1
|
Zhao G, Lu D, Li M, Wang Y. Gene editing tools for mycoplasmas: references and future directions for efficient genome manipulation. Front Microbiol 2023; 14:1191812. [PMID: 37275127 PMCID: PMC10232828 DOI: 10.3389/fmicb.2023.1191812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Mycoplasmas are successful pathogens that cause debilitating diseases in humans and various animal hosts. Despite the exceptionally streamlined genomes, mycoplasmas have evolved specific mechanisms to access essential nutrients from host cells. The paucity of genetic tools to manipulate mycoplasma genomes has impeded studies of the virulence factors of pathogenic species and mechanisms to access nutrients. This review summarizes several strategies for editing of mycoplasma genomes, including homologous recombination, transposons, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and synthetic biology. In addition, the mechanisms and features of different tools are discussed to provide references and future directions for efficient manipulation of mycoplasma genomes.
Collapse
Affiliation(s)
- Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| |
Collapse
|
2
|
Clampitt JM, Madsen ML, Minion FC. Construction of Mycoplasma hyopneumoniae P97 Null Mutants. Front Microbiol 2021; 12:518791. [PMID: 33967967 PMCID: PMC8101707 DOI: 10.3389/fmicb.2021.518791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia, a world-wide problem in the pig industry. This disease is characterized by a dry, non-productive cough, labored breathing, and pneumonia. Despite years of research, vaccines are marginally effective, and none fully protect pigs in a production environment. A better understanding of the host-pathogen interactions of the M. hyopneumoniae-pig disease, which are complex and involve both host and pathogen components, is required. Among the surface proteins involved in virulence are members of two gene families called P97 and P102. These proteins are the adhesins directing attachment of the organism to the swine respiratory epithelium. P97 is the major ciliary binding adhesin and has been studied extensively. Monoclonal antibodies that block its binding to swine cilia have contributed extensively to its characterization. In this study we use recombination to construct null mutants of P97 in M. hyopneumoniae and characterize the resulting mutants in terms of loss of protein by immunoblot using monoclonal antibodies, ability to bind purified swine cilia, and adherence to PK15 cells. Various approaches to recombination with this fastidious mycoplasma were tested including intact plasmid DNA, single-stranded DNA, and linear DNA with and without a heterologous RecA protein. Our results indicate that recombination can be used to generate site-specific mutants in M. hyopneumoniae. P97 mutants are deficient in cilia binding and PK15 cell adherence, and lack the characteristic banding pattern seen in immunoblots developed with the anti-P97 monoclonal antibody.
Collapse
Affiliation(s)
- Jeannett M Clampitt
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Melissa L Madsen
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - F Chris Minion
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
3
|
Current status of vaccine research, development, and challenges of vaccines for Mycoplasma gallisepticum. Poult Sci 2020; 99:4195-4202. [PMID: 32867963 PMCID: PMC7598112 DOI: 10.1016/j.psj.2020.06.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/06/2020] [Accepted: 06/07/2020] [Indexed: 11/23/2022] Open
Abstract
Mycoplasma gallisepticum (MG) is an important avian pathogen that causes significant economic losses in the poultry industry. Surprisingly, the limited protection and adverse reactions caused by the vaccines, including live vaccines, bacterin-based (killed) vaccines, and recombinant viral vaccines is still a major concern. Mycoplasma gallisepticum strains vary in infectivity and virulence and infection may sometimes unapparent and goes undetected. Although extensive research has been carried out on the biology of this pathogen, information is lacking about the type of immune response that confers protection and selection of appropriate protective antigens and adjuvants. Regardless of numerous efforts focused on the development of safe and effective vaccine for the control of MG, the use of modern DNA vaccine technology selected in silico approaches for the use of conserved recombinant proteins may be a better choice for the preparation of novel effective vaccines. More research is needed to characterize and elucidate MG products modulating MG-host interactions. These products could be used as a reference for the preparation and development of vaccines to control MG infections in poultry flocks.
Collapse
|
4
|
Chernov VM, Chernova OA, Mouzykantov AA, Medvedeva ES, Baranova NB, Malygina TY, Aminov RI, Trushin MV. Antimicrobial resistance in mollicutes: known and newly emerging mechanisms. FEMS Microbiol Lett 2019; 365:5057471. [PMID: 30052940 DOI: 10.1093/femsle/fny185] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
This review is devoted to the mechanisms of antibiotic resistance in mollicutes (class Bacilli, subclass Mollicutes), the smallest self-replicating bacteria, that can cause diseases in plants, animals and humans, and also contaminate cell cultures and vaccine preparations. Research in this area has been mainly based on the ubiquitous mollicute and the main contaminant of cell cultures, Acholeplasma laidlawii. The omics technologies applied to this and other bacteria have yielded a complex picture of responses to antimicrobials, including their removal from the cell, the acquisition of antibiotic resistance genes and mutations that potentially allow global reprogramming of many cellular processes. This review provides a brief summary of well-known resistance mechanisms that have been demonstrated in several mollicutes species and, in more detail, novel mechanisms revealed in A. laidlawii, including the least explored vesicle-mediated transfer of short RNAs with a regulatory potency. We hope that this review highlights new avenues for further studies on antimicrobial resistance in these bacteria for both a basic science and an application perspective of infection control and management in clinical and research/production settings.
