 31562932 DOI: 10.1016/j.jgar.2019.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/28/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To understand the genotypic variations of Burkholderia pseudomallei (B. pseudomallei) small-colony variant (SCV). METHODS A pair of isogenic wild-type (WT) and SCV B. pseudomallei strains (CX1-1 and CX2-1, respectively) were isolated from a patient with a bacterial liver abscess. They were further identified by multilocus sequence typing (MLST) analysis. To compare their growth speed, the time to detection for the two strains was assessed by BacT/Alert 3D. Antibiotic susceptibility tests were performed by disc diffusion method and Etest assay according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The whole genomes of the two strains were sequenced. A comparative genome analysis was performed to determine the genotypic variations of the CX2-1 strain. RESULTS The CX1-1 and CX2-1 strains were both identified as ST70 by MLST. The CX2-1 grew more slowly than the WT strain CX1-1 and was more resistant to imipenem, meropenem, doxycycline, trimethoprim-sulfamethoxazole, and ceftazidime. The comparative genome analysis revealed 38 variations in 30 genes associated with metabolism, drug resistance and virulence. The mutated genes encoded some cell membrane proteins, membrane transporters and synthetases, including: LolB, HisP, PchF, putative polyketide synthetases, probable non-ribosomal peptide synthetases, putative TonB-dependent outer-membrane receptor protein, and putative type III secretion protein. CONCLUSIONS The reduced growth speed and increased drug resistance of B. pseudomallei SCV strain may be related to those variations in the genome. This provides some clues to their association between the morphotypic and phenotypic characteristics of colony variants, and the potential association of its colony morphotypes with metabolism, antibiotic resistance and virulence.
Collapse
Affiliation(s)
- Xuming Wang
- Department of Clinical Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xiao Zheng
- State Key Laboratory for Infectious Disease Prevention and Control, Beijing, China
| | - Meihui Huang
- Department of Clinical Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Lingli Liu
- Department of Clinical Laboratory, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
4
|
Heß N, Waldow F, Kohler TP, Rohde M, Kreikemeyer B, Gómez-Mejia A, Hain T, Schwudke D, Vollmer W, Hammerschmidt S, Gisch N. Lipoteichoic acid deficiency permits normal growth but impairs virulence of Streptococcus pneumoniae. Nat Commun 2017; 8:2093. [PMID: 29233962 PMCID: PMC5727136 DOI: 10.1038/s41467-017-01720-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022] Open
Abstract
Teichoic acid (TA), a crucial cell wall constituent of the pathobiont Streptococcus pneumoniae, is bound to peptidoglycan (wall teichoic acid, WTA) or to membrane glycolipids (lipoteichoic acid, LTA). Both TA polymers share a common precursor synthesis pathway, but differ in the final transfer of the TA chain to either peptidoglycan or a glycolipid. Here, we show that LTA exhibits a different linkage conformation compared to WTA, and identify TacL (previously known as RafX) as a putative lipoteichoic acid ligase required for LTA assembly. Pneumococcal mutants deficient in TacL lack LTA and show attenuated virulence in mouse models of acute pneumonia and systemic infections, although they grow normally in culture. Hence, LTA is important for S. pneumoniae to establish systemic infections, and TacL represents a potential target for antimicrobial drug development. Teichoic acid is bound to peptidoglycan (wall teichoic acid, WTA) or to membrane glycolipids (lipoteichoic acid, LTA) in most Gram-positive bacteria. Here, the authors identify a putative ligase required for the assembly of LTA, but not WTA, and important for Streptococcus pneumoniae virulence in mouse models.
Collapse
Affiliation(s)
- Nathalie Heß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Friedrich Ludwig Jahnstr. 15a, 17487, Greifswald, Germany
| | - Franziska Waldow
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845, Borstel, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Friedrich Ludwig Jahnstr. 15a, 17487, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, HZI - Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Braunschweig, Germany
| | - Bernd Kreikemeyer
- University Medicine, Institute of Medical Microbiology, Virology and Hygiene, Rostock University, Schillingallee 70, 18057, Rostock, Germany
| | - Alejandro Gómez-Mejia
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Friedrich Ludwig Jahnstr. 15a, 17487, Greifswald, Germany
| | - Torsten Hain
- Institute for Medical Microbiology, Justus-Liebig University of Giessen, Schubertstraße 81, 35392, Giessen, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845, Borstel, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Friedrich Ludwig Jahnstr. 15a, 17487, Greifswald, Germany.
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845, Borstel, Germany.
| |
Collapse
|
5
|
Schade J, Weidenmaier C. Cell wall glycopolymers of Firmicutes and their role as nonprotein adhesins. FEBS Lett 2016; 590:3758-3771. [PMID: 27396949 DOI: 10.1002/1873-3468.12288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022]
Abstract
Cell wall glycopolymers (CWGs) of gram-positive bacteria have gained increasing interest with respect to their role in colonization and infection. In most gram-positive pathogens they constitute a large fraction of the cell wall biomass and represent major cell envelope determinants. Depending on their chemical structure they modulate interaction with complement factors and play roles in immune evasion or serve as nonprotein adhesins that mediate, especially under dynamic conditions, attachment to different host cell types. In particular, covalently peptidoglycan-attached CWGs that extend well above the cell wall seem to interact with glyco-receptors on host cell surfaces. For example, in the case of Staphylococcus aureus, the cell wall-attached teichoic acid (WTA) has been identified as a major CWG adhesin. A recent report indicates that a type-F scavenger receptor, termed SR-F1 (SREC-I), is the predominant WTA receptor in the nasal cavity and that WTA-SREC-I interaction plays an important role in S. aureus nasal colonization. Therefore, understanding the role of CWGs in complex processes that mediate colonization and infection will allow novel insights into the mechanisms of host-microbiota interaction.
Collapse
Affiliation(s)
- Jessica Schade
- Interfaculty Institute for Microbiology and Infection Medicine (IMIT), University of Tübingen, Germany
| | - Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine (IMIT), University of Tübingen, Germany.,German Center for Infection Research (DZIF), Partnersite Tübingen, Germany
| |
Collapse
|
6
|
Johnston C, Hauser C, Hermans PWM, Martin B, Polard P, Bootsma HJ, Claverys JP. Fine-tuning of choline metabolism is important for pneumococcal colonization. Mol Microbiol 2016; 100:972-88. [PMID: 26919406 DOI: 10.1111/mmi.13360] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2016] [Indexed: 01/10/2023]
Abstract
The human pathogen Streptococcus pneumoniae (the pneumococcus) is rare in having a strict requirement for the amino alcohol choline, which decorates pneumococcal teichoic acids. This process relies on the lic locus, containing the lic1 and lic2 operons. These operons produce eight proteins that import and metabolize choline, generate teichoic acid precursors and decorate these with choline. Three promoters control expression of lic operons, with Plic1P1 and Plic1P2 controlling lic1 and Plic2 controlling lic2. To investigate the importance of lic regulation for pneumococci, we assayed the activity of transcriptional fusions of the three lic promoters to the luciferase reporter gene. Plic1P1 , whose activity depends on the response regulator CiaR, responded to fluctuations in extracellular choline, with activity increasing greatly upon choline depletion. We uncovered a complex regulatory mechanism controlling Plic1P1 , involving activity driven by CiaR, repression by putative repressor LicR in the presence of choline, and derepression upon choline depletion mediated by LicC, a choline metabolism enzyme. Finally, the ability to regulate Plic1P1 in response to choline was important for pneumococcal colonization. We suggest that derepression of Plic1P1 upon choline depletion maximizing choline internalization constitutes an adaptive response mechanism allowing pneumococci to optimize growth and survival in environments where choline is scarce.
