1
|
Zinc-, cobalt- and iron-chelated forms of adenylate kinase from the Gram-negative bacterium Desulfovibrio gigas. Int J Biol Macromol 2009; 45:524-31. [DOI: 10.1016/j.ijbiomac.2009.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 09/18/2009] [Indexed: 11/19/2022]
|
2
|
Kladova AV, Gavel OY, Mukhopaadhyay A, Boer DR, Teixeira S, Shnyrov VL, Moura I, Moura JJG, Romão MJ, Trincão J, Bursakov SA. Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:926-9. [PMID: 19724135 PMCID: PMC2795603 DOI: 10.1107/s1744309109029157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 07/22/2009] [Indexed: 11/11/2022]
Abstract
Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 A resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 A resolution, respectively. Zn(2+)-AK and Fe(2+)-AK crystallized in space group I222 with similar unit-cell parameters, whereas Co(2+)-AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn(2+)-AK and Fe(2+)-AK forms and a dimer was present for the Co(2+)-AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes.
Collapse
Affiliation(s)
- A. V. Kladova
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - O. Yu. Gavel
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain
| | - A. Mukhopaadhyay
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - D. R. Boer
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - S. Teixeira
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - V. L. Shnyrov
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain
| | - I. Moura
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - J. J. G. Moura
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - M. J. Romão
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - J. Trincão
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - S. A. Bursakov
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
3
|
Davlieva M, Shamoo Y. Structure and biochemical characterization of an adenylate kinase originating from the psychrophilic organism Marinibacillus marinus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:751-6. [PMID: 19652331 PMCID: PMC2720325 DOI: 10.1107/s1744309109024348] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 06/18/2009] [Indexed: 04/18/2024]
Abstract
Adenylate kinases (AKs; EC 2.7.4.3) are essential members of the NMP kinase family that maintain cellular homeostasis by the interconversion of AMP, ADP and ATP. AKs play a critical role in adenylate homeostasis across all domains of life and have been used extensively as prototypes for the study of protein adaptation and the relationship of protein dynamics and stability to function. To date, kinetic studies of psychrophilic AKs have not been performed. In order to broaden understanding of extremophilic adaptation, the kinetic parameters of adenylate kinase from the psychrophile Marinibacillus marinus were examined and the crystal structure of this cold-adapted enzyme was determined at 2.0 A resolution. As expected, the overall structure and topology of the psychrophilic M. marinus AK are similar to those of mesophilic and thermophilic AKs. The thermal denaturation midpoint of M. marinus AK (321.1 K) is much closer to that of the mesophile Bacillus subtilis (320.7 K) than the more closely related psychrophile B. globisporus (316.4 K). In addition, the enzymatic properties of M. marinus AK are quite close to those of the mesophilic AK and suggests that M. marinus experiences temperature ranges in which excellent enzyme function over a broad temperature range (293-313 K) has been retained for the success of the organism. Even transient loss of AK function is lethal and as a consequence AK must be robust and be well adapted to the environment of the host organism.
Collapse
Affiliation(s)
- Milya Davlieva
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas, USA
| | - Yousif Shamoo
- Department of Biochemistry and Cell Biology, Rice University, 6100 Main Street MS-140, Houston, Texas, USA
| |
Collapse
|
4
|
Gavel OY, Bursakov SA, Di Rocco G, Trincão J, Pickering IJ, George GN, Calvete JJ, Shnyrov VL, Brondino CD, Pereira AS, Lampreia J, Tavares P, Moura JJG, Moura I. A new type of metal-binding site in cobalt- and zinc-containing adenylate kinases isolated from sulfate-reducers Desulfovibrio gigas and Desulfovibrio desulfuricans ATCC 27774. J Inorg Biochem 2008; 102:1380-95. [PMID: 18328566 DOI: 10.1016/j.jinorgbio.2008.01.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 01/13/2008] [Accepted: 01/18/2008] [Indexed: 11/28/2022]
Abstract
Adenylate kinase (AK) mediates the reversible transfer of phosphate groups between the adenylate nucleotides and contributes to the maintenance of their constant cellular level, necessary for energy metabolism and nucleic acid synthesis. The AK were purified from crude extracts of two sulfate-reducing bacteria (SRB), Desulfovibrio (D.) gigas NCIB 9332 and Desulfovibrio desulfuricans ATCC 27774, and biochemically and spectroscopically characterised in the native and fully cobalt- or zinc-substituted forms. These are the first reported adenylate kinases that bind either zinc or cobalt and are related to the subgroup of metal-containing AK found, in most cases, in Gram-positive bacteria. The electronic absorption spectrum is consistent with tetrahedral coordinated cobalt, predominantly via sulfur ligands, and is supported by EPR. The involvement of three cysteines in cobalt or zinc coordination was confirmed by chemical methods. Extended X-ray absorption fine structure (EXAFS) indicate that cobalt or zinc are bound by three cysteine residues and one histidine in the metal-binding site of the "LID" domain. The sequence 129Cys-X5-His-X15-Cys-X2-Cys of the AK from D. gigas is involved in metal coordination and represents a new type of binding motif that differs from other known zinc-binding sites of AK. Cobalt and zinc play a structural role in stabilizing the LID domain.