Collapse
Affiliation(s)
- Vladislav M Chernov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Olga A Chernova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Alexey A Mouzykantov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Elena S Medvedeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Natalia B Baranova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation.,Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| | - Tatiana Y Malygina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS 2/31 Lobachevsky Str., Kazan, 420111, Russian Federation
| | - Rustam I Aminov
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Maxim V Trushin
- Kazan (Volga region) Federal University, 18 Kremlyovskaya Str., Kazan, 420008, Russian Federation
| |
Collapse
|
5
|
Blötz C, Lartigue C, Valverde Timana Y, Ruiz E, Paetzold B, Busse J, Stülke J. Development of a replicating plasmid based on the native oriC in Mycoplasma pneumoniae. MICROBIOLOGY-SGM 2018; 164:1372-1382. [PMID: 30252643 DOI: 10.1099/mic.0.000711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacteria of the genus Mycoplasma have recently attracted considerable interest as model organisms in synthetic and systems biology. In particular, Mycoplasma pneumoniae is one of the most intensively studied organisms in the field of systems biology. However, the genetic manipulation of these bacteria is often difficult due to the lack of efficient genetic systems and some intrinsic peculiarities such as an aberrant genetic code. One major disadvantage in working with M. pneumoniae is the lack of replicating plasmids that can be used for the complementation of mutants and the expression of proteins. In this study, we have analysed the genomic region around the gene encoding the replication initiation protein, DnaA, and detected putative binding sites for DnaA (DnaA boxes) that are, however, less conserved than in other bacteria. The construction of several plasmids encompassing this region allowed the selection of plasmid pGP2756 that is stably inherited and that can be used for genetic experiments, as shown by the complementation assays with the glpQ gene encoding the glycerophosphoryl diester phosphodiesterase. Plasmid-borne complementation of the glpQ mutant restored the formation of hydrogen peroxide when bacteria were cultivated in the presence of glycerol phosphocholine. Interestingly, the replicating plasmid can also be used in the close relative, Mycoplasma genitalium but not in more distantly related members of the genus Mycoplasma. Thus, plasmid pGP2756 is a valuable tool for the genetic analysis of M. pneumoniae and M. genitalium.
Collapse
Affiliation(s)
- Cedric Blötz
- 1Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Carole Lartigue
- 2INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,3University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Yanina Valverde Timana
- 2INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,3University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Estelle Ruiz
- 2INRA, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France.,3University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, Villenave d'Ornon, France
| | - Bernhard Paetzold
- 4Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,†Present address: S-Biomedic N.V., Beerse, Belgium
| | - Julia Busse
- 1Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | - Jörg Stülke
- 1Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
CORDOVA CAIOM, HOELTGEBAUM DANIELAL, MACHADO LAÍSD, SANTOS LARISSADOS. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell. ACTA ACUST UNITED AC 2016; 88 Suppl 1:599-607. [DOI: 10.1590/0001-3765201620150164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/02/2015] [Indexed: 11/21/2022]
Abstract
ABSTRACT Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.
Collapse
|
7
|
Sharma S, Citti C, Sagné E, Marenda MS, Markham PF, Browning GF. Development and host compatibility of plasmids for two important ruminant pathogens, Mycoplasma bovis and Mycoplasma agalactiae. PLoS One 2015; 10:e0119000. [PMID: 25746296 PMCID: PMC4351888 DOI: 10.1371/journal.pone.0119000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/08/2015] [Indexed: 11/17/2022] Open
Abstract
Mycoplasma bovis is a cause of pneumonia, mastitis, arthritis and otitis media in cattle throughout the world. However, despite its clinical significance, there is a paucity of tools to genetically manipulate it, impeding our capacity to further explore the molecular basis of its virulence. To address this limitation, we developed a series of homologous and heterologous replicable plasmids from M. bovis and M. agalactiae. The shortest replicable oriC plasmid based on the region downstream of dnaA in M. bovis was 247 bp and contained two DnaA boxes, while oriC plasmids based on the region downstream of dnaA in M. agalactiae strains 5632 and PG2 were 219 bp and 217 bp in length, respectively, and contained only a single DnaA box. The efficiency of transformation in M. bovis and M. agalactiae was inversely correlated with the size of the oriC region in the construct, and, in general, homologous oriC plasmids had a higher transformation efficiency than heterologous oriC plasmids. The larger pWholeoriC45 and pMM21-7 plasmids integrated into the genomic oriC region of M. bovis, while the smaller oriC plasmids remained extrachromosomal for up to 20 serial passages in selective media. Although specific gene disruptions were not be achieved in M. bovis in this study, the oriC plasmids developed here could still be useful as tools in complementation studies and for expression of exogenous genes in both M. bovis and M. agalactiae.
Collapse
Affiliation(s)
- Shukriti Sharma
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | - Marc S Marenda
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Philip F Markham
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Glenn F Browning
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
8
|
Li J, Zhang J, Zhang N, Zhang Y, Wu W, Li J. Development of a replicative plasmid for gene expression in Mycoplasma bovis. J Microbiol Methods 2014; 108:12-8. [PMID: 25451459 DOI: 10.1016/j.mimet.2014.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/30/2014] [Accepted: 11/07/2014] [Indexed: 11/28/2022]
Abstract
Mycoplasma bovis (M. bovis) is a pathogen related to a variety of disease syndromes that result in significant economic losses in the cattle industry. Here, a stable replicative plasmid system is developed for use in M. bovis, utilizing an origin of replication (oriC) region. Additionally, the heterologous protein β-galactosidase and a FLAG tag-fused endogenous protein were successfully expressed by this plasmid system. These findings provide evidence that this oriC-based vector is applicable for the study of M. bovis.