Collapse
Affiliation(s)
- Calum Johnston
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| | - Christoph Hauser
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| | - Peter W M Hermans
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Bernard Martin
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| | - Patrice Polard
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| | - Hester J Bootsma
- Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000, Toulouse, France.,Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000, Toulouse, France
| |
Collapse
|
7
|
Gisch N, Schwudke D, Thomsen S, Heß N, Hakenbeck R, Denapaite D. Lipoteichoic acid of Streptococcus oralis Uo5: a novel biochemical structure comprising an unusual phosphorylcholine substitution pattern compared to Streptococcus pneumoniae. Sci Rep 2015; 5:16718. [PMID: 26577602 PMCID: PMC4649388 DOI: 10.1038/srep16718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Members of the Mitis group of streptococci possess teichoic acids (TAs) as integral components of their cell wall that are unique among Gram-positive bacteria. Both, lipoteichoic (LTA) and wall teichoic acid, are formed by the same biosynthetic pathway, are of high complexity and contain phosphorylcholine (P-Cho) residues. These residues serve as anchors for choline-binding proteins (CBPs), some of which have been identified as virulence factors of the human pathogen Streptococcus pneumoniae. We investigated the LTA structure of its close relative Streptococcus oralis. Our analysis revealed that S. oralis Uo5 LTA has an overall architecture similar to pneumococcal LTA (pnLTA) and can be considered as a subtype of type IV LTA. Its structural complexity is even higher than that of pnLTA and its composition differs in number and type of carbohydrate moieties, inter-residue connectivities and especially the P-Cho substitution pattern. Here, we report the occurrence of a saccharide moiety substituted with two P-Cho residues, which is unique as yet in bacterial derived surface carbohydrates. Finally, we could link the observed important structural variations between S. oralis and S. pneumoniae LTA to the divergent enzymatic repertoire for their TA biosynthesis.
Collapse
Affiliation(s)
- Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845 Borstel, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845 Borstel, Germany
| | - Simone Thomsen
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Parkallee 1-40, 23845 Borstel, Germany
| | - Nathalie Heß
- Department of Microbiology, University of Kaiserslautern, Paul-Ehrlich Straße 24, 67663 Kaiserslautern, Germany
| | - Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Paul-Ehrlich Straße 24, 67663 Kaiserslautern, Germany
| | - Dalia Denapaite
- Department of Microbiology, University of Kaiserslautern, Paul-Ehrlich Straße 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
8
|
Hoyland CN, Aldridge C, Cleverley RM, Duchêne MC, Minasov G, Onopriyenko O, Sidiq K, Stogios PJ, Anderson WF, Daniel RA, Savchenko A, Vollmer W, Lewis RJ. Structure of the LdcB LD-carboxypeptidase reveals the molecular basis of peptidoglycan recognition. Structure 2014; 22:949-60. [PMID: 24909784 PMCID: PMC4087270 DOI: 10.1016/j.str.2014.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/24/2014] [Accepted: 04/29/2014] [Indexed: 01/30/2023]
Abstract
Peptidoglycan surrounds the bacterial cytoplasmic membrane to protect the cell against osmolysis. The biosynthesis of peptidoglycan, made of glycan strands crosslinked by short peptides, is the target of antibiotics like β-lactams and glycopeptides. Nascent peptidoglycan contains pentapeptides that are trimmed by carboxypeptidases to tetra- and tripeptides. The well-characterized DD-carboxypeptidases hydrolyze the terminal D-alanine from the stem pentapeptide to produce a tetrapeptide. However, few LD-carboxypeptidases that produce tripeptides have been identified, and nothing is known about substrate specificity in these enzymes. We report biochemical properties and crystal structures of the LD-carboxypeptidases LdcB from Streptococcus pneumoniae, Bacillus anthracis, and Bacillus subtilis. The enzymes are active against bacterial cell wall tetrapeptides and adopt a zinc-carboxypeptidase fold characteristic of the LAS superfamily. We have also solved the structure of S. pneumoniae LdcB with a product mimic, elucidating the residues essential for peptidoglycan recognition and the conformational changes that occur on ligand binding.
Collapse
Affiliation(s)
- Christopher N Hoyland
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Christine Aldridge
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Robert M Cleverley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Marie-Clémence Duchêne
- Institut des Sciences de la Vie, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - George Minasov
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Structural Genomics of Infectious Diseases (CSGID)
| | - Olena Onopriyenko
- Center for Structural Genomics of Infectious Diseases (CSGID); Department of Chemical Engineering and Applied Chemistry, 200 College Street, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Karzan Sidiq
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Peter J Stogios
- Center for Structural Genomics of Infectious Diseases (CSGID); Department of Chemical Engineering and Applied Chemistry, 200 College Street, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Wayne F Anderson
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Structural Genomics of Infectious Diseases (CSGID)
| | - Richard A Daniel
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Alexei Savchenko
- Center for Structural Genomics of Infectious Diseases (CSGID); Department of Chemical Engineering and Applied Chemistry, 200 College Street, University of Toronto, Toronto, ON M5G 1L6, Canada
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, UK
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
9
|
Characterization of Streptococcus tigurinus small-colony variants causing prosthetic joint infection by comparative whole-genome analyses. J Clin Microbiol 2013; 52:467-74. [PMID: 24478475 DOI: 10.1128/jcm.02801-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Small-colony variants (SCVs) of bacteria are associated with recurrent and persistent infections. We describe for the first time SCVs of Streptococcus tigurinus in a patient with a prosthetic joint infection. S. tigurinus is a novel pathogen of the Streptococcus mitis group and causes invasive infections. We sought to characterize S. tigurinus SCVs using experimental methods and find possible genetic explanations for their phenotypes. The S. tigurinus SCVs were compared with the wild-type (WT) isolate using phenotypic methods, including growth under different conditions, autolysis, and visualization of the cell ultrastructure by use of transmission electron microscopy (TEM). Furthermore, comparative genome analyses were performed. The S. tigurinus SCVs displayed reduced growth compared to the WT and showed either a very stable or a fluctuating SCV phenotype. TEM analyses revealed major alterations in cell separation and morphological abnormalities, which were partially explained by impaired autolytic behavior. Intriguingly, the SCVs were more resistant to induced autolysis. Whole-genome sequencing revealed mutations in the genes involved in general cell metabolism, cell division, stringent response, and virulence. Clinically, the patient recovered after a 2-stage exchange of the prosthesis. Comparative whole-genome sequencing in clinical strains is a useful tool for identifying novel genetic signatures leading to the most persistent bacterial forms. The detection of viridans streptococcal SCVs is challenging in a clinical laboratory due to the small colony size. Thus, it is of major clinical importance for microbiologists and clinicians to be aware of viridans streptococcal SCVs, such as those of S. tigurinus, which lead to difficult-to-treat infections.