Collapse
Affiliation(s)
- Olga Yu Gavel
- REQUIMTE, Departamento de Química, Centro de Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Birringer MS, Claus MT, Folkers G, Kloer DP, Schulz GE, Scapozza L. Structure of a type II thymidine kinase with bound dTTP. FEBS Lett 2005; 579:1376-82. [PMID: 15733844 DOI: 10.1016/j.febslet.2005.01.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Revised: 12/06/2004] [Accepted: 01/09/2005] [Indexed: 11/23/2022]
Abstract
The structure of human cytosolic thymidine kinase in complex with its feedback inhibitor 2'-deoxythymidine-5'-triphosphate was determined. This structure is the first representative of the type II thymidine kinases found in several pathogens. The structure deviates strongly from the known structures of type I thymidine kinases such as the Herpes simplex enzyme. It contains a zinc-binding domain with four cysteines complexing a structural zinc ion. Interestingly, the backbone atoms of the type II enzyme bind thymine via hydrogen-bonds, in contrast to type I, where side chains are involved. This results in a specificity difference exploited for antiviral therapy. The presented structure will foster the development of new drugs and prodrugs for numerous therapeutic applications.
Collapse
Affiliation(s)
- Markus S Birringer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Wolfgang-Pauli Strasse 10, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
6
|
Bae E, Phillips GN. Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 2004; 279:28202-8. [PMID: 15100224 DOI: 10.1074/jbc.m401865200] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of adenylate kinases from the psychrophile Bacillus globisporus and the mesophile Bacillus subtilis have been solved and compared with that from the thermophile Bacillus stearothermophilus. This is the first example we know of where a trio of protein structures has been solved that have the same number of amino acids and a high level of identity (66-74%) and yet come from organisms with different operating temperatures. The enzymes were characterized for their own thermal denaturation and inactivation, and they exhibited the same temperature preferences as their source organisms. The structures of the three highly homologous, dynamic proteins with different temperature-activity profiles provide an opportunity to explore a molecular mechanism of cold and heat adaptation. Their analysis suggests that the maintenance of the balance between stability and flexibility is crucial for proteins to function at their environmental temperatures, and it is achieved by the modification of intramolecular interactions in the process of temperature adaptation.
Collapse
Affiliation(s)
- Euiyoung Bae
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | |
Collapse
|
7
|
Vieille C, Krishnamurthy H, Hyun HH, Savchenko A, Yan H, Zeikus JG. Thermotoga neapolitana adenylate kinase is highly active at 30 degrees C. Biochem J 2003; 372:577-85. [PMID: 12625835 PMCID: PMC1223421 DOI: 10.1042/bj20021377] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2002] [Revised: 02/18/2003] [Accepted: 03/07/2003] [Indexed: 11/17/2022]
Abstract
The adenylate kinase (AK) gene from Thermotoga neapolitana, a hyperthermophilic bacterium, was cloned and overexpressed in Escherichia coli, and the recombinant enzyme was biochemically characterized. The T. neapolitana AK (TNAK) sequence indicates that this enzyme belongs to the long bacterial AKs. TNAK contains the four cysteine residues that bind Zn(2+) in all Gram-positive AKs and in a few other Zn(2+)-containing bacterial AKs. Atomic emission spectroscopy and titration data indicate a content of 1 mol of Zn(2+)/mol of recombinant TNAK. The EDTA-treated enzyme has a melting temperature (T (m)=93.5 degrees C) 6.2 degrees C below that of the holoenzyme (99.7 degrees C), identifying Zn(2+) as a stabilizing feature in TNAK. TNAK is a monomeric enzyme with a molecular mass of approx. 25 kDa. TNAK displays V (max) and K (m) values at 30 degrees C identical with those of the E. coli AK at 30 degrees C, and displays very high activity at 80 degrees C, with a specific activity above 8000 units/mg. The unusually high activity of TNAK at 30 degrees C makes it an interesting model to test the role of enzyme flexibility in activity.