Collapse
Affiliation(s)
- Jiahe Li
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jixiang Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ning Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuewei Zhang
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenxue Wu
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Jinxiang Li
- Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
9
|
Maglennon GA, Cook BS, Deeney AS, Bossé JT, Peters SE, Langford PR, Maskell DJ, Tucker AW, Wren BW, Rycroft AN. Transposon mutagenesis in Mycoplasma hyopneumoniae using a novel mariner-based system for generating random mutations. Vet Res 2013; 44:124. [PMID: 24359443 PMCID: PMC4028751 DOI: 10.1186/1297-9716-44-124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
Mycoplasma hyopneumoniae is the cause of enzootic pneumonia in pigs, a chronic respiratory disease associated with significant economic losses to swine producers worldwide. The molecular pathogenesis of infection is poorly understood due to the lack of genetic tools to allow manipulation of the organism and more generally for the Mycoplasma genus. The objective of this study was to develop a system for generating random transposon insertion mutants in M. hyopneumoniae that could prove a powerful tool in enabling the pathogenesis of infection to be unraveled. A novel delivery vector was constructed containing a hyperactive C9 mutant of the Himar1 transposase along with a mini transposon containing the tetracycline resistance cassette, tetM. M. hyopneumoniae strain 232 was electroporated with the construct and tetM-expressing transformants selected on agar containing tetracycline. Individual transformants contained single transposon insertions that were stable upon serial passages in broth medium. The insertion sites of 44 individual transformants were determined and confirmed disruption of several M. hyopneumoniae genes. A large pool of over 10 000 mutants was generated that should allow saturation of the M. hyopneumoniae strain 232 genome. This is the first time that transposon mutagenesis has been demonstrated in this important pathogen and could be generally applied for other Mycoplasma species that are intractable to genetic manipulation. The ability to generate random mutant libraries is a powerful tool in the further study of the pathogenesis of this important swine pathogen.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK.
| | | |
Collapse
|
10
|
Nieszner I, Vronka M, Indikova I, Szostak MP. Development of a site-directed integration plasmid for heterologous gene expression in Mycoplasma gallisepticum. PLoS One 2013; 8:e81481. [PMID: 24278444 PMCID: PMC3835672 DOI: 10.1371/journal.pone.0081481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/21/2013] [Indexed: 11/19/2022] Open
Abstract
Deciphering the molecular basis of the interactions between the parasite Mycoplasma gallisepticum and its avian hosts suffers from the lack of genetic tools available for the pathogen. In the absence of well established methods for targeted disruption of relevant M. gallisepticum genes, we started to develop suicide vectors and equipped them with a short fragment of M. gallisepticum origin or replication (oriC MG). We failed to create a disruption vector, although by adding a further short fragment of the M. gallisepticum tufB upstream region we created a "Trojan horse" plasmid. This is fully integrated into the genomic DNA of M. gallisepticum, always at the same site, oriC MG, and is able to carry and express any gene of interest in the genetic background of M. gallisepticum. Successful expression of a heterologous gene was shown with the lacZ gene of E. coli. When used for gene complementation or expression of hybrid genes in M. gallisepticum, a site-specific combined integration/expression vector constitutes an improvement on randomly integrating transposons, which might have unexpected effects on the expression of chromosomal genes.
Collapse
Affiliation(s)
- Isolde Nieszner
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Vronka
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ivana Indikova
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael P. Szostak
- Institute of Bacteriology, Mycology and Hygiene, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
11
|
Maglennon GA, Cook BS, Matthews D, Deeney AS, Bossé JT, Langford PR, Maskell DJ, Tucker AW, Wren BW, Rycroft AN. Development of a self-replicating plasmid system for Mycoplasma hyopneumoniae. Vet Res 2013; 44:63. [PMID: 23895236 PMCID: PMC3765554 DOI: 10.1186/1297-9716-44-63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/10/2013] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma hyopneumoniae is a prevalent swine respiratory pathogen that is a major cause of economic loss to pig producers. Control is achieved by a combination of antimicrobials, vaccination and management practices, but current vaccines offer only partial control and there is a need for improved preventative strategies. A major barrier to advances in understanding the pathogenesis of M. hyopneumoniae and in developing new vaccines is the lack of tools to genetically manipulate the organism. We describe the development and optimisation of the first successful plasmid-based system for the genetic manipulation of M. hyopneumoniae. Our artificial plasmids contain the origin of replication (oriC) of M. hyopneumoniae along with tetM, conferring resistance to tetracycline. With these plasmids, we have successfully transformed M. hyopneumoniae strain 232 by electroporation, generating tetracycline resistant organisms. The persistence of extrachromosomal plasmid and maintenance of plasmid DNA over serial passages shows that these artificial plasmids are capable of self-replication in M. hyopneumoniae. In addition to demonstrating the amenability of M. hyopneumoniae to genetic manipulation and in optimising the conditions necessary for successful transformation, we have used this system to determine the minimum functional oriC of M. hyopneumoniae. In doing so, we have developed a plasmid with a small oriC that is stably maintained over multiple passages that may be useful in generating targeted gene disruptions. In conclusion, we have generated a set of plasmids that will be valuable in studies of M. hyopneumoniae pathogenesis and provide a major step forward in the study of this important swine pathogen.
Collapse
Affiliation(s)
- Gareth A Maglennon
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mutaqin K, Comer JL, Wayadande AC, Melcher U, Fletcher J. Selection and characterization ofSpiroplasma citrimutants by random transposome mutagenesis. Can J Microbiol 2011; 57:525-32. [DOI: 10.1139/w11-026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytopathogenic spiroplasmas can multiply in vascular plants and insects. A deeper understanding of this dual-host life could be furthered through the identification by random mutagenesis of spiroplasma genes required. The ability of the EZ::TN™ <DHFR-1> Tnp transposome™ system to create random insertional mutations in the genome of Spiroplasma citri was evaluated. The efficiency of electroporation-mediated transformation of S. citri BR3-3X averaged 28.8 CFUs/ng transposome for 109spiroplasma cells. Many transformants appearing on the selection plates were growth impaired when transferred to broth. Altering broth composition in various ways did not improve their growth. However, placing colonies into a small broth volume resulted in robust growth and successful subsequent passages of a subset of transformants. PCR using primers for the dihydrofolate reductase gene confirmed the transposon’s presence in the genomes of selected transformants. Southern blot hybridization and nucleotide sequencing suggested that insertion was random within the chromosome and usually at single sites. The insertions were stable. Growth rates of all transformants were lower than that of the wild-type S. citri, but none lost the ability to adhere to a Circulifer tenellus (CT-1) cell line. The EZ::TN™ <DHFR-1> Tnp transposome™ system represents an additional tool for genetic manipulation of the fastidious spiroplasmas.