Collapse
|
10
|
Sekar S, Mahadevan S, Deepa PR, Shanmugam BK, Kumar BVNP, Mandal AB. The metabolic advantage of choline lactate in growth media: an experimental analysis with Staphylococcus lentus. Appl Biochem Biotechnol 2012. [PMID: 23197345 DOI: 10.1007/s12010-012-9981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The metabolic effectiveness of choline lactate in the growth media was investigated relative to conventional carbon source for growing Staphylococcus lentus, a bacterial strain commonly used in bioremediation of industrial effluents and xenobiotic detoxification. Bacterial growth thermodynamics was determined by biocalorimetry. (13)C NMR and FTIR spectroscopic analyses traced the consumption of choline lactate at specific time intervals of bacterial growth. Under aerobic conditions, it is apparent that S. lentus initially metabolized lactate for its energy needs, while the choline cation of the ionic salt seemed to provide its C and N for biosynthetic intermediates for cell structure/function, in the growing bacterial colony. Urea accumulation after 40 h of bacterial growth was recorded. Possible metabolic trajectory of choline lactate consumed during S. lentus growth is suggested here. The theoretical estimation of heats of reaction for the proposed metabolic pathway (455 kJ/mol) was comparable with the experimentally obtained reaction enthalpy (435 kJ/mol), which further validated the proposed metabolic pathway. The biomass and energy profile of bacteria growth in choline media was found to be more favorable than in glucose media. The ionic liquid, choline lactate, offers a metabolically and energetically efficient carbon (and nitrogen) source for growing S. lentus.
Collapse
Affiliation(s)
- Sudharshan Sekar
- Chemical Engineering Department, Central Leather Research Institute (CLRI), Adyar, Chennai 600 020, India
| | | | | | | | | | | |
Collapse
|
11
|
Denapaite D, Brückner R, Hakenbeck R, Vollmer W. Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes. Microb Drug Resist 2012; 18:344-58. [PMID: 22432701 DOI: 10.1089/mdr.2012.0026] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cell wall of Streptococcus pneumoniae contains an unusually complex wall teichoic acid (WTA), which has identical repeating units as the membrane-anchored lipoteichoic acid (LTA). Both polymers share a common cytoplasmic pathway of precursor synthesis, but several TA enzymes have remained elusive. Bioinformatic analysis of the genome of various pneumococcal strains, including choline-independent mutant strains, has allowed us to identify the missing TA genes. We present here the deduced complete pathways of WTA and LTA synthesis in S. pneumoniae and point to the variations occurring in different pneumococcal strains and in closely related species such as Streptococcus oralis and Streptococcus mitis.
Collapse
|
12
|
Bui NK, Eberhardt A, Vollmer D, Kern T, Bougault C, Tomasz A, Simorre JP, Vollmer W. Isolation and analysis of cell wall components from Streptococcus pneumoniae. Anal Biochem 2012; 421:657-66. [DOI: 10.1016/j.ab.2011.11.026] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/14/2011] [Accepted: 11/22/2011] [Indexed: 11/16/2022]
|
13
|
Kern T, Giffard M, Hediger S, Amoroso A, Giustini C, Bui NK, Joris B, Bougault C, Vollmer W, Simorre JP. Dynamics Characterization of Fully Hydrated Bacterial Cell Walls by Solid-State NMR: Evidence for Cooperative Binding of Metal Ions. J Am Chem Soc 2010; 132:10911-9. [DOI: 10.1021/ja104533w] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Thomas Kern
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Mathilde Giffard
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Sabine Hediger
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Ana Amoroso
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Cécile Giustini
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Nhat Khai Bui
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Bernard Joris
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Catherine Bougault
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Waldemar Vollmer
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| | - Jean-Pierre Simorre
- Institut de Biologie Structurale, UMR5075 (CEA/CNRS/UJF), 38027 Grenoble, France, Laboratoire de Chimie Inorganique et Biologique, UMR-E3 (CEA/UJF), FRE3200 (CEA/CNRS), INAC, CEA, 38054 Grenoble, France, Centre d’ingénierie des protéines, Institut de Chimie B6A, Université de Liège, Sart-Tilman, B4000 Liège, Belgium, and Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, United Kingdom
| |
Collapse
|
14
|
Pérez-Dorado I, González A, Morales M, Sanles R, Striker W, Vollmer W, Mobashery S, García JL, Martínez-Ripoll M, García P, Hermoso JA. Insights into pneumococcal fratricide from the crystal structures of the modular killing factor LytC. Nat Struct Mol Biol 2010; 17:576-81. [PMID: 20400948 DOI: 10.1038/nsmb.1817] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/23/2010] [Indexed: 11/09/2022]
Abstract
The first structure of a pneumococcal autolysin, that of the LytC lysozyme, has been solved in ternary complex with choline and a pneumococcal peptidoglycan (PG) fragment. The active site of the hydrolase module is not fully exposed but is oriented toward the choline-binding module, which accounts for its unique in vivo features in PG hydrolysis, its activation and its regulatory mechanisms. Because of the unusual hook-shaped conformation of the multimodular protein, it is only able to hydrolyze non-cross-linked PG chains, an assertion validated by additional experiments. These results explain the activation of LytC by choline-binding protein D (CbpD) in fratricide, a competence-programmed mechanism of predation of noncompetent sister cells. The results provide the first structural insights to our knowledge into the critical and central function that LytC plays in pneumococcal virulence and explain a long-standing puzzle of how murein hydrolases can be controlled to avoid self-lysis during bacterial growth and division.