Collapse
Affiliation(s)
- Claire Vieille
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing 48824, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Miura K, Inouye S, Sakai K, Takaoka H, Kishi F, Tabuchi M, Tanaka T, Matsumoto H, Shirai M, Nakazawa T, Nakazawa A. Cloning and characterization of adenylate kinase from Chlamydia pneumoniae. J Biol Chem 2001; 276:13490-8. [PMID: 11278507 DOI: 10.1074/jbc.m009461200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chlamydiae proliferate only within the infected host cells and are thought to be "energy parasites," because they take up ATP from the host cell as an energy source. In the present study, we isolated from Chlamydia pneumoniae the gene encoding adenylate kinase (AK). Using the enzyme produced in Escherichia coli, its properties were characterized. K(m) values for AMP and for ADP of the purified C. pneumoniae AK (AKcpn) were each 330 microm, which is significantly higher than the reported values of other AKs, whereas K(m) for ATP was 24 microm, which was rather lower than others. AKcpn contains 1 g atom of zinc/mol of 24,000-dalton protein. Mass spectrometric analysis of AKcpn and analysis of properties of mutated AKcpn strongly suggested that zinc is associated with four cysteine residues in the LID domain of the enzyme. The apo-AKcpn that lost zinc retained AK activity, although K(m) for AMP of apo-AKcpn increased about 2-fold and V(max) decreased about one-half from that of holo-AKcpn. The apo-AKcpn was more thermolabile and sensitive to trypsin digestion than the holo-AKcpn. Moreover, the recovery in vitro of the AK activity during the renaturation process of the denatured apo-AKcpn was dependent on zinc. A mutated protein in which cysteine residues in the LID domain were substituted by other amino acids lost both zinc and enzyme activity. The mutated protein was more sensitive to protease than the apo-AKcpn. These results indicate that zinc in AKcpn, although not essential for the catalysis, stabilizes the enzyme and probably plays a crucial role in proper folding of the protein. Furthermore, the catalytic properties of AKcpn suggest a distinctive regulatory mechanism in the metabolism compared with AKs in other organisms.
Collapse
Affiliation(s)
- K Miura
- Department of Biochemistry, Central Laboratory for Biomedical Research and Education, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Berry MB, Phillips GN. Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Proteins 1998; 32:276-88. [PMID: 9715904 DOI: 10.1002/(sici)1097-0134(19980815)32:3<276::aid-prot3>3.0.co;2-g] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mn2+ Ap5A, and Mg2+ Ap5A have been determined by X-ray crystallography to resolutions of 1.6 A, 1.85 A, and 1.96 A, respectively. The protein's lid domain is partially open, being both rotated and translated away from bound Ap5A. The flexibility of the lid domain in the ternary state and its ability to transfer force directly to the the active site is discussed in light of our proposed entropic mechanism for catalytic turnover. The bound Zn2+ atom is demonstrably structural in nature, with no contacts other than its ligating cysteine residues within 5 A. The B. stearothermophilus adenylate kinase lid appears to be a truncated zinc finger domain, lacking the DNA binding finger, which we have termed a zinc knuckle domain. In the Mg2+ Ap5A and Mn2+ Ap5A structures, Mg2+ and Mn2+ demonstrate six coordinate octahedral geometry. The interactions of the Mg2+-coordinated water molecules with the protein and Ap5A phosphate chain demonstrate their involvement in catalyzing phosphate transfer. The protein selects for beta-y (preferred by Mg2+) rather than alpha-gamma (preferred by Mn2+) metal ion coordination by forcing the ATP phosphate chain to have an extended conformation.