Collapse
Affiliation(s)
- Kikin Mutaqin
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jana L. Comer
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Astri C. Wayadande
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ulrich Melcher
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jacqueline Fletcher
- Department of Entomology and Plant Pathology, and Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
13
|
Chen H, Zhao C, Shen X, Chen D, Yu S, Ding C. Construction of mini-Tn4001 transposon vector for Mycoplasma gallisepticum. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1340-5. [DOI: 10.1007/s11427-010-4082-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 07/26/2009] [Indexed: 11/29/2022]
|
14
|
New selectable marker for manipulating the simple genomes of Mycoplasma species. Antimicrob Agents Chemother 2009; 53:4429-32. [PMID: 19687239 DOI: 10.1128/aac.00388-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past several years, significant advances have been made in the molecular genetics of the Mollicutes (the simplest cells that can be grown in axenic culture). Nevertheless, a number of basic molecular tools are still required before genetic manipulations become routine. Here we describe the development of a new dominant selectable marker based on the enzyme puromycin-N-acetyltransferase from Streptomyces alboniger. Puromycin is an antibiotic that mimics the 3'-terminal end of aminoacylated tRNAs and attaches to the carboxyl terminus of growing protein chains. This stops protein synthesis. Because puromycin conscripts rRNA recognition elements that are used by all of the various tRNAs in a cell, it is unlikely that spontaneous antibiotic resistance can be acquired via a simple point mutation--an annoying issue with existing mycoplasma markers. Our codon-optimized cassette confers pronounced puromycin resistance on all five of the mycoplasma species we have tested so far. The resistance cassette was also designed to function in Escherichia coli, which simplifies the construction of shuttle vectors and makes it trivial to produce the large quantities of DNA generally necessary for mycoplasma transformation. Due to these and other features, we expect the puromycin marker to be a widely applicable tool for studying these simple cells and pathogens.
Collapse
|
15
|
Pich OQ, Burgos R, Planell R, Querol E, Piñol J. Comparative analysis of antibiotic resistance gene markers in Mycoplasma genitalium: application to studies of the minimal gene complement. MICROBIOLOGY-SGM 2006; 152:519-527. [PMID: 16436439 DOI: 10.1099/mic.0.28287-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mycoplasma genitalium has been proposed as a suitable model for an in-depth understanding of the biology of a free-living organism. This paper reports that the expression of the aminoglycoside resistance gene aac(6')-aph(2''), the only selectable marker hitherto available for M. genitalium genetic studies, correlates with a growth impairment of the resistant strains. In light of this finding, a tetM438 construction based on the tetracycline resistance gene tetM was developed; it can be used efficiently in M. genitalium and confers multiple advantages when compared to aac(6')-aph(2''). The use of tetM438 significantly improves transformation efficiency and generates visible colonies faster. Finally, the improvements in the pMTnTetM438 construction made it possible to obtain insertions in genes which have not been previously considered to be dispensable under laboratory growth conditions.
Collapse
Affiliation(s)
- Oscar Q Pich
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Raul Burgos
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Raquel Planell
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Enrique Querol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Jaume Piñol
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
16
|
Hudson P, Gorton TS, Papazisi L, Cecchini K, Frasca S, Geary SJ. Identification of a virulence-associated determinant, dihydrolipoamide dehydrogenase (lpd), in Mycoplasma gallisepticum through in vivo screening of transposon mutants. Infect Immun 2006; 74:931-9. [PMID: 16428737 PMCID: PMC1360363 DOI: 10.1128/iai.74.2.931-939.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To effectively analyze Mycoplasma gallisepticum for virulence-associated determinants, the ability to create stable genetic mutations is essential. Global M. gallisepticum mutagenesis is currently limited to the use of transposons. Using the gram-positive transposon Tn4001mod, a mutant library of 110 transformants was constructed and all insertion sites were mapped. To identify transposon insertion points, a unique primer directed outward from the end of Tn4001mod was used to sequence flanking genomic regions. By comparing sequences obtained in this manner to the annotated M. gallisepticum genome, the precise locations of transposon insertions were discerned. After determining the transposon insertion site for each mutant, unique reverse primers were synthesized based on the specific sequences, and PCR was performed. The resultant amplicons were used as unique Tn4001mod mutant identifiers. This procedure is referred to as signature sequence mutagenesis (SSM). SSM permits the comprehensive screening of the M. gallisepticum genome for the identification of novel virulence-associated determinants from a mixed mutant population. To this end, chickens were challenged with a pool of 27 unique Tn4001mod mutants. Two weeks postinfection, the birds were sacrificed, and organisms were recovered from respiratory tract tissues and screened for the presence or absence of various mutants. SSM is a negative-selection screening technique whereby those mutants possessing transposon insertions in genes essential for in vivo survival are not recovered from the host. We have identified a virulence-associated gene encoding dihydrolipoamide dehydrogenase (lpd). A transposon insertion in the middle of the coding sequence resulted in diminished biologic function and reduced virulence of the mutant designated Mg 7.