Collapse
Affiliation(s)
- Inmaculada Pérez-Dorado
- Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Eberhardt A, Wu LJ, Errington J, Vollmer W, Veening JW. Cellular localization of choline-utilization proteins inStreptococcus pneumoniaeusing novel fluorescent reporter systems. Mol Microbiol 2009; 74:395-408. [DOI: 10.1111/j.1365-2958.2009.06872.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Zhang Z, Li W, Frolet C, Bao R, di Guilmi AM, Vernet T, Chen Y. Structure of the choline-binding domain of Spr1274 in Streptococcus pneumoniae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:757-61. [PMID: 19652332 PMCID: PMC2720326 DOI: 10.1107/s1744309109025329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 06/30/2009] [Indexed: 11/10/2022]
Abstract
Spr1274 is a putative choline-binding protein that is bound to the cell wall of Streptococcus pneumoniae through noncovalent interactions with the choline moieties of teichoic and lipoteichoic acids. Its function is still unknown. The crystal structure of the choline-binding domain of Spr1274 (residues 44-129) was solved at 2.38 A resolution with three molecules in the asymmetric unit. It may provide a structural basis for functional analysis of choline-binding proteins.
Collapse
Affiliation(s)
- Zhenyi Zhang
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Wenzhe Li
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Cecile Frolet
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Laboratoire d’Ingénierie des Macromolécules, 41 Rue Jules Horowitz, and CEA, Université Joseph Fourier, Partnership for Structural Biology, 38027 Grenoble, France
| | - Rui Bao
- Protein Research Institute, Tongji University, Shanghai 200092, People’s Republic of China
| | - Anne-Marie di Guilmi
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Laboratoire d’Ingénierie des Macromolécules, 41 Rue Jules Horowitz, and CEA, Université Joseph Fourier, Partnership for Structural Biology, 38027 Grenoble, France
| | - Thierry Vernet
- Institut de Biologie Structurale Jean-Pierre Ebel, UMR 5075, Laboratoire d’Ingénierie des Macromolécules, 41 Rue Jules Horowitz, and CEA, Université Joseph Fourier, Partnership for Structural Biology, 38027 Grenoble, France
| | - Yuxing Chen
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| |
Collapse
|
17
|
Hakenbeck R, Madhour A, Denapaite D, Brückner R. Versatility of choline metabolism and choline-binding proteins in Streptococcus pneumoniae and commensal streptococci. FEMS Microbiol Rev 2009; 33:572-86. [PMID: 19396958 DOI: 10.1111/j.1574-6976.2009.00172.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The pneumococcal choline-containing teichoic acids are targeted by cholinebinding proteins (CBPs), major surface components implicated in the interaction with host cells and bacterial cell physiology. CBPs also occur in closely related commensal species, Streptococcus oralis and Streptococcus mitis, and many strains of these species contain choline in their cell wall. Physiologically relevant CBPs including cell wall lytic enzymes are highly conserved between Streptococcus pneumoniae and S. mitis. In contrast, the virulence-associated CBPs, CbpA, PspA and PcpA, are S. pneumoniae specific and are thus relevant for the characteristic properties of this species.
Collapse
Affiliation(s)
- Regine Hakenbeck
- Department of Microbiology, University of Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
18
|
Role of teichoic acid choline moieties in the virulence of Streptococcus pneumoniae. Infect Immun 2009; 77:2824-31. [PMID: 19433549 DOI: 10.1128/iai.00986-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In recent reports it was shown that genetically modified choline-free strains of Streptococcus pneumoniae (D39Cho(-)licA64 and D39ChiplicB31) expressing the type II capsular polysaccharide were virtually avirulent in the murine sepsis model, in sharp contrast to the isogenic and highly virulent strains D39Cho(-) and D39Chip, which have retained the choline residues at their surface. We now demonstrate that this choline-associated virulence is independent of Toll-like receptor 2 recognition. Also, despite the lack of virulence, choline-free strains of S. pneumoniae were able to activate splenic dendritic cells, induce secretion of proinflammatory cytokines, and produce specific protective immunity against subsequent challenge. However, after this transient engagement of the immune system the choline-free bacteria were rapidly cleared from the blood, while the isogenic virulent strain D39Cho(-) continued to grow, accompanied by prolonged expression of cytokines, eventually killing the experimental animals. The critical contribution of choline residues to the virulence potential of pneumococci appears to be the role that these amino alcohol residues play in a pneumococcal immune evasion strategy, the mechanism of which is unknown at the present time.
Collapse
|
19
|
Different pathways of choline metabolism in two choline-independent strains of Streptococcus pneumoniae and their impact on virulence. J Bacteriol 2008; 190:5907-14. [PMID: 18621904 DOI: 10.1128/jb.00628-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The two recently characterized Streptococcus pneumoniae strains--R6Chi and R6Cho(-)--that have lost the unique auxotrophic requirement of this bacterial species for choline differ in their mechanisms of choline independence. In strain R6Chi the mechanism is caused by a point mutation in tacF, a gene that is part of the pneumococcal lic2 operon, which is essential for growth and survival of the bacteria. Cultures of lic2 mutants of the encapsulated strain D39Chi growing in choline-containing medium formed long chains, did not autolyze, had no choline in their cell wall, and were completely avirulent in the mouse intraperitoneal model. In contrast, while the Cho(-) strain carried a complete pneumococcal lic2 operon and had no mutations in the tacF gene, deletion of the entire lic2 operon had no effect on the growth or phenotype of strain Cho(-). These observations suggest that the biochemical functions normally dependent on determinants of the pneumococcal lic2 operon may also be carried out in strain Cho(-) by a second set of genetic elements imported from Streptococcus oralis, the choline-independent streptococcal strain that served as the DNA donor in the heterologous transformation event that produced strain R6Cho(-). The identification in R6Cho(-) of a large (20-kb) S. oralis DNA insert carrying both tacF and licD genes confirms this prediction and suggests that these heterologous elements may represent a "backup" system capable of catalyzing P-choline incorporation and export of teichoic acid chains under conditions in which the native lic2 operon is not functional.
Collapse
|
20
|
Mutations in the tacF gene of clinical strains and laboratory transformants of Streptococcus pneumoniae: impact on choline auxotrophy and growth rate. J Bacteriol 2008; 190:4129-38. [PMID: 18424523 DOI: 10.1128/jb.01991-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nutritional requirement that Streptococcus pneumoniae has for the aminoalcohol choline as a component of teichoic and lipoteichoic acids appears to be exclusive to this prokaryote. A mutation in the tacF gene, which putatively encodes an integral membrane protein (possibly, a teichoic acid repeat unit transporter), has been recently identified as responsible for generating a choline-independent phenotype of S. pneumoniae (M. Damjanovic, A. S. Kharat, A. Eberhardt, A. Tomasz, and W. Vollmer, J. Bacteriol. 189:7105-7111, 2007). We now report that Streptococcus mitis can grow in choline-free medium, as previously illustrated for Streptococcus oralis. While we confirmed the finding by Damjanovic et al. of the involvement of TacF in the choline dependence of the pneumococcus, the genetic transformation of S. pneumoniae R6 by using S. mitis SK598 DNA and several PCR-amplified tacF fragments suggested that a minimum of two mutations were required to confer improved fitness to choline-independent S. pneumoniae mutants. This conclusion is supported by sequencing results also reported here that indicate that a spontaneous mutant of S. pneumoniae (strain JY2190) able to proliferate in the absence of choline (or analogs) is also a double mutant for the tacF gene. Microscopic observations and competition experiments during the cocultivation of choline-independent strains confirmed that a minimum of two amino acid changes were required to confer improved fitness to choline-independent pneumococcal strains when growing in medium lacking any aminoalcohol. Our results suggest complex relationships among the different regions of the TacF teichoic acid repeat unit transporter.