Collapse
Affiliation(s)
- M B Berry
- W.M. Keck Center for Computational Biology, Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
10
|
Berry MB, Phillips GN. Crystal structures ofBacillus stearothermophilus adenylate kinase with bound Ap5A, Mg2+ Ap5A, and Mn2+ Ap5A reveal an intermediate lid position and six coordinate octahedral geometry for bound Mg2+ and Mn2+. Proteins 1998. [DOI: 10.1002/(sici)1097-0134(19980815)32:3%3c276::aid-prot3%3e3.0.co;2-g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Perrier V, Burlacu-Miron S, Bourgeois S, Surewicz WK, Gilles AM. Genetically engineered zinc-chelating adenylate kinase from Escherichia coli with enhanced thermal stability. J Biol Chem 1998; 273:19097-101. [PMID: 9668094 DOI: 10.1074/jbc.273.30.19097] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast with adenylate kinase from Gram-negative bacteria, the enzyme from Gram-positive organisms harbors a structural Zn2+ bound to 3 or 4 Cys residues in the structural motif Cys-X2-Cys-X16-Cys-X2-Cys/Asp. Site-directed mutagenesis of His126, Ser129, Asp146, and Thr149 (corresponding to Cys130, Cys133, Cys150, and Cys153 in adenylate kinase from Bacillus stearothermophilus) in Escherichia coli adenylate kinase was undertaken for determining whether the presence of Cys residues is the only prerequisite to bind zinc or (possible) other cations. A number of variants of adenylate kinase from E. coli, containing 1-4 Cys residues were obtained, purified, and analyzed for metal content, structural integrity, activity, and thermodynamic stability. All mutants bearing 3 or 4 cysteine residues acquired zinc binding properties. Moreover, the quadruple mutant exhibited a remarkably high thermal stability as compared with the wild-type form with preservation of the kinetic parameters of the parent enzyme.
Collapse
Affiliation(s)
- V Perrier
- Laboratoire de Chimie Structurale des Macromolécules, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
12
|
Deligiannakis Y, Boussac A, Bottin H, Perrier V, Bârzu O, Gilles AM. A new non-heme iron environment in Paracoccus denitrificans adenylate kinase studied by electron paramagnetic resonance and electron spin echo envelope modulation spectroscopy. Biochemistry 1997; 36:9446-52. [PMID: 9235989 DOI: 10.1021/bi970021e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adenylate kinase from the Gram-negative bacterium Paracoccus denitrificans (AKden) has structural features highly similar to those of the enzyme from Gram-positive organisms. Atomic absorption spectroscopy of the recombinant protein, which is a dimer, revealed the presence of two metals, zinc and iron, each binding most probably to one monomer. Under oxidizing conditions, the electron paramagnetic resonance (EPR) spectrum of AKden at 4.2 K consists of features at g = 9.23, 4.34, 4.21, and 3.68. These features are absent in the ascorbate-reduced protein and are characteristic of a S = 5/2 spin system in a rhombic environment with E/D = 0.24 and are assigned to a non-heme Fe3+ (S = 5/2) center. The zero-field splitting parameter D (D = 1.4 +/- 0.2 cm-1) was estimated from the temperature dependence of the EPR spectra. These EPR characteristic as well as the difference absorption spectrum (oxidized minus reduced) of AKden are similar to those reported for the non-heme iron protein rubredoxin. Nevertheless, the redox potential of the Fe2+/Fe3+ couple in AKden was measured at +230 +/- 30 mV, which is more positive than the redox potential of the non-heme iron in rubredoxin. Binding of cyanide converts the iron from the high-spin (S = 5/2) to the low-spin (S = 1/2) spin state. The EPR spectrum of the non-heme Fe3+(S = 1/2) in the presence of cyanide has g values of 2.45, 2.18, and 1.92 and spin-Hamiltonian parameters R/lambda = 7. 4 and R/mu = 0.56. The conversion of the non-heme iron to the low-spin (S = 1/2) state allowed the study of its local environment by electron spin echo envelope modulation spectroscopy (ESEEM). The ESEEM data revealed the existence of 14N or 15N nuclei coupled to the low-spin iron after addition of KC14N or KC15N respectively. This demonstrated that iron in AKden has at least one labile coordination position that can be easily occupied by cyanide. Other possible magnetic interactions with nitrogen(s) from the protein are discussed.