Collapse
Affiliation(s)
- P Hudson
- Center of Excellence for Vaccine Research and Department of Pathobiology and Veterinary Science, University of Connecticut, 61 N. Eagleville Rd., U-89, Storrs, CT 06269, USA
| | | | | | | | | | | |
Collapse
|
17
|
Evans J, Leigh S, Branton S, Collier S, Pharr G, Bearson S. Mycoplasma gallisepticum: Current and Developing Means to Control the Avian Pathogen. J APPL POULTRY RES 2005. [DOI: 10.1093/japr/14.4.757] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Janis C, Lartigue C, Frey J, Wróblewski H, Thiaucourt F, Blanchard A, Sirand-Pugnet P. Versatile use of oriC plasmids for functional genomics of Mycoplasma capricolum subsp. capricolum. Appl Environ Microbiol 2005; 71:2888-93. [PMID: 15932982 PMCID: PMC1151838 DOI: 10.1128/aem.71.6.2888-2893.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Replicative oriC plasmids were recently developed for several mollicutes, including three Mycoplasma species belonging to the mycoides cluster that are responsible for bovine and caprine diseases: Mycoplasma mycoides subsp. mycoides small-colony type, Mycoplasma mycoides subsp. mycoides large-colony type, and Mycoplasma capricolum subsp. capricolum. In this study, oriC plasmids were evaluated in M. capricolum subsp. capricolum as genetic tools for (i) expression of heterologous proteins and (ii) gene inactivation by homologous recombination. The reporter gene lacZ, encoding beta-galactosidase, and the gene encoding spiralin, an abundant surface lipoprotein of the related mollicute Spiroplasma citri, were successfully expressed. Functional Escherichia coli beta-galactosidase was detected in transformed Mycoplasma capricolum subsp. capricolum cells despite noticeable codon usage differences. The expression of spiralin in M. capricolum subsp. capricolum was assessed by colony and Western blotting. Accessibility of this protein at the cell surface and its partition into the Triton X-114 detergent phase suggest a correct maturation of the spiralin precursor. The expression of a heterologous lipoprotein in a mycoplasma raises potentially interesting applications, e.g., the use of these bacteria as live vaccines. Targeted inactivation of gene lppA encoding lipoprotein A was achieved in M. capricolum subsp. capricolum with plasmids harboring a replication origin derived from S. citri. Our results suggest that the selection of the infrequent events of homologous recombination could be enhanced by the use of oriC plasmids derived from related mollicute species. Mycoplasma gene inactivation opens the way to functional genomics in a group of bacteria for which a large wealth of genome data are already available and steadily growing.
Collapse
Affiliation(s)
- Carole Janis
- UMR Génomique Développement Pouvoir Pathogène, INRA, Université Victor Segalen Bordeaux 2, Villenave d'Ornon, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Chopra-Dewasthaly R, Zimmermann M, Rosengarten R, Citti C. First steps towards the genetic manipulation of Mycoplasma agalactiae and Mycoplasma bovis using the transposon Tn4001mod. Int J Med Microbiol 2005; 294:447-53. [PMID: 15715173 PMCID: PMC4509485 DOI: 10.1016/j.ijmm.2004.09.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycoplasma agalactiae and M. bovis rank amongst the most serious pathogenic mycoplasmas infecting small ruminants and cattle, respectively. Despite considerable advances made in Mycoplasma molecular genetics in the past decade, there is still a complete lack of genetic tools to assess the pathogenic mechanisms of these two species. Studies were undertaken to develop a genetic system for the analysis of potential virulence factors of these pathogens. Transposon Tn4001mod was successfully introduced into various chromosomal sites of M. agalactiae and M. bovis with an optimal frequency of 10(-6) per viable colony-forming unit (CFU). This is the first report that demonstrates the amenability of these agents to transformation and to genetic manipulation. Furthermore, Tn4001 is implicated as the first potential genetic tool available for these ruminant pathogens.
Collapse
Affiliation(s)
| | | | | | - Christine Citti
- Corresponding author. Present address: UMR 1225 INRA-ENVT, Ecole Nationale Vétérinaire, 23 Chemin des Capelles, F-31076 Toulouse Cedex 3, France. Tel.: +335 6119 3856; fax: +335 6119 3273. (C. Citti)
| |
Collapse
|
20
|
Bearson SMD, Collier SD, Bearson BL, Branton SL. Induction of a Mycoplasma gallisepticum pMGA Gene in the Chicken Tracheal Ring Organ Culture Model. Avian Dis 2003; 47:745-9. [PMID: 14562906 DOI: 10.1637/6099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic and molecular methods to investigate the pathogenesis of the poultry respiratory pathogen Mycoplasma gallisepticum are quite limited. Therefore, the objective of this study was to design and evaluate a functional genomics approach to identify M. gallisepticum genes involved in colonization of the poultry respiratory tract. To serve as a transcriptional reporter, a promoterless lacZ gene from Escherichia coli was cloned into the Tn4001 transposon. The transposon was used to randomly mutagenize the chromosome of the M. gallisepticum S6 strain, and a bank of 1386 transposon mutants containing lacZ fusions to mycoplasma chromosomal DNA was assembled. Each mycoplasma clone containing the lacZ reporter was independently screened in the chicken tracheal ring organ culture (TROC) model system for increased production of beta-galactosidase. A twofold or greater increase in beta-galactosidase was consistently observed for eight mutants. In one of the mutants, the transposon was inserted in a pMGA gene encoding a cell surface adhesin involved in hemagglutination. Therefore, these data indicate that screening of a M. gallisepticum transposon reporter bank with a chicken TROC model is useful for the identification of genes induced during poultry colonization and virulence.