Collapse
|
21
|
Damjanovic M, Kharat AS, Eberhardt A, Tomasz A, Vollmer W. The essential tacF gene is responsible for the choline-dependent growth phenotype of Streptococcus pneumoniae. J Bacteriol 2007; 189:7105-11. [PMID: 17660291 PMCID: PMC2045221 DOI: 10.1128/jb.00681-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae has an absolute nutritional requirement for choline, and the choline molecules are known to incorporate exclusively into the cell wall and membrane teichoic acids of the bacterium. We describe here the isolation of a mutant of strain R6 in which a single G-->T point mutation in the gene tacF (formerly designated spr1150) is responsible for generating a choline-independent phenotype. The choline-independent phenotype could be transferred to the laboratory strain R6 and to the encapsulated strain D39 by genetic transformation with a PCR product or with a plasmid carrying the mutated tacF gene. The tacF gene product belongs to the protein family of polysaccharide transmembrane transporters (flippases). A model is presented in which TacF is required for the transport of the teichoic acid subunits across the cytoplasmic membrane. According to this model, wild-type TacF has a strict specificity for choline-containing subunits, whereas the TacF present in the choline-independent mutant strain is able to transport both choline-containing and choline-free teichoic acid chains. The proposed transport specificity of parental-type TacF for choline-containing subunits would ensure the loading of the cell wall with teichoic acid chains decorated with choline residues, which appear to be essential for the virulence of this pathogen.
Collapse
|
22
|
Bizzini A, Majcherczyk P, Beggah-Möller S, Soldo B, Entenza JM, Gaillard M, Moreillon P, Lazarevic V. Effects of alpha-phosphoglucomutase deficiency on cell wall properties and fitness in Streptococcus gordonii. MICROBIOLOGY-SGM 2007; 153:490-498. [PMID: 17259620 DOI: 10.1099/mic.0.29256-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus gordonii alpha-phosphoglucomutase, which converts glucose 6-phosphate to glucose 1-phosphate, is encoded by pgm. The pgm transcript is monocistronic and is initiated from a sigma(A)-like promoter. Mutants with a gene disruption in pgm exhibited an altered cell wall muropeptide pattern and a lower teichoic acid content, and had reduced fitness both in vitro and in vivo. In vitro, the reduced fitness included reduced growth, reduced viability in the stationary phase and increased autolytic activity. In vivo, the pgm-deficient strain had a lower virulence in a rat model of experimental endocarditis.
Collapse
Affiliation(s)
- Alain Bizzini
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Paul Majcherczyk
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Siham Beggah-Möller
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Blazenka Soldo
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - José M Entenza
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Muriel Gaillard
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Philippe Moreillon
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| | - Vladimir Lazarevic
- Département de Microbiologie Fondamentale, Bâtiment Biophore, Université de Lausanne, Quartier UNIL-Sorge, CH-1015 Lausanne, Switzerland
| |
Collapse
|
23
|
Abstract
Unlike T-dependent immune responses against protein antigens, T-independent responses against polysaccharides confer long-lasting humoral immunity in the absence of recall responses and are not known to generate memory B cells. Here we report that polysaccharide antigens elicit memory B cells that are phenotypically distinct from those elicited by protein antigens. Furthermore, memory B cell responses against polysaccharides are regulated by antigen-specific immunoglobulin G antibodies. As the generation and regulation of immunologic memory is central to vaccination, our findings help explain the mode of action of the few existing polysaccharide vaccines and provide a rationale for a wider application of polysaccharide-based strategies in vaccination.
Collapse
Affiliation(s)
- Tetyana V Obukhanych
- Laboratory of Molecular Immunology and 2Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
24
|
Lagartera L, González A, Hermoso JA, Saíz JL, García P, García JL, Menéndez M. Pneumococcal phosphorylcholine esterase, Pce, contains a metal binuclear center that is essential for substrate binding and catalysis. Protein Sci 2005; 14:3013-24. [PMID: 16260756 PMCID: PMC2253252 DOI: 10.1110/ps.051575005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The phosphorylcholine esterase from Streptococcus pneumoniae, Pce, catalyzes the hydrolysis of phosphorylcholine residues from teichoic and lipoteichoic acids attached to the bacterial envelope and comprises a globular N-terminal catalytic module containing a zinc binuclear center and an elongated C-terminal choline-binding module. The dependence of Pce activity on the metal/enzyme stoichiometry shows that the two equivalents of zinc are essential for the catalysis, and stabilize the catalytic module through a complex metal-ligand coordination network. The pH dependence of Pce activity toward the alternative substrate p-nitrophenylphosphorylcholine (NPPC) shows that k(cat) and k(cat)/K(m) depend on the protonation state of two protein residues that can be tentatively assigned to the ionization of the metal-bound water (hydrogen bonded to D89) and to H228. Maximum activity requires deprotonation of both groups, although the catalytic efficiency is optimum for the single deprotonated form. The drastic reduction of activity in the H90A mutant, which still binds two Zn2+ ions at neutral pH, indicates that Pce activity also depends on the geometry of the metallic cluster. The denaturation heat capacity profile of Pce exhibits two peaks with T(m) values of 39.6 degrees C (choline-binding module) and 60.8 degrees C (catalytic module). The H90A mutation reduces the high-temperature peak by about 10 degrees C. Pce is inhibited in the presence of 1 mM zinc, but this inhibition depends on pH, buffer, and substrate species. A reaction mechanism is proposed on the basis of kinetic data, the structural model of the Pce:NPPC complex, and the currently accepted mechanism for other Zn-metallophosphoesterases.