Collapse
Affiliation(s)
- Y Deligiannakis
- Section de Bioénergétique, URA CNRS 2096, Département de Biologie Cellulaire et Moléculaire, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
13
|
Briand G, Perrier V, Kouach M, Takahashi M, Gilles AM, Bârzu O. Characterization of metal and nucleotide liganded forms of adenylate kinase by electrospray ionization mass spectrometry. Arch Biochem Biophys 1997; 339:291-7. [PMID: 9056261 DOI: 10.1006/abbi.1997.9877] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Complexes of adenylate kinase from Escherichia coli, Bacillus subtilis, and Bacillus stearothermophilus with the bisubstrate nucleotide analog P1,P5-di(adenosine 5')-pentaphosphate and with metal ions (Zn2+ and/or Mg2+) were analyzed by electrospray ionization mass spectrometry. P1,P5-di(adenosine 5')-pentaphosphate. adenylate kinase complex was detected in the positive mode at pH as low as 3.8. Binding of nucleotide to adenylate kinase stabilizes the overall structure of the protein and preserves the Zn2+ chelated form of the enzyme from the gram-positive organisms. In this way, it is possible in a single mass spectrometry experiment to screen metal-chelating adenylate kinases, without use of radioactively labeled compounds. Binding of Mg2+ to enzyme via P1,P5-di(adenosine 5')-pentaphosphate was also demonstrated by mass spectrometry. Although no amino acid side chain in adenylate kinase is supposed to interact with Mg2+, Asp93 in porcine muscle cytosolic enzyme, equivalent to Asp84 in the E. coli adenylate kinase, was proposed to stabilize the nucleotide.Mg2+ complex via water molecules.
Collapse
Affiliation(s)
- G Briand
- Laboratoire d'Application de Spectrométrie de Masse, Université de Lille II, Lille Cedex, 59045, France
| | | | | | | | | | | |
Collapse
|
14
|
The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana. Appl Environ Microbiol 1996; 62:2915-8. [PMID: 9285772 PMCID: PMC168078 DOI: 10.1128/aem.62.8.2915-2918.1996] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T. neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation.
Collapse
|
15
|
Schlauderer GJ, Schulz GE. The structure of bovine mitochondrial adenylate kinase: comparison with isoenzymes in other compartments. Protein Sci 1996; 5:434-41. [PMID: 8868479 PMCID: PMC2143366 DOI: 10.1002/pro.5560050304] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vertebrates, there are different adenylate kinases in the compartments cytosol, mitochondrial intermembrane space, and mitochondrial matrix. Here, we report the spatial structure of the intermembrane species established in two crystal forms by X-ray diffraction analyses at 1.92 and 2.1 A resolution. In both structures, the enzyme is unligated, and thus in an "open" conformation. The enzyme was prepared from bovine liver, containing at least five variants arisen from posttranscriptional and posttranslational modifications. It could only be crystallized after removing some of these variants. A comparison with the known structures of the adenylate kinases from cytosol and mitochondrial matrix reveals structural differences that should play a role in protein targeting because none of these enzymes contains a cleavable signal peptide. A further comparison with adenylate kinases from Gram-positive bacteria showed that the structural Zn2+ ion of these species is replaced by a strictly conserved assembly of hydrogen bonded residues.
Collapse
Affiliation(s)
- G J Schlauderer
- Institut für Organische Chemie und Biochemie, Freiburg im Breisgau, Germany
| | | |
Collapse
|
16
|
Silins GU, Blakeley RL, Riddles PW. Characterisation of genes encoding a nucleoside monophosphate kinase and a L35 ribosomal protein from Babesia bovis. Mol Biochem Parasitol 1996; 76:231-44. [PMID: 8920009 DOI: 10.1016/0166-6851(95)02561-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have sequenced a region of the Babesia bovis nuclear genome that encodes a L35 ribosomal protein homologue (bl35) and a putative nucleoside monophosphate kinase (bnmk) that is most similar to the adenylate kinase of gram-positive bacteria and the mitochondrial form of adenylate kinase in eukaryotes. BNMK appears to be unique in that it is the first eukaryotic family member to feature a putative zinc-binding domain. bnmk and bl35 are closely linked and transcribed from opposite DNA strands. Examination of the gene structures indicate that the coding regions contain small intervening sequences that obey the GT-AG rule of eukaryotic spliceosomal introns. The single intron separates the bl35 initiation codon from the remainder of the coding region and the 6-exon bnmk gene does not appear to be differentially spliced. Both genes utilise multiple polyadenylation sites and the canonical mammalian polyadenylation signal AATAAA is absent from their 3' untranslated regions. Primer extension analyses reveal that the bnmk gene utilises a cluster of transcription start points, one of which is used most frequently. The bnmk mRNA 5' end does not appear to be cis- or trans-spliced. We report here the first evidence of intronic sequences, as well as heterogeneous 5' and 3' ends for mRNA of a member of the Babesia genus.