Collapse
Affiliation(s)
- Shawn M D Bearson
- United States Department of Agriculture, Agricultural Research Service, Poultry Research Unit, Mississippi State, MS 39762, USA
| | | | | | | |
Collapse
|
21
|
Markham PF, Kanci A, Czifra G, Sundquist B, Hains P, Browning GF. Homologue of macrophage-activating lipoprotein in Mycoplasma gallisepticum is not essential for growth and pathogenicity in tracheal organ cultures. J Bacteriol 2003; 185:2538-47. [PMID: 12670978 PMCID: PMC152605 DOI: 10.1128/jb.185.8.2538-2547.2003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Accepted: 01/08/2003] [Indexed: 11/20/2022] Open
Abstract
While the genomes of a number of Mycoplasma species have been fully determined, there has been limited characterization of which genes are essential. The surface protein (p47) identified by monoclonal antibody B3 is the basis for an enzyme-linked immunosorbent assay for serological detection of Mycoplasma gallisepticum infection and appears to be constitutively expressed. Its gene was cloned, and the DNA sequence was determined. Subsequent analysis of the p47 amino acid sequence and searches of DNA databases found homologous gene sequences in the genomes of M. pneumoniae and M. genitalium and identity with a gene family in Ureaplasma urealyticum and genes in M. agalactiae and M. fermentans. The proteins encoded by these genes were found to belong to a family of basic membrane proteins (BMP) that are found in a wide range of bacteria, including a number of pathogens. Several of the BMP family members, including p47, contain selective lipoprotein-associated motifs that are found in macrophage-activating lipoprotein 404 of M. fermentans and lipoprotein P48 of M. agalactiae. The p47 gene was predicted to encode a 59-kDa peptide, but affinity-purified p47 had a molecular mass of approximately 47 kDa, as determined by polyacrylamide gel analysis. Analysis of native and recombinant p47 by mass peptide fingerprinting revealed the absence of the carboxyl end of the protein encoded by the p47 gene in native p47, which would account for the difference seen in the predicted and measured molecular weights and indicated posttranslational cleavage of the lipoprotein at its carboxyl end. A DNA construct containing the p47 gene interrupted by the gene encoding tetracycline resistance was used to transform M. gallisepticum cells. A tetracycline-resistant mycoplasma clone, P2, contained the construct inserted within the genomic p47 gene, with crossovers occurring between 73 bp upstream and 304 bp downstream of the inserted tetracycline resistance gene. The absence of p47 protein in clone P2 was determined by the lack of reactivity with rabbit anti-p47 sera or monoclonal antibody B3 in Western blots of whole-cell proteins. There was no difference between the p47(-) mutant and wild-type M. gallisepticum in pathogenicity in chicken tracheal organ cultures. Thus, p47, although homologous to genes that occur in many prokaryotes, is not essential for growth in vitro or for attachment and the initial stages of pathogenesis in chickens.
Collapse
Affiliation(s)
- Philip F Markham
- Veterinary Preclinical Centre, Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | |
Collapse
|
22
|
Winner F, Markovà I, Much P, Lugmair A, Siebert-Gulle K, Vogl G, Rosengarten R, Citti C. Phenotypic switching in Mycoplasma gallisepticum hemadsorption is governed by a high-frequency, reversible point mutation. Infect Immun 2003; 71:1265-73. [PMID: 12595441 PMCID: PMC148866 DOI: 10.1128/iai.71.3.1265-1273.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma gallisepticum is a flask-shaped organism that commonly induces chronic respiratory disease in chickens and infectious sinusitis in turkeys. Phenotypic switching in M. gallisepticum hemadsorption (HA) was found to correlate with phase variation of the GapA cytadhesin concurrently with that of the CrmA protein, which exhibits cytadhesin-related features and is encoded by a gene located downstream of the gapA gene as part of the same transcription unit. In clones derived from strain R(low), detailed genetic analyses further revealed that on-off switching in GapA expression is governed by a reversible base substitution occurring at the beginning of the gapA structural gene. In HA(-) variants, this event generates a stop codon that results in the premature termination of GapA translation and consequently affects the expression of CrmA. Sequences flanking the mutation spot do not feature any repeated motifs that could account for error-prone mutation via DNA slippage and the exact mechanism underlying this high-frequency mutational event remains to be elucidated. An HA(-) mutant deficient in producing CrmA, mHAD3, was obtained by disrupting the crmA gene by using transposition mutagenesis. Despite a fully functional gapA gene, the amount of GapA detected in this mutant was considerably lower than in HA(+) clonal variants, suggesting that, in absence of CrmA, GapA might be subjected to a higher turnover.
Collapse
Affiliation(s)
- Florian Winner
- Institute of Bacteriology, Mycology and Hygiene, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
There are few systems available for studying the genetics of the important avian respiratory pathogen, Mycoplasma gallisepticum. These techniques are needed to develop a mechanism to study the molecular pathogenesis of M. gallisepticum. Tn916 has the ability to transpose into the M. gallisepticum genome by both transformation and conjugation. In this study, PEG-mediated transformation was employed for the transfer of Tn916 into M. gallisepticum and create a transposon mutant library. Transformants were obtained at a frequency of approximately 5 x 10(-8) per recipient CFU. A total of 424 MG/Tn916 mutants were constructed and sequence data from the transposon junctions of 71 mutants was obtained and used to identify transposon insertion sites. Insertions were found throughout the genome in nearly all of the major gene categories, making this the first extensive characterization of a transposon mutant library of M. gallisepticum. Transposon stability was also examined, and it was determined that for two mutants the element was stably maintained in vivo in the absence of selective pressure.
Collapse
Affiliation(s)
- Patricia L Whetzel
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19717-1303, USA
| | | | | | | |
Collapse
|
24
|
Lartigue C, Duret S, Garnier M, Renaudin J. New plasmid vectors for specific gene targeting in Spiroplasma citri. Plasmid 2002; 48:149-59. [PMID: 12383732 DOI: 10.1016/s0147-619x(02)00121-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Spiroplasma citri gene inactivation through homologous recombination has been achieved by using the replicative, oriC plasmid pBOT1 as the disruption vector. However, plasmid recombination required extensive passaging of the transformants and, in most cases, recombination occurred at oriC rather than at the target gene. In the current study, we describe a new vector, in which the oriC fragment was reduced to the minimal sequences able to promote plasmid replication. Using this vector to inactivate the motility gene scm1 showed that size reduction of the oriC fragment did increase the frequency of recombination at the target gene. Furthermore, to avoid extensive passaging of the transformants, we developed a strategy in which the selective, tetracycline resistance phenotype can only be expressed once the plasmid has integrated into the chromosome by one single crossover recombination at the target gene. As an example, targeting of the spiralin gene is described.