Collapse
Affiliation(s)
- Laura Lagartera
- Departamento de Química-Física de Macromoléculas Biológicas, Instituto Química- Física Rocasolano, CSIC, Serrano 119, 28006-Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
25
|
Badurina DS, Zolli-Juran M, Brown ED. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1646:196-206. [PMID: 12637027 DOI: 10.1016/s1570-9639(03)00019-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CTP:glycerol 3-phosphate cytidylyltransferase catalyzes the formation of CDP-glycerol, an activated form of glycerol 3-phosphate and key precursor to wall teichoic acid biogenesis in Gram-positive bacteria. There is high sequence identity (69%) between the CTP:glycerol 3-phosphate cytidylyltransferases from Bacillus subtilis 168 (TagD) and Staphylococcus aureus (TarD). The B. subtilis TagD protein was shown to catalyze cytidylyltransferase via a random mechanism with millimolar K(m) values for both CTP and glycerol 3-phosphate [J. Biol. Chem. 268, (1993) 16648] and exhibited negative cooperativity in the binding of substrates but not in catalysis [J. Biol. Chem. 276, (2001) 37922]. In the work described here on the S. aureus TarD protein, we have elucidated a steady state kinetic mechanism that is markedly different from that determined for B. subtilis TagD. Steady state kinetic experiments with recombinant, purified TarD employed a high-performance liquid chromatography assay developed in this work. The data were consistent with a ternary complex model. The K(m) values for CTP and glycerol 3-phosphate were 36 and 21 microM, respectively, and the k(cat) was 2.6 s(-1). Steady state kinetic analysis of the reverse (pyrophosphorylase) reaction was also consistent with a ternary complex model. Product inhibition studies indicated an ordered Bi-Bi reaction mechanism where glycerol 3-phosphate was the leading substrate and the release of CDP-glycerol preceded that of pyrophosphate. Finally, we investigated the capacity of S. aureus tarD to substitute for tagD in B. subtilis. The tarD gene was placed under control of the xylose promoter in a B. subtilis 168 mutant defective in tagD (temperature-sensitive, tag-12). Growth of the resulting strain at the restrictive temperature (47 degrees C) was shown to be xylose-dependent.
Collapse
Affiliation(s)
- David S Badurina
- Antimicrobial Research Centre, Department of Biochemistry, McMaster University, Room 4H2, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | |
Collapse
|
26
|
Abstract
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the methylation pathway or the CDP-choline pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of rather diverse bacteria and based on genomic data, we estimate that more than 10% of all bacteria possess PC. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. A number of symbiotic (Rhizobium leguminosarum, Mesorhizobium loti) and pathogenic (Agrobacterium tumefaciens, Brucella melitensis, Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) bacteria seem to possess the PC synthase pathway and we suggest that the respective eukaryotic host functions as the provider of choline for this pathway. Pathogens entering their hosts through epithelia (Streptococcus pneumoniae, Haemophilus influenzae) require phosphocholine substitutions on their cell surface components that are biosynthetically also derived from choline supplied by the host. However, the incorporation of choline in these latter cases proceeds via choline phosphate and CDP-choline as intermediates. The occurrence of two intermediates in prokaryotes usually found as intermediates in the eukaryotic CDP-choline pathway for PC biosynthesis raises the question whether some bacteria might form PC via a CDP-choline pathway.
Collapse
Affiliation(s)
- Christian Sohlenkamp
- Centro de Investigación sobre Fijación de Nitrógeno, Universidad Nacional Autónoma de México, Apdo Postal 565-A, Cuernavaca, Morelos, Mexico
| | | | | |
Collapse
|
27
|
Vollmer W, Tomasz A. Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect Immun 2002; 70:7176-8. [PMID: 12438406 PMCID: PMC133073 DOI: 10.1128/iai.70.12.7176-7178.2002] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many glucosamine residues of the pneumococcal peptidoglycan (PG) are not acetylated, which makes the PG resistant to lysozyme. A capsular type III mutant with an inactivated pgdA gene (encoding the peptidoglycan N-acetylglucosamine deacetylase A) became hypersensitive to exogenous lysozyme and showed reduced virulence in the intraperitoneal mouse model.
Collapse
Affiliation(s)
- Waldemar Vollmer
- Laboratory of Microbiology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
28
|
Vollmer W, Tomasz A. Identification of the teichoic acid phosphorylcholine esterase in Streptococcus pneumoniae. Mol Microbiol 2001; 39:1610-22. [PMID: 11260477 DOI: 10.1046/j.1365-2958.2001.02349.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen and many interactions of this bacterium with its host appear to be mediated, directly or indirectly, by components of the bacterial cell wall, specifically by the phosphorylcholine residues which serve as anchors for surface-located choline-binding proteins and are also recognized by components of the host response, such as the human C-reactive protein, a class of myeloma proteins and PAF receptors. In the present study, we describe the identification of the pneumococcal pce gene encoding for a teichoic acid phosphorylcholine esterase (Pce), an enzymatic activity capable of removing phosphorylcholine residues from the cell wall teichoic acid and lipoteichoic acid. Pce carries an N-terminal signal sequence, contains a C-terminal choline-binding domain with 10 homologous repeating units similar to those found in other pneumococcal surface proteins, and the catalytic (phosphorylcholine esterase) activity is localized on the N-terminal part of the protein. The mature protein was overexpressed in Escherichia coli and purified in a one-step procedure by choline-affinity chromatography and the enzymatic activity was followed using the chromophoric p-nitrophenyl-phosphorylcholine as a model substrate. The product of the enzymatic digestion of 3H-choline-labelled cell walls was shown to be phosphorylcholine. Inactivation of the pce gene in S. pneumoniae strains by insertion-duplication mutagenesis caused a unique change in colony morphology and a striking increase in virulence in the intraperitoneal mouse model. Pce may be a regulatory element involved with the interaction of S. pneumoniae with its human host.
Collapse
Affiliation(s)
- W Vollmer
- Laboratory of Microbiology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
29
|
Bergström N, Jansson PE, Kilian M, Skov Sorensen UB. Structures of two cell wall-associated polysaccharides of a Streptococcus mitis biovar 1 strain. A unique teichoic acid-like polysaccharide and the group O antigen which is a C-polysaccharide in common with pneumococci. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:7147-57. [PMID: 11106426 DOI: 10.1046/j.1432-1327.2000.01821.x-i2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cell wall of Streptococcus mitis biovar 1 strain SK137 contains the C-polysaccharide known as the common antigen of a closely related species Streptococcus pneumoniae, and a teichoic acid-like polysaccharide with a unique structure. The two polysaccharides are different entities and could be partially separated by gel chromatography. The structures of the two polysaccharides were determined by chemical methods and by NMR spectroscopy. The teichoic acid-like polymer has a heptasaccharide phosphate repeating unit with the following structure: The structure neither contains ribitol nor glycerol phosphate as classical teichoic acids do, thus we have used the expression teichoic acid-like for this polysaccharide. The following structure of the C-polysaccharide repeating unit was established: where AAT is 2-acetamido-4-amino-2,4, 6-trideoxy-D-galactose. It has a carbohydrate backbone identical to that of one of the two structures of C-polysaccharide previously identified in S. pneumoniae. C-polysaccharide of S. mitis is characterized by the presence, in each repeating unit, of two residues of phosphocholine and both galactosamine residues in the N-acetylated form. Immunochemical analysis showed that C-polysaccharide constitutes the Lancefield group O antigen. Studies using mAbs directed against the backbone and against the phosphocholine moiety of the C-polysaccharide revealed several different patterns of these epitopes among 95 S. mitis and Streptococcus oralis strains tested and the exclusive presence of the group O antigen in the majority of S. mitis biovar 1 strains.