Collapse
Affiliation(s)
- G U Silins
- Department of Biochemistry, University of Queensland, Australia.
| | | | | |
Collapse
|
17
|
Serina L, Blondin C, Krin E, Sismeiro O, Danchin A, Sakamoto H, Gilles AM, Bârzu O. Escherichia coli UMP-kinase, a member of the aspartokinase family, is a hexamer regulated by guanine nucleotides and UTP. Biochemistry 1995; 34:5066-74. [PMID: 7711027 DOI: 10.1021/bi00015a018] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pyrH gene, encoding UMP-kinase from Escherichia coli, was cloned using as a genetic probe the property of the carAB operon to be controlled for its expression by the concentration of cytoplasmic UTP. The open reading frame of the pyrH gene of 723 bp was found to be identical to that of the smbA gene [Yamanaka, K., et al. (1992) J. Bacteriol. 174, 7517-7526], previously described as being involved in chromosome partitioning in E. coli. The bacterial UMP-kinase did not display significant sequence similarity to known nucleoside monophosphate kinases. On the contrary, it exhibited similarity with three families of enzymes including aspartokinases, glutamate kinases, and Pseudomonas aeruginosa carbamate kinase. UMP-kinase overproduced in E. coli was purified to homogeneity and analyzed for its structural and catalytic properties. The protein consists of six identical subunits, each of 240 amino acid residues (the N-terminal methionine residue is missing in the expressed protein). Upon excitation at 295 nm, the bacterial enzyme exhibits a fluorescence emission spectrum with maximum at 332 nm which indicates that the single tryptophan residue of the protein (Trp119) is located in a hydrophobic environment. Like other enzymes involved in the de novo synthesis of pyrimidine nucleotides, UMP-kinase of E. coli is subject to regulation by nucleotides: GTP is an allosteric activator, whereas UTP serves as an allosteric inhibitor. UTP and UDP, but none of the other nucleotides tested such as GTP, ATP, and UMP, enhanced the fluorescence of the protein. The sigmoidal shape of the dose-response curve indicated cooperativity in binding of UTP and UDP.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Serina
- Unité de Biochimie des Régulations Cellulaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Perrier V, Surewicz WK, Glaser P, Martineau L, Craescu CT, Fabian H, Mantsch HH, Bârzu O, Gilles AM. Zinc chelation and structural stability of adenylate kinase from Bacillus subtilis. Biochemistry 1994; 33:9960-7. [PMID: 8061005 DOI: 10.1021/bi00199a019] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenylate kinase from Bacillus subtilis, like the enzyme from Bacillus stearothermophilus, contains a structural zinc atom. Cys153 in the enzyme from B. stearothermophilus, which is involved in the zinc coordination, is replaced in the adenylate kinase from B. subtilis by an aspartic acid residue. Therefore, we were interested in establishing whether this difference has an impact on the structure, the metal chelation, and the overall stability of these proteins. We also were interested in determining whether His138, which is conserved in many adenylate kinases, can act as a fourth partner in the metal chelation and, in general, whether His can successfully replace Cys or Asp in coordinating zinc in the adenylate kinase from B. subtilis. The adk gene from B. subtilis was cloned by polymerase chain reaction. The wild-type protein, together with several variants obtained by site-directed mutagenesis, were expressed in Escherichia coli and analyzed by biochemical and physicochemical methods. The H138N and D153C mutants of adenylate kinase from B. subtilis exhibited properties similar to those of the wild-type protein, indicating that His138 is not involved in metal coordination and that Asp153, just like Cys in the analogous position in the enzyme from B. stearothermophilus, can participate in zinc chelation. This is the first experimental evidence indicating that aspartic acid can be involved in the coordination of a structural zinc atom. On the other hand, the D153H and D153T variants showed significant changes in their zinc-binding properties. Dialysis of the latter proteins against buffer (in both the presence and the absence of 2 mM EDTA) resulted in removal of the metal ion and loss of enzymatic activity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- V Perrier
- Unité de Biochimie des Régulations Cellulaires, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|