Collapse
Affiliation(s)
- Carole Lartigue
- UMR Génomique Développement et Pouvoir Pathogène, I.B.V.M., Centre INRA de Bordeaux, 71 avenue Edouard Bourlaux, B.P. 81, 33883 Villenave d'Ornon Cedex, France
| | | | | | | |
Collapse
|
25
|
Pour-El I, Adams C, Minion FC. Construction of mini-Tn4001tet and its use in Mycoplasma gallisepticum. Plasmid 2002; 47:129-37. [PMID: 11982334 DOI: 10.1006/plas.2001.1558] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Mollicutes are a group of cell-wall-less bacteria and are important plant and animal pathogens. Progress toward analyzing their pathogenic mechanisms has been hampered by the few available genetic tools. Of the two transposons shown to function in mycoplasmas, only Tn4001 is readily amenable to modification and development. One disadvantage of using Tn4001 in mycoplasmas has been independent insertion of the insertion sequence, IS256, probably as a result of inadequate control of the transposase expression in mycoplasmas. In this study, we describe the construction of a mini-Tn4001 containing the tetM antibiotic resistance gene from Tn916. The transposase gene was placed outside the inverted repeats to lower the frequency of independent transposition events. Transposition of mini-Tn4001tet in Mycoplasma gallisepticum occurred at a frequency of 1-8 x 10(-6), a frequency similar to that of the parent transposon. Insertions of mini-Tn4001tet were random and only single insertions were observed. Several unique restriction sites between the inverted repeat sequences provide for further development of mini-Tn4001.
Collapse
Affiliation(s)
- Ina Pour-El
- Veterinary Medical Research Institute, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
26
|
Ruffin DC, van Santen VL, Zhang Y, Voelker LL, Panangala VS, Dybvig K. Transposon mutagenesis of Mycoplasma gallisepticum by conjugation with enterococcus faecalis and determination of insertion site by direct genomic sequencing. Plasmid 2000; 44:191-5. [PMID: 10964629 DOI: 10.1006/plas.2000.1485] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Few genetic systems for studying mycoplasmas exist, but transposon Tn916 has been shown to transpose into the genomes of some species and can be used as an insertional mutagen. In the current study, the ability of Enterococcus faecalis to serve as a donor for the conjugative transfer of transposon Tn916 into the genome of the avian pathogen Mycoplasma gallisepticum strain PG31 was examined. Transconjugants were obtained at a frequency of > or =6 x 10(-8) per recipient CFU. To determine the transposon insertion site, an oligonucleotide primer corresponding to the 3' end of Tn916 was designed for the purpose of directly sequencing genomic DNA without PCR amplification. Using the direct sequencing approach, Tn916 was shown to insert into any of numerous sites in the M. gallisepticum genome. This is the first report of conjugal transposition of Tn916 into the M. gallisepticum genome. The ability to determine transposon insertion sites in mycoplasmas by genomic sequencing has not been previously described and allows rapid sequence analysis of transposon-generated mutants.
Collapse
Affiliation(s)
- D C Ruffin
- Department of Large Animal Surgery and Medicine, College of Veterinary Medicine, Auburn, Alabama 36849, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Liu L, Dybvig K, Panangala VS, van Santen VL, French CT. GAA trinucleotide repeat region regulates M9/pMGA gene expression in Mycoplasma gallisepticum. Infect Immun 2000; 68:871-6. [PMID: 10639457 PMCID: PMC97216 DOI: 10.1128/iai.68.2.871-876.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma gallisepticum, the cause of chronic respiratory infections in the avian host, possesses a family of M9/pMGA genes encoding an adhesin(s) associated with hemagglutination. Nucleotide sequences of M9/pMGA gene family members indicate extensive sequence similarity in the promoter regions of both the transcribed and silent genes. The mechanism that regulates M9/pMGA gene expression is unknown, but studies have revealed an apparent correlation between gene expression and the number of tandem GAA repeat motifs located upstream of the putative promoter. In this study, transposon Tn4001 was used as a vector with the Escherichia coli lacZ gene as the reporter system to examine the role of the GAA repeats in M9/pMGA gene expression in M. gallisepticum. A 336-bp M9 gene fragment (containing the GAA repeat region, the promoter, and the translation start codon) was amplified by PCR, ligated with a lacZ gene from E. coli, and inserted into the Tn4001-containing plasmid pISM2062. This construct was transformed into M. gallisepticum PG31. Transformants were filter cloned on agar supplemented with 5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside (X-Gal) to monitor lacZ gene expression on the basis of blue/white color selection. Several cycles of filter cloning resulted in cell lineages in which lacZ gene expression alternated between the On and Off states in successive generations of progeny clones. The promoter regions of the M9-lacZ hybrid genes of individual progeny clones were amplified by PCR and sequenced. The only differences between the promoter regions of the blue and white colonies were in the number of GAA repeats. Clones that expressed lacZ had exactly 12 tandem copies of the GAA repeat. Clones that did not express lacZ invariably had either more than 12 (14 to 16) or fewer than 12 (5 to 11) GAA repeats. Southern analysis of M. gallisepticum chromosomal DNA confirmed that the phase-variable expression of the lacZ reporter gene was not caused by Tn4001 transposition. These data strongly indicate that changes in the length of the GAA repeat region are responsible for regulating M9/pMGA gene expression.
Collapse
Affiliation(s)
- L Liu
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama 36849, USA
| | | | | | | | | |
Collapse
|
28
|
Duret S, Danet JL, Garnier M, Renaudin J. Gene disruption through homologous recombination in Spiroplasma citri: an scm1-disrupted motility mutant is pathogenic. J Bacteriol 1999; 181:7449-56. [PMID: 10601200 PMCID: PMC94200 DOI: 10.1128/jb.181.24.7449-7456.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether homologous recombination could be used to inactivate selected genes in Spiroplasma citri, plasmid constructs were designed to disrupt the motility gene scm1. An internal scm1 gene fragment was inserted into plasmid pKT1, which replicates in Escherichia coli but not in S. citri, and into the S. citri oriC plasmid pBOT1, which replicates in spiroplasma cells as well as in E. coli. Electrotransformation of S. citri with the nonreplicative, recombinant plasmid pKTM1 yielded no transformants. In contrast, spiroplasmal transformants were obtained with the replicative, pBOT1-derived plasmid pCJ32. During passaging of the transformants, the plasmid was found to integrate into the chromosome by homologous recombination either at the oriC region or at the scm1 gene. In the latter case, plasmid integration by a single crossover between the scm1 gene fragment carried by the plasmid and the full-length scm1 gene carried by the chromosome led to a nonmotile phenotype. Transmission of the scm1-disrupted mutant to periwinkle (Catharanthus roseus) plants through injection into the leafhopper vector (Circulifer haematoceps) showed that the motility mutant multiplied in the insects and was efficiently transmitted to plants, in which it induced symptoms similarly to the wild-type S. citri strain. These results suggest that the spiroplasmal motility may not be essential for pathogenicity and that, more broadly, the S. citri oriC plasmids can be considered promising tools for specific gene disruption by promoting homologous recombination in S. citri, a mollicute which probably lacks a functional RecA protein.