Collapse
Affiliation(s)
- N Bergström
- Clinical Research Centre, Analytical Unit, Karolinska Institute, Huddinge Hospital, Novum, Huddinge, Sweden
| | | | | | | |
Collapse
|
30
|
Vollmer W, Tomasz A. The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. J Biol Chem 2000; 275:20496-501. [PMID: 10781617 DOI: 10.1074/jbc.m910189199] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Analytical work on the fractionation of the glycan strands of Streptococcus pneumoniae cell wall has led to the observation that an unusually high proportion of hexosamine units (over 80% of the glucosamine and 10% of the muramic acid residues) was not N-acetylated, explaining the resistance of the peptidoglycan to the hydrolytic action of lysozyme, a muramidase that cleaves in the glycan backbone. A gene, pgdA, was identified as encoding for the peptidoglycan N-acetylglucosamine deacetylase A with amino acid sequence similarity to fungal chitin deacetylases and rhizobial NodB chitooligosaccharide deacetylases. Pneumococci in which pgdA was inactivated by insertion duplication mutagenesis produced fully N-acetylated glycan and became hypersensitive to exogenous lysozyme in the stationary phase of growth. The pgdA gene may contribute to pneumococcal virulence by providing protection against host lysozyme, which is known to accumulate in high concentrations at infection sites.
Collapse
Affiliation(s)
- W Vollmer
- Rockefeller University, Laboratory of Microbiology, New York, New York 10021, USA
| | | |
Collapse
|
31
|
Fischer W. Phosphocholine of pneumococcal teichoic acids: role in bacterial physiology and pneumococcal infection. Res Microbiol 2000; 151:421-7. [PMID: 10961454 DOI: 10.1016/s0923-2508(00)00174-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pneumococci have an absolute nutritional requirement for choline. Choline is incorporated as phosphocholine (PCho) into lipoteichoic (LTA) and teichoic acid (TA). The PCho residues are required for transformability, the activity of autolysins, the separation of daughter cells after cell division and for anchoring a family of surface proteins which play important roles in pneumococcal infection. The genes encoding the enzymes for PCho incorporation are described. Two strains that acquired the ability to grow in the absence of choline are discussed.
Collapse
Affiliation(s)
- W Fischer
- Institut für Biochemie, Med. Fak., Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
32
|
Severin A, Horne D, Tomasz A. Autolysis and cell wall degradation in a choline-independent strain of Streptococcus pneumoniae. Microb Drug Resist 2000; 3:391-400. [PMID: 9442493 DOI: 10.1089/mdr.1997.3.391] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Streptococcus pneumoniae has an auxotrophic requirement for choline, and choline residues that incorporate into the wall and membrane teichoic acids are intimately involved with the control of autolytic phenomena of this bacterium. We report here the re-examination of the role of choline in autolytic cell wall degradation using the choline-independent S. pneumoniae strain R6Cho- recovered from a heterologous cross with DNA from Streptococcus oralis. S pneumoniae Cho- cultured in choline-free medium grew with normal generation time but formed long chains, failed to undergo stationary-phase autolysis, and was also resistant to lysis induced by deoxycholate or penicillin. Cell walls produced under these conditions had reduced phosphorus content, contained no choline residues detectable by nuclear magnetic resonance, and had reduced binding capacity for the pneumococcal autolytic amidase, and complete hydrolysis of such walls by the amidase required prolonged incubation with high concentrations of the enzyme. Addition of choline to the growth medium reversed at these phenomena. High-performance liquid chromatography analysis of amidase digests of cell walls prepared from strain R6Cho- grown with or without choline produced identical stem peptide profiles, which were also similar to that of the parental S. pneumoniae strain R6. Peptidoglycans prepared by hydrofluoric extraction of cell walls from Cho- growth with or without choline or from the parental strain R6 were uniformly susceptible to the autolytic amidase and were fully degraded to the normal family of stem peptides, indicating that, in sharp contrast to the case of cell walls, the amidase degradation of teichoic acid-free peptidoglycan did not require the presence of choline residues in the substrate.
Collapse
Affiliation(s)
- A Severin
- Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
33
|
Fitzgerald SN, Foster TJ. Molecular analysis of the tagF gene, encoding CDP-Glycerol:Poly(glycerophosphate) glycerophosphotransferase of Staphylococcus epidermidis ATCC 14990. J Bacteriol 2000; 182:1046-52. [PMID: 10648531 PMCID: PMC94381 DOI: 10.1128/jb.182.4.1046-1052.2000] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1999] [Accepted: 11/18/1999] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus epidermidis ATCC 14990 produces a wall-associated glycerol teichoic acid which is chemically identical to the major wall-associated teichoic acid of Bacillus subtilis 168. The S. epidermidis tagF gene was cloned from genomic DNA and sequenced. When introduced on a plasmid vector into B. subtilis 1A486 carrying the conditionally lethal temperature-sensitive mutation tagF1 (rodC1), it expressed an 85-kDa protein which allowed colonies to grow at the restrictive temperature. This showed that the cloned S. epidermidis gene encodes a functional CDP-glycerol:poly(glycerophosphate) glycerophosphotransferase. An amino acid substitution at residue 616 in the recombinant TagF protein eliminated complementation. Unlike B. subtilis, where the tagF gene is part of the tagDEF operon, the tagF gene of S. epidermidis is not linked to any other tag genes. We attempted to disrupt the chromosomal tagF gene in S. epidermidis TU3298 by directed integration of a temperature-sensitive plasmid but this failed, whereas a control plasmid containing the 5' end of tagF on a similarly sized DNA fragment was able to integrate. This suggests that the tagF gene is essential and that the TagF and other enzymes involved in teichoic acid biosynthesis could be targets for new antistaphylococcal drugs.