Collapse
Affiliation(s)
- S Duret
- Laboratoire de Biologie Cellulaire et Moléculaire, INRA et Université Victor Segalen Bordeaux 2, 33883 Villenave d'Ornon Cedex, France
| | | | | | | |
Collapse
|
29
|
Abstract
The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors' chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses.
Collapse
Affiliation(s)
- S Razin
- Department of Membrane and Ultrastructure Research, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
30
|
Lyon WR, Gibson CM, Caparon MG. A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J 1998; 17:6263-75. [PMID: 9799235 PMCID: PMC1170952 DOI: 10.1093/emboj/17.21.6263] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ability of numerous microorganisms to cause disease relies upon the highly regulated expression of secreted proteinases. In this study, mutagenesis with a novel derivative of Tn4001 was used to identify genes required for the expression of the secreted cysteine proteinase (SCP) of the pathogenic Gram-positive bacterium Streptococcus pyogenes. Designated as Rop loci (regulation of proteinase), ropB is a rgg-like transcriptional activator required for transcription of the gene which encodes the proteinase. In contrast, ropA contributes post-transcriptionally to the secretion and processing of SCP and encodes a homologue of Trigger Factor, a peptidyl-prolyl isomerase and putative chaparone which is highly conserved in most bacterial species, but of unknown function. Analysis of additional ropA mutants demonstrated that RopA acts both to assist in targeting SCP to the secretory pathway and to promote the ability of the proprotein to establish an active conformation upon secretion. This latter function was dependent upon the peptidyl-prolyl isomerase domain of RopA and mutants that lacked this domain exhibited a bipartite deficiency manifested as a kinetic defect in autologous processing of the proprotein to the mature proteinase, and as a catalytic defect in the mature proteinase. These results provide insight into the function of Trigger Factor, the regulation of proteinase activity and the mechanism of secretion in Gram-positive bacteria.
Collapse
Affiliation(s)
- W R Lyon
- Department of Molecular Microbiology, Washington University School of Medicine, Box 8230, St Louis, MO 63110-1093, USA
| | | | | |
Collapse
|
31
|
Abstract
Although mycoplasmas lack cell walls, they are in many respects similar to the gram-positive bacteria with which they share a common ancestor. The molecular biology of mycoplasmas is intriguing because the chromosome is uniquely small (< 600 kb in some species) and extremely A-T rich (as high as 75 mol% in some species). Perhaps to accommodate DNA with a lower G + C content, most mycoplasmas do not have the "universal" genetic code. In these species, TGA is not a stop codon; instead it encodes tryptophan at a frequency 10 times greater than TGG, the usual codon for this amino acid. Because of the presence of TGA codons, the translation of mycoplasmal proteins terminates prematurely when cloned genes are expressed in other eubacteria, such as Escherichia coli. Many mycoplasmas possess strikingly dynamic chromosomes in which high-frequency changes result from errors in DNA repair or replication and from highly active recombination systems. Often, high-frequency changes in the mycoplasmal chromosome are associated with antigenic and phase variation, which regulate the production of factors critical to disease pathogenesis.
Collapse
Affiliation(s)
- K Dybvig
- Department of Comparative Medicine, University of Alabama at Birmingham 35294, USA
| | | |
Collapse
|
32
|
Voelker LL, Dybvig K. Gene transfer in Mycoplasma arthritidis: transformation, conjugal transfer of Tn916, and evidence for a restriction system recognizing AGCT. J Bacteriol 1996; 178:6078-81. [PMID: 8830712 PMCID: PMC178472 DOI: 10.1128/jb.178.20.6078-6081.1996] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mycoplasma arthritidis is a rat pathogen causing a severe polyarthritis. The study of its pathogenic mechanisms has been hampered by the lack of genetic systems for use with M. arthritidis. Described here are procedures for genetic transformation of M. arthritidis and conjugal transfer of Tn916 from an enterococcal donor to M. arthritidis. The location of Tn916 insertion sites in the mycoplasmal chromosome was random, suggesting that Tn916 may be useful as an insertional mutagen in this organism. Additionally, a restriction and modification system was identified which presented a strong barrier to gene transfer. For transformation, the restriction system was circumvented by using DNA that was modified in vitro with the appropriate site-specific methylase (AluI).
Collapse
Affiliation(s)
- L L Voelker
- Department of Comparative Medicine, University of Alabama at Birmingham, 35294-0019, USA
| | | |
Collapse
|
33
|
Clewell DB, Flannagan SE, Jaworski DD. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol 1995; 3:229-36. [PMID: 7648031 DOI: 10.1016/s0966-842x(00)88930-1] [Citation(s) in RCA: 266] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Conjugative transposons are highly ubiquitous elements found throughout the bacterial world. Members of the Tn916-Tn1545 family carry the widely disseminated tetracycline-resistance determinant Tet M, as well as additional resistance genes. They have been found naturally in, or been introduced into, over 50 different species and 24 genera of bacteria. Recent investigations have led to insights into the molecular basis of movement of these interesting mobile elements.
Collapse
Affiliation(s)
- D B Clewell
- Dept of Biologic and Materials Sciences, School of Dentistry, School of Medicine, University of Michigan, Ann Arbor 48109, USA
| | | | | |
Collapse
|