Collapse
Affiliation(s)
- S N Fitzgerald
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland
| | | |
Collapse
|
34
|
Clemans DL, Kolenbrander PE, Debabov DV, Zhang Q, Lunsford RD, Sakone H, Whittaker CJ, Heaton MP, Neuhaus FC. Insertional inactivation of genes responsible for the D-alanylation of lipoteichoic acid in Streptococcus gordonii DL1 (Challis) affects intrageneric coaggregations. Infect Immun 1999; 67:2464-74. [PMID: 10225909 PMCID: PMC115992 DOI: 10.1128/iai.67.5.2464-2474.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1998] [Accepted: 02/25/1999] [Indexed: 11/20/2022] Open
Abstract
Most human oral viridans streptococci participate in intrageneric coaggregations, the cell-to-cell adherence among genetically distinct streptococci. Two genes relevant to these intrageneric coaggregations were identified by transposon Tn916 mutagenesis of Streptococcus gordonii DL1 (Challis). A 626-bp sequence flanking the left end of the transposon was homologous to dltA and dltB of Lactobacillus rhamnosus ATCC 7469 (formerly called Lactobacillus casei). A 60-kb probe based on this flanking sequence was used to identify the homologous DNA in a fosmid library of S. gordonii DL1. This DNA encoded D-alanine-D-alanyl carrier protein ligase that was expressed in Escherichia coli from the fosmid clone. The cloned streptococcal dltA was disrupted by inserting an ermAM cassette, and then it was linearized and transformed into S. gordonii DL1 for allelic replacement. Erythromycin-resistant transformants containing a single insertion in dltA exhibited a loss of D-alanyl esters in lipoteichoic acid (LTA) and a loss of intrageneric coaggregation. This phenotype was correlated with the loss of a 100-kDa surface protein reported previously to be involved in mediating intrageneric coaggregation (C. J. Whittaker, D. L. Clemans, and P. E. Kolenbrander, Infect. Immun. 64:4137-4142, 1996). The mutants retained the parental ability to participate in intergeneric coaggregation with human oral actinomyces, indicating the specificity of the mutation in altering intrageneric coaggregations. The mutants were altered morphologically and exhibited aberrant cell septa in a variety of pleomorphs. The natural DNA transformation frequency was reduced 10-fold in these mutants. Southern analysis of chromosomal DNAs from various streptococcal species with the dltA probe revealed the presence of this gene in most viridans streptococci. Thus, it is hypothesized that D-alanyl LTA may provide binding sites for the putative 100-kDa adhesin and scaffolding for the proper presentation of this adhesin to mediate intrageneric coaggregation.
Collapse
MESH Headings
- Adhesins, Bacterial/genetics
- Adhesins, Bacterial/metabolism
- Amino Acid Sequence
- Bacterial Adhesion/genetics
- Bacterial Adhesion/physiology
- Base Sequence
- Cloning, Molecular
- DNA Primers/genetics
- DNA Transposable Elements/genetics
- DNA, Bacterial/genetics
- Genes, Bacterial
- Humans
- Microscopy, Electron
- Microscopy, Electron, Scanning
- Molecular Sequence Data
- Mouth/microbiology
- Mutagenesis, Insertional
- Sequence Homology, Amino Acid
- Streptococcus/genetics
- Streptococcus/metabolism
- Streptococcus/ultrastructure
- Teichoic Acids/biosynthesis
Collapse
Affiliation(s)
- D L Clemans
- Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Phosphorylcholine (PC) is a structural component of a variety of prokaryotic and eukaryotic pathogens. In some cases, PC in infectious agents can benefit the infected host due to its targeting by both the innate and adaptive immune responses. However, as discussed here, PC exhibits a surprising range of immunomodulatory properties that might be to the detriment of the host.
Collapse
Affiliation(s)
- W Harnett
- Dept of Immunology, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|
36
|
Park YI, Buszko ML, Gander JE. Utilization of phosphocholine from extracellular complex polysaccharide as a source of cytoplasmic choline derivatives in Penicillium fellutanum. J Bacteriol 1997; 179:1186-92. [PMID: 9023201 PMCID: PMC178815 DOI: 10.1128/jb.179.4.1186-1192.1997] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Penicillium fellutanum produces a phosphorylated, choline-containing extracellular polysaccharide, peptidophosphogalactomannan (pP(x)GM) [where x is the number of phosphodiester residues]). The 13C-methyl-labeled pP(x)GM ([methyl-13C]pP(x)GM) was prepared from the cultures supplemented with L-[methyl-13C]methionine and was used as a probe to monitor the fate of phosphocholine in this polymer. The addition of [methyl-13C]pP(x)GM to growing cultures in low-phosphate medium resulted in the disappearance within 5 days of [methyl-13C]phosphocholine and N,N'-dimethylphosphoethanolamine from the added [methyl-13C]pP(x)GM. Two 13C-methyl-enriched cytoplasmic solutes, choline-O-sulfate and glycine betaine, were found in mycelial extracts, suggesting that phosphocholine-containing extracellular pP(x)GM of P. fellutanum is a precursor of intracellular choline-O-sulfate and glycine betaine. The mycelia cultured in low-phosphate (2 mM) medium contained glycine betaine and 1.5-fold more choline-O-sulfate than those grown in high-phosphate (20 mM) medium. The high levels of extracellular nonspecific phosphocholine:phosphocholine hydrolase and acid phosphomonoesterase observed in the low-phosphate culture medium are likely related to the release of phosphocholine from pP(x)GM and hydrolysis of phosphocholine, respectively. These results suggest that extracellular pP(x)GM of P. fellutanum provides phosphate needed as the environment becomes depleted of this nutrient. Choline, in excess of that needed immediately, is stored in the cytoplasm in forms that can be reutilized.
Collapse
Affiliation(s)
- Y I Park
- Department of Microbiology and Cell Science, University of Florida, Gainesville 32611-0700, USA
| | | | | |
Collapse
|
37
|
Houston KM, Cushley W, Harnett W. Studies on the site and mechanism of attachment of phosphorylcholine to a filarial nematode secreted glycoprotein. J Biol Chem 1997; 272:1527-33. [PMID: 8999824 DOI: 10.1074/jbc.272.3.1527] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have recently shown that the immunomodulatory substance phosphorylcholine (PC) is covalently attached to ES-62, a major secreted protein of the filarial nematode parasite Acanthocheilonema viteae, via an N-linked glycan. Linkage of PC to N-glycans is previously unreported, and hence we have investigated the biochemical events underlying it. PC addition was found by pulse-chase experiments to be a fairly early event during intracellular transport, occurring within 40-60 min of protein synthesis. Biosynthetic labeling/immunoprecipitation experiments revealed that addition of PC to ES-62 was blocked by (i) brefeldin A, an inhibitor of trafficking of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi, (ii) 1-deoxynorijirimycin, an inhibitor of glucosidase activity in the ER, and (iii) 1-deoxymannojirimycin, an inhibitor of mannosidase I in the cis Golgi. Swainsonine, an inhibitor of mannosidase II in the medial Golgi, did not affect PC addition. Taken together these data indicate that PC attachment is a post-ER event which is dependent on generation of an appropriate substrate during oligosaccharide processing. Furthermore, they strongly suggest that PC addition takes place in the medial Golgi and that the substrate for addition is the 3-linked branch of Man5GlcNAc3 or Man3GLcNAc3.
Collapse
Affiliation(s)
- K M Houston
- Department of Immunology, University of Strathclyde, Glasgow G4 ONR, United Kingdom
| | | | | |
Collapse
|
38
|
Sutcliffe IC. The Lipoteichoic Acids and Lipoglycans of Gram-positive Bacteria: A Chemotaxonomic Perspective. Syst Appl Microbiol 1995. [DOI: 10.1016/s0723-2020(11)80064-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